首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitochondrial inner membrane peptidase Imp is required for proteolytic processing of the mitochondrially encoded protein Cox2, the nucleus-encoded Cyt b2, Mcr1, and Cyt c1, and possibly other proteins, during their transport across the mitochondrial membranes. The peptidase contains two catalytic subunits, Imp1 and Imp2. The small protein Som1 was previously shown to affect the function of Imp1, but the precise role of Som1 remained unknown. Using mutants deleted for IMP1, IMP2 and SOM1, we show here that the Som1 protein is absent in the imp1Δ mutant, whereas the level of the Imp1 subunit of the peptidase is only slightly reduced in the som1 null mutant. The Som1 protein is not essential for proteolytic processing of Cyt b2, while the two other known Imp1 substrates, Cox2 and Mcr1, are not processed in the absence of Som1. Proteolytic processing of Cyt c1 by the Imp2 subunit, and of Ccp by an as yet unidentified peptidase, is not impaired in the som1 deletion mutant. By crosslinking and co-immunoprecipitation assays we demonstrate that the Imp1 and Som1 proteins physically interact. We conclude from our results that stabilisation of Som1 and correct Imp1 function is mediated by a direct interaction between the Imp1 and Som1 proteins, suggesting that Som1 represents a third subunit of the Imp peptidase complex. Received: 24 September 1999 / Accepted: 9 December 1999  相似文献   

2.
Cross-linking experiments showed that the supernumerary subunit i is close to the interface between two ATP synthases. These data were used to demonstrate the presence of ATP synthase dimers in the inner mitochondrial membrane of Saccharomyces cerevisiae. A cysteine residue was introduced into the inter-membrane space located C-terminal part of subunit i. Cross-linking experiments revealed a dimerization of subunit i. This cross-linking occurred only with the dimeric form of the enzyme after incubating intact mitochondria with a bis-maleimide reagent, thus indicating an inter-ATP synthase cross-linking, whereas the monomeric form of the enzyme exhibited only an intra-ATP synthase cross-linking with subunit 6, another component of the membranous domain of the ATP synthase.  相似文献   

3.
The NS3 serine protease of dengue virus is required for the maturation of the viral polyprotein and consequently represents a promising target for the development of antiviral inhibitors. However, the substrate specificity of this enzyme has been characterized only to a limited extent. In this study, we have investigated product inhibition of the NS3 protease by synthetic peptides derived from the P6-P1 and the P1'-P5' regions of the natural polyprotein substrate. N-terminal cleavage site peptides corresponding to the P6-P1 region of the polyprotein were found to act as competitive inhibitors of the enzyme with K(i) values ranging from 67 to 12 microM. The lowest K(i) value was found for the peptide representing the NS2A/NS2B cleavage site, RTSKKR. Inhibition by this cleavage site sequence was analyzed by using shorter peptides, SKKR, KKR, KR, AGRR, and GKR. With the exception of the peptide AGRR which did not inhibit the protease at a concentration of 1mM, all other peptides displayed K(i) values in the range from 188 to 22 microM. Peptides corresponding to the P1'-P5' region of the polyprotein cleavage sites had no effect on enzymatic activity at a concentration of 1mM. Molecular docking data of peptide inhibitors to a homology-based model of the dengue virus type 2 NS2B(H)-NS3p co-complex indicate that binding of the non-prime site product inhibitors is similar to ground-state binding of the corresponding substrates.  相似文献   

4.
DIABLO/Smac is a mitochondrial protein that can promote apoptosis by promoting the release and activation of caspases. To do so, DIABLO/Smac must first be processed by a mitochondrial protease and then released into the cytosol, and we show this in an intact cellular system. We propose that the precursor form of DIABLO/Smac enters the mitochondria through a stop-transfer pathway and is processed to its active form by the inner membrane peptidase (IMP) complex. Catalytic subunits of the mammalian IMP complex were identified based on sequence conservation and functional complementation, and the novel sequence motif RX(5)P in Imp1 and NX(5)S in Imp2 distinguish the two catalytic subunits. DIABLO/Smac is one of only a few specific proteins identified as substrates for the IMP complex in the mitochondrial intermembrane space.  相似文献   

5.
The immunoglobulin degrading enzyme of Streptococcus pyogenes, IdeS, is an unusual cysteine protease produced by group A streptococci for which the only known substrate is immunoglobulin G (IgG). To date, IdeS has not been found to cleave any of the known synthetic substrates that other cysteine proteases hydrolyse, thus making the development of an IdeS detection assay difficult. Furthermore, at high doses of substrate, product generation is inhibited potentially due to the need for a dimeric enzyme complex with IgG. In this study we have developed a mass spectral assay for IdeS activity based on the detection of an Mr approximately 25,300 Fc fragment that retains the ability to bind streptococcal protein G. Using this assay procedure, evidence for a multimeric enzyme-substrate complex was obtained as well as identifying isolated heavy chains as a non-substrate inhibitor of IdeS activity. Under appropriate experimental conditions the assay could be used to detect IdeS activity in bacterial culture media or in human plasma without a requirement for purified reactants. The availability of a rapid and sensitive assay for IdeS should facilitate the detailed biochemical characterization of this unusual bacterial cysteine protease.  相似文献   

6.
Mitochondrial inner membrane fusion depends on the dynamin‐related GTPase OPA1 and the function of OPA1 is regulated by proteolytic cleavage. The mitochondrial proteases Yme1L and OMA1 cleave OPA1 at S2 and S1 sites, respectively. Here, we show that OMA1 is cleaved to a short form (S‐OMA1) by itself upon mitochondrial membrane depolarization; S‐OMA1 is degraded quickly but could be stabilized by CCCP treatment or Prohibitin knockdown in cells. In addition, OMA1 processing is positively correlated with OPA1 cleavage at the S1 site and the regulation of mitochondrial morphology. Thus, our results reveal the molecular mechanism for OMA1 activation toward OPA1 processing.  相似文献   

7.
Mitochondria were fractionated according to a procedure which allowed to get free outer and inner membrane plus two distinct contact sites between the two membranes. The data indicate that phospholipase A2 is localized in outer membrane contact sites and in inner membrane. The enzyme activity is twice higher in the contact site fraction than in the free membrane. The major fatty acids released are linoleic and docosahexanoic acids.  相似文献   

8.
Studies were made to determine whether the energy-dependent binding of ethidium to the mitochondrial inner membrane reflects the membrane potential or the energization of localized regions of the membrane.The number of binding sites of ethidium in mitochondria energized with ATP was 72 nmol/mg protein and decreased with increase in the amount of the ATPase system (F1 · Fo) inactivated by oligomycin. These findings clearly show that the energy-dependent binding of ethidium to the mitochondrial inner membrane energized with ATP does not reflect the membrane potential, in good accord with the previous conclusion (Higuti, T., Yokota, M., Arakaki, N., Hattori, A. and Tani, I. (1978) Biochim. Biophys. Acta 503, 211–222), but that ethidium binds to localized regions of the energized membrane that are directly affected by ATPase (F1), reflecting the localized energization of the membrane by ATP.  相似文献   

9.
Retroviruses encode a protease which cleaves the viral Gag and Gag/Pol protein precursors into mature products. To understand the target sequence specificity of the viral protease, the amino acid sequences from 46 known processing sites from 10 diverse retroviruses were compared. Sequence preference was evident in positions P4 through P3' when compared to flanking sequences. Approximately 80% of all cleavage site sequences could be grouped into two classes based on the sequence composition flanking the scissile bond. The sequences at the amino-terminal cleavage site of the major capsid protein of Gag is always a member of one of the two classes while the carboxyl-terminal cleavage site is of the other class, suggesting a biological role for the two classes. Known processing site sequences proved useful in a motif searching strategy to identify processing sites in retroviral protein sequences, particularly in Gag. In all known cleavage sites, the P1 amino acid is hydrophobic and unbranched at the beta-carbon. The sequence requirements of the P1 position were tested by site-directed mutagenesis of the P1 Phe codon in an HIV-1 Pol cleavage site. Mutations were tested for protease-mediated cleavage of the Pol precursor expressed in Escherichia coli.  相似文献   

10.
Oxa1p, a nuclear-encoded protein of the mitochondrial inner membrane with five predicted transmembrane (TM) segments is synthesized as a precursor (pOxa1p) with an N-terminal presequence. It becomes imported in a process requiring the membrane potential, matrix ATP, mt-Hsp70 and the mitochondrial processing peptidase (MPP). After processing, the negatively charged N-terminus of Oxa1p (approximately 90 amino acid residues) is translocated back across the inner membrane into the intermembrane space and thereby attains its native N(out)-C(in) orientation. This export event is dependent on the membrane potential. Chimeric preproteins containing N-terminal stretches of increasing lengths of Oxa1p fused on mouse dehydrofolate reductase (DHFR) were imported into isolated mitochondria. In each case, their DHFR moieties crossed the inner membrane into the matrix. Thus Oxa1p apparently does not contain a stop transfer signal. Instead the TM segments are inserted into the membrane from the matrix side in a pairwise fashion. The sorting pathway of pOxa1p is suggested to combine the pathways of general import into the matrix with a bacterial-type export process. We postulate that at least two different sorting pathways exist in mitochondria for polytopic inner membrane proteins, the evolutionarily novel pathway for members of the ADP/ATP carrier family and a conserved Oxa1p-type pathway.  相似文献   

11.
Three functions have been suggested to be localized in contact sites between the inner and the outer membrane of mitochondria from mammalian cells: (i) transfer of energy from matrix to cytosol through the action of peripheral kinases; (ii) import of mitochondrial precursor proteins; and (iii) transfer of lipids between outer and inner membrane. In the contact site-related energy transfer a number of kinases localized in the periphery of the mitochondrion play a crucial role. Two examples of such kinases are relevant here: (i) hexokinase isoenzyme I which is capable of binding to the outer aspect of the outer membrane; and (ii) the mitochondrial isoenzyme of creatine kinase which is localized in the intermembrane space. Recently, evidence was presented that both hexokinase and creatine kinase are preferentially localized in contact sites (Adams, V. et al. (1989) Biochim. Biophys. Acta 981, 213-225). The aim of the present experiments was two-fold. First, to establish methods which enable the bioenergetic aspects of energy transfer mediated by kinases in contact sites to be measured. In these experiments emphasis was on hexokinase, while 31P-NMR was the major experimental technique. Second, we wanted to develop methods which can give insight into factors playing a role in the formation of contact sites involved in energy transfer. In the latter approach, mitochondrial creatine kinase was studied using monolayer techniques.  相似文献   

12.
The effect of some thiol alkylating agents (N-substituted maleimide derivatives) on the permeability of the mitochondrial inner membrane was investigated. Several experimental approaches were used to study the modifications of the permeability properties. Alkylation of sulfhydryl groups led to an increase in the nonspecific permeability as judged by (i) the augmentation of the rate of osmotic shrinkage of mitochondria induced by polyethylene glycol, (ii) the sensitization of succinate dehydrogenase toward oxaloacetate, (iii) the enhancement of the oxidation rate of exogenous NADH, and (iv) the increase of the sucrose permeable space. The sulfhydryl groups involved in the maintenance of the selective permeability were shown to be located in the hydrophobic core of the membrane. Energization of mitochondria provoked an unmasking of these sulfhydryl groups. When magnesium ions were present in the incubation medium, N-substituted maleimide derivatives promoted gross modifications of the intramitochondrial ionic contents. Effluxes of endogenous calcium ions, inorganic phosphate, adenine nucleotides, and NAD(P)H were established. It was concluded that sulfhydryl groups probably play a crucial role in the maintenance of the membrane integrity and thus control the mitochondrial inner membrane permeability.  相似文献   

13.
Resolution and reconstitution of the inner mitochondrial membrane   总被引:8,自引:0,他引:8  
  相似文献   

14.
The human immunodeficiency virus type 1 (HIV-1) protease (PR) has recently been shown to be inhibited by its propeptide p6* in vitro. As p6* itself is a PR substrate, the primary goal of this study was to determine the importance of p6* cleavage for HIV-1 maturation and infectivity. For that purpose, short peptide variants mimicking proposed cleavage sites within and flanking p6* were designed and analyzed for qualitative and quantitative hydrolysis in vitro. Proviral clones comprising the selected cleavage site mutations were established and analyzed for Gag and Pol processing, virus maturation, and infectivity in cultured cells. Amino-terminal cleavage site mutation caused aberrant processing of nucleocapsid proteins and delayed replication kinetics. Blocking the internal cleavage site resulted in the utilization of a flanking site at a significantly decreased hydrolysis rate in vitro, which however did not affect Gag-Pol processing and viral replication. Although mutations blocking cleavage at the p6* carboxyl terminus yielded noninfectious virions exhibiting severe Gag processing defects, mutations retarding hydrolysis of this cleavage site neither seemed to impact viral infectivity and propagation in cultured cells nor seemed to interfere with overall maturation of released viruses. Interestingly, these mutants were shown to be clearly disadvantaged when challenged with wild-type virus in a dual competition assay. In sum, we conclude that p6* cleavage is absolutely essential to allow complete activation of the PR and subsequent processing of the viral precursors.  相似文献   

15.
The empirically observed relationship between the activity of membrane-bound enzyme systems and transporters and the external osmotic pressure offered a direct method to assess the reflection coefficients to polyols in respiring mitochondria. These osmotically modulated reaction rates varied with the molecular mass of the external polyol similar to volume and solute fluxes across dialysis membranes. The equivalent pore radii of mitochondria were shown to increase with respiration (and temperature) and decrease on addition of the uncoupler, 2,4-dinitrophenol. The magnitude of the induced porosity in the inner membrane was large enough to render the chemiosmotic mechanism inoperable in well-coupled rat liver mitochondria.  相似文献   

16.
Oxa1 is the mitochondrial representative of a family of related proteins that mediate the insertion of substrate proteins into the membranes of bacteria, chloroplasts, and mitochondria. Several studies have demonstrated that the bacterial homologue YidC participates both in the direct uptake of proteins from the bacterial cytosol, and in the uptake of nascent proteins from the Sec translocase. Studies on the biogenesis of membrane proteins in mitochondria established that Oxa1 has the capability to receive substrates at the inner surface of the inner membrane. In this study, we asked if Oxa1 may similarly cooperate with a protein translocase within the membrane. Since Oxa1 is involved in its own biogenesis, we used the precursor of Oxa1 as a model protein and investigated its import pathway. We found that immediately after import into mitochondria, Oxa1 initially accumulates at Tim23 that forms the inner membrane protein translocase. Cleavage of the Oxa1 presequence is dependent on mtHsp70, a heat shock protein of the mitochondrial matrix. However, mutant mtHsp70 showing a defect in the release of bound substrate proteins does not interfere with subsequent membrane insertion, indicating that membrane insertion of the mature protein is essentially mtHsp70-independent. We conclude that Oxa1 has the ability to accept preproteins within the membrane.  相似文献   

17.
Studies were made to determine whether the energy-dependent binding of ethidium to the mitochondrial inner membrane reflects the membrane potential or the energization of localized regions of the membrane. The number of binding sites of ethidium in mitochondria energized with ATP was 72 nmol/mg protein and decreased with increase in the amount of the ATPase system (F1 . F0) inactivated by oligomycin. These findings clearly show that the energy-dependent binding of ethidium to the mitochondrial inner membrane energized with ATP does not reflect the membrane potential, in good accord with the previous conclusion (Higuti, T., Yokota, M., Arakaki, N., Hattori, A. and Tani, I. (1978) Biochim. Biophys. Acta 503, 211-222), but that ethidium binds to localized regions of the energized membrane that are directly affected by ATPase (F1), reflecting the localized energization of the membrane by ATP.  相似文献   

18.
Processing of the human immunodeficiency virus type 1 (HIV-1) Gag precursor is highly regulated, with differential rates of cleavage at the five major processing sites to give characteristic processing intermediates. We examined the role of the P1 amino acid in determining the rate of cleavage at each of these five sites by using libraries of mutants generated by site-directed mutagenesis. Between 12 and 17 substitution mutants were tested at each P1 position in Gag, using recombinant HIV-1 protease (PR) in an in vitro processing reaction of radiolabeled Gag substrate. There were three sites in Gag (MA/CA, CA/p2, NC/p1) where one or more substitutions mediated enhanced rates of cleavage, with an enhancement greater than 60-fold in the case of NC/p1. For the other two sites (p2/NC, p1/p6), the wild-type amino acid conferred optimal cleavage. The order of the relative rates of cleavage with the P1 amino acids Tyr, Met, and Leu suggests that processing sites can be placed into two groups and that the two groups are defined by the size of the P1' amino acid. These results point to a trans effect between the P1 and P1' amino acids that is likely to be a major determinant of the rate of cleavage at the individual sites and therefore also a determinant of the ordered cleavage of the Gag precursor.  相似文献   

19.
Eukaryotic AAA proteases form a conserved family of membrane-embedded ATP-dependent proteases but have been analyzed functionally only in the yeast Saccharomyces cerevisiae. Here, we have identified two novel members of this protein family in the filamentous fungus Neurospora crassa, which were termed MAP-1 and IAP-1. Both proteins are localized to the inner membrane of mitochondria. They are part of two similar-sized high molecular mass complexes, but expose their catalytic sites to opposite membrane surfaces, namely, the intermembrane and the matrix space. Disruption of iap-1 by repeat-induced point mutation caused a slow growth phenotype at high temperature and stabilization of a misfolded inner membrane protein against degradation. IAP-1 could partially substitute for functions of its yeast homolog Yme1, demonstrating functional conservation. However, respiratory growth at 37 degrees C was not restored. Our results identify two components of the quality control system of the mitochondrial inner membrane in N. crassa and suggest that AAA proteases with catalytic sites exposed to opposite membrane surfaces are present in mitochondria of all eukaryotic cells.  相似文献   

20.
This paper presents and assesses the hypothesis that the proton leak across the mitochondrial inner membrane is an important contributor to standard metabolic rate, and that increases in the amount of mitochondrial inner membrane may be important in causing changes in proton leak and in the standard metabolic rate. The standard metabolic rate of an animal is known to be a function of body mass, phylogeny and thyroid status, and is largely attributed to the metabolically active internal organs. The total area of mitochondrial inner membrane in these organs correlates well with standard metabolic rate over a wide range of body masses in both ectotherms and endotherms. In hepatocytes isolated from rats, proton leak across the mitochondrial inner membrane accounts for about 30% of the resting oxygen consumption, and the distribution of control over respiration suggests that changes in mitochondrial inner membrane surface area will be accompanied by significant changes in the proton leak. This change in the leak will result in significant changes in resting oxygen consumption, but changes in ATP demand may also have a role to play in determining resting respiration rate. Extrapolation of these results to other tissues and other animals suggests that the hypothesis has the potential to explain a substantial proportion of the variation in standard metabolic rate with body mass, phylogeny and thyroid status. However, in most cases the quantitative contribution of proton leak compared to cellular ATP turnover has yet to be experimentally determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号