首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Somatic mutations in the KRAS gene are important markers of some types of tumors, for example, pancreatic cancer, and may be useful in early diagnostics. A biochip has been developed which allows determining most frequent mutations in 12, 13 and 61 codons of the KRAS gene. To increase the sensitivity of the method and to make possible the analysis of minor fractions of tumor cells in clinical samples the method of blocking a wild type sequence PCR amplification by LNA-oligonucleotides has been used. The product of LNA-clamp PCR was further hybridized with oligonucleotide probes, immobilized on biochip. Biochip was tested with 42 clinical DNA samples from patients with pancreatic cancer, mostly ductal adenocarcinomas. As reference methods, the RFLP analysis and sequencing were used. The developed approach allows detecting somatic mutations in the KRAS gene if the portion of tumor cells with mutation is at least 1% of whole cell population.  相似文献   

2.
We previously reported that patients with lung adenocarcinomas with KRAS gene mutations and strong proliferating activity had poorer outcomes, even in the early stage of the disease. The aim of the present study was to elucidate the potential molecular basis of these highly malignant lung tumors by focusing on S100 proteins (S100A2, S100A7, and S100A11), which are downstream targets of oncogenic KRAS and promoters of tumor progression. The immunohistochemical expression of S100 proteins was examined in 179 primary lung adenocarcinomas, and the potential relationships between their levels and clinicopathologic factors were analyzed. Among the three subtypes, S100A11 levels were significantly higher in adenocarcinomas with KRAS mutations and strong proliferating activity. They were also higher in adenocarcinomas with poorly differentiated tumors. Furthermore, higher levels of S100A11 were associated with shorter disease-free survival. These results suggest that the up-regulation of S100A11 plays a role in tumor progression, particularly in KRAS-mutated lung adenocarcinomas.  相似文献   

3.
Microsatellite instability (MSI) is regarded as reflecting defective DNA mismatch repair (MMR). MMR defects lead to an increase in point mutations, as well as repeat instability, on the genome. However, despite the highly unstable microsatellites, base substitutions in representative oncogenes or tumor suppressors are extremely infrequent in MSI-positive tumors. Recently, the heterogeneity in MSI-positive colorectal tumors is pointed out, and the 'hereditary' and 'sporadic settings' are proposed. Particularly in the former, base substitution mutations in KRAS are regarded as relatively frequent. We sequenced the KRAS gene in a panel of 76 human colorectal carcinomas in which the MSI status has been determined. KRAS mutations were detected in 22 tumors (28.9%). Intriguingly, all of the KRAS-mutant MSI-H (high) tumors harbored sequence alterations in an essential MMR gene, MLH1, which implies that KRAS mutation more frequently and almost exclusively occurs in MMR gene-mutant MSI-H tumors. Furthermore, in contrast with the prevailing viewpoint, some of these tumors are derived from sporadic colorectal cancer patients. The tight connection between MMR gene mutation and KRAS mutation may suggest previously unrecognized complexities in the relationship between MSI and the mutator phenotype derived from defective MMR.  相似文献   

4.
Previous studies have revealed that EGFR mutation and/or EML4?CALK gene fusion rate was higher in the non-smoker Asian females with pulmonary adenocarcinoma. The aim of this study is to determine the distribution of known oncogenic driver mutations in the female non-smoker Asian patients with pulmonary adenocarcinoma. 104 consecutively resected lung adenocarcinomas from 396 non-smoker females (less than 100 cigarettes in a lifetime) at a single institution (Tongji University, Shanghai, China) were analyzed for mutations in EGFR, EML4?ALK, KRAS, HER2, BRAF, and PIK3CA. 73 (70.2?%) tumors harbored EGFR mutations; among these, 28 were deletions in exon 19, 44 were L858R missense changes, and eight were T790M mutations. 10 (9.6?%) harbored EML4?ALK fusions, two harbored KRAS mutations, two harbored BRAF mutations, and two harbored PI3K mutations. A majority of the mutations were mutually exclusive, except two with EGFR mutation and BRAF mutation, one with EML4?ALK fusions and PI3K mutation. Thus, 82.7?% (86 of 104; 95?% CI, 75.4?C90.0?%) of lung adenocarcinomas from non-smoker females were found to harbor the well-known oncogenic mutations in five genes. Lung cancer in non-smoking Asian females is a distinct entity, with majority of this subgroup being developed by the oncogenic mutations. The prospective mutation examination in this population will be helpful for devising a targeted therapy for a majority of the patients.  相似文献   

5.
肺癌是发病率和死亡率最高的恶性肿瘤,分子靶向治疗以其特异性高、副反应轻的特点正日益受到关注。近年来临床研究发现EML4-ALK融合基因是除EGFR突变及KRAS突变之外的另-个重要的酪氨酸激酶抑制剂的作用靶点,该融合基因在年轻、不吸烟或少吸烟、腺癌、无EGFR和KRAS突变的非小细胞肺癌患者中发生率较高,且该融合基因阳性者对酪氨酸激酶抑制剂耐药,对于ALK抑制剂(如克唑替尼)则有良好的治疗反应,关于该药的临床试验表明:总有效率达57%(46例确定为部分缓解,1例确定为完全缓解),估计6个月无进展生存概率为72%,常见的副反应是1、2级胃肠道反应。该基因及该药的发现为非小细胞肺癌患者带来了希望。  相似文献   

6.
Prostate cancer is a common malignancy that develops by structural mutation(s) and/or other genetic alterations in specific genes.The G to T transversions in codon 12 and C to T transitions in codon 13 of KRAS proto-oncogene are predominant point mutations that occur in about 20% of different cancers in human. In the current study it was aimed to investigate the prevalence and predictive significance of KRAS mutations in patients with prostate carcinomas. In a total of 30 fresh tumoural tissue specimens were investigated in patients with prostate carcinoma. All tumoural specimens were histo-pathologically diagnosed and genotyped for codon 12, 13 KRAS point mutations by reverse hybridisation and direct sequencing methods. KRAS mutations were found in 12 (40%) samples with 29 samples deriving from adenocarcinomas and 1 sample was small cell prostate carcinoma. In 1 (3.44%) sample codon 12 was found to be mutated and in 2 (6.8%) samples codon 13 and in 9 (31%) samples combined codon 12 and 13 were found to be mutated particularly in higher grade of tumoural tissues. Our study, based on representative collection of human prostate tumours, indicates that combined mutations in codons 12 and 13 KRAS are relatively infrequent and most commonly occur in prostate carcinomas.  相似文献   

7.
本研究通过方法学的改良和观察方式的创新试图阐明这种现象的原因。微卫星非传统的检测方法仅能实现微卫星定性检测,我所在的研究组开发了自动片段分析双荧光标识技术,提高了微卫星检测的感度和重复性。并实现了微卫星片段变化长度的定量。小于6碱基的微卫星变化被定义为修饰型微卫星不稳定,大于8碱基的变化被定义为跳跃型微卫星不稳定.它们的电泳谱截然不同。前者表现为在非肿瘤来源微卫星位点基础上的增加或减少,后者表现为距离非肿瘤微卫星片段远隔部位的新波形的出现。通过研究我们发现,在DNA错配修复缺陷细胞系及基因敲除大鼠自发肿瘤样本,仅有修饰型微卫星不稳定性检出;在人类DNA错配修复缺陷细胞系连续80次传代也没有检出跳跃型变化。跳跃型变化不能通过简单重复序列不稳定基础上的增加或减少的累加而获得。在76例散发大肠癌,我们检测了微卫星不稳定性,KRAS基因突变,并对高频度微卫星不稳定性病例的两个主要DNA错配修复基因MSH2和MLH1进行了全长测序。我们发现,在大肠癌,按频度的传统分类与按波形变化的分类有高度的一致性,高频度微卫星不稳定性病例均检测到跳跃型表现,低频度微卫星不稳定性都表现为修饰型变化。在12例高频度微卫星不稳定病例,有三例检出了跳跃型和修饰型同时存在微卫星不稳定的特殊表型,这3例均检出KRAS的突变,更有趣的是该3例病例也同时检出了DNA错配修复基因MLH1的变异。而在其他9例高频度微卫星不稳定病例,KRAS突变及MLH1、MSH2突变未检出。通过对突变谱的分析我们还发现,修饰型微卫星不稳定与KRAS基因12号密码子的转换型突变高度相关,而微卫星稳定的病例检出的KRAS基因12号密码子突变多为颠换型突变。修饰型微卫星不稳定表型检出的高频度转换?  相似文献   

8.
本研究通过方法学的改良和观察方式的创新试图阐明这种现象的原因.微卫星非传统的检测方法仅能实现微卫星定性检测,我所在的研究组开发了自动片段分析双荧光标识技术,提高了微卫星检测的感度和重复性,并实现了微卫星片段变化长度的定量.小于6碱基的微卫星变化被定义为修饰型微卫星不稳定,大于8碱基的变化被定义为跳跃型微卫星不稳定,它们的电泳谱截然不同.前者表现为在非肿瘤来源微卫星位点基础上的增加或减少,后者表现为距离非肿瘤微卫星片段远隔部位的新波形的出现.通过研究我们发现,在DNA错配修复缺陷细胞系及基因敲除大鼠自发肿瘤样本,仅有修饰型微卫星不稳定性检出;在人类DNA错配修复缺陷细胞系连续80次传代也没有检出跳跃型变化.跳跃型变化不能通过简单重复序列不稳定基础上的增加或减少的累加而获得.在76例散发大肠癌,我们检测了微卫星不稳定性,KRAS基因突变,并对高频度微卫星不稳定性病例的两个主要DNA错配修复基因MSH2和MLHl进行了全长测序.我们发现,在大肠癌,按频度的传统分类与按波形变化的分类有高度的一致性,高频度微卫星不稳定性病例均检测到跳跃型表现,低频度微卫星不稳定性都表现为修饰型变化.在12例高频度微卫星不稳定病例,有三例检出了跳跃型和修饰型同时存在微卫星不稳定的特殊表型,这3例均检出KRAS的突变,更有趣的是该3例病例也同时检出了DNA错配修复基因MLH1的变异.而在其他9例高频度微卫星不稳定病例,KRAS突变及MLH1、MSH2交变未检出.通过对突变谱的分析我们还发现,修饰型微卫星不稳定与KTAS基因12号密码子的转换型突变高度相关,而微卫星稳定的病例检出的KRAS基因12号密码子突变多为颠换型突变.修饰型微卫星不稳定表型检出的高频度转换突变可由DNA错配修复缺陷的分子背景解释.通过本研究,我们认为以波形为基础的微卫星不稳定新分型可能是解决目前微卫星研究领域矛盾的一个选项.一直公认为高频度微卫星不稳定性是"真正"的DNA错配修复缺陷表型,我们的研究提示实际上高频度微卫星的可能是多元的.修饰型微卫星不稳定与DNA错配修复缺陷直接关联,而跳跃型微卫星不稳定的原因尚未阐明.在高频度为微型不稳定中,携带修饰型变化的病例可以通过DNA错配修复系统缺陷来解释其病因.  相似文献   

9.

Background

Mounting evidence has shown that KRAS and BRAF are somatic mutations associated with low grade serous carcinoma (LGSC) of the ovary. However, the frequency of KRAS or BRAF mutation was variable in literatures, with a frequency of 16–54% for KRAS mutation and 2–33% for BRAF mutation. Meanwhile, the prognostic significance of KRAS or BRAF mutation remains controversial.

Methods

Codons 12 and 13 of exon 2 of KRAS gene and exon 15 of BRAF gene were analyzed using direct Sanger sequencing in 32 cases of LGSC of the ovary. The associations between KRAS or BRAF mutation and clinicopathological characteristics, overall survival (OS) and disease-free survival (DFS) were statistically analyzed.

Results

KRAS mutation was observed in nine cases (9/32, 28%) and BRAF mutation in two cases (2/32, 6%). KRAS and BRAF mutations were mutually exclusive. Neither KRAS nor BRAF mutation was statistically associated with OS or DFS in our cohort, although there was a favorable prognostic trend in patients with KRAS G12D mutation than those with KRAS G12 V mutation or wild-type KRAS for OS.

Conclusions

The present study indicated a low frequency of BRAF or KRAS mutation in Chinese patients with LGSC of the ovary, and neither KRAS nor BRAF mutation is a prognostic factor.
  相似文献   

10.
《Translational oncology》2020,13(2):329-335
BACKGROUND: KRAS gene mutations are well known as a key driver of advanced non–small cell lung cancer (NSCLC). The impact of KRAS-mutant subtypes on the survival benefit from salvage chemotherapy is controversial. Here, we present a real-world study in patients across China with advanced NSCLC with KRAS mutations using a website-based patient self-report system. METHODS: We identified a total of 75 patients diagnosed with KRAS-mutant (determined by molecular sequencing) advanced NSCLC between 2014/5/9 and 2019/5/30. KRAS mutation subtypes were divided into G12C and non-G12C groups for statistical analysis. The clinicopathological characteristics and treatment survival benefit in all patients with a KRAS mutation were evaluated. Programmed death-ligand 1 (PD-L1) expression data were collected from 30 patients in the same cohort. RESULTS: In this study, 23 patients with stage IIIB NSCLC and 52 patients with stage IV NSCLC were enrolled with 58 men and 17 women; the median age was 60 years (39–84). All patients received regular chemotherapy/radiotherapy/targeted therapy/immune therapy as per the disease condition. Four main KRAS mutation subtypes were detected: G12C (33%), G12V (19%), G12A (12%), and G12D (12%). Three predominant KRAS comutations were detected: TP53-KRAS (31%), EGFR-KRAS (11%), and STK11-KRAS (8%). Compared with the KRAS non-G12C mutation subtype, patients with the KRAS G12C mutation had potentially longer progression-free survival (PFS) after first-line chemotherapy (4.7 vs. 2.5 months, p < 0.05). Pemetrexed-based chemotherapy appeared to be superior to taxanes- and gemcitabine-based chemotherapies in all patients (PFS: 5.0 vs. 1.5 and 2.3 months, respectively, p > 0.05). Cox regression analysis showed that the KRAS G12C mutation and pemetrexed-based first-line chemotherapy were positive influencers for PFS after first-line (hazard ratios = 0.31 and 0.55, respectively, P < 0.05), but not second-line chemotherapies. CONCLUSION: The KRAS G12C mutation could be a predictive biomarker for better survival benefit from first-line chemotherapy in patients with advanced NSCLC and KRAS mutations. The first-line chemotherapy regimen could possibly influence the outcome in patients with KRAS mutations. Larger and prospective clinical trials are warranted to confirm our conclusions.  相似文献   

11.

Background

KRAS mutation assays are important companion diagnostic tests to guide anti-EGFR antibody treatment of metastatic colorectal cancer. Direct comparison of newer diagnostic methods with existing methods is an important part of validation of any new technique. In this this study, we have compared the Therascreen (Qiagen) ARMS assay with Competitive Allele-Specific TaqMan PCR (castPCR, Life Technologies) to determine equivalence for KRAS mutation analysis.

Methods

DNA was extracted by Maxwell (Promega) from 99 colorectal cancers. The ARMS-based Therascreen and a customized castPCR assay were performed according to the manufacturer’s instructions. All assays were performed on either an Applied Biosystems 7500 Fast Dx or a ViiA7 real-time PCR machine (both from Life Technologies). The data were collected and discrepant results re-tested with newly extracted DNA from the same blocks in both assay types.

Results

Of the 99 tumors included, Therascreen showed 62 tumors to be wild-type (WT) for KRAS, while 37 had KRAS mutations on initial testing. CastPCR showed 61 tumors to be wild-type (WT) for KRAS, while 38 had KRAS mutations. Thirteen tumors showed BRAF mutation in castPCR and in one of these there was also a KRAS mutation. The custom castPCR plate included several other KRAS mutations and BRAF V600E, not included in Therascreen, explaining the higher number of mutations detected by castPCR. Re-testing of discrepant results was required in three tumors, all of which then achieved concordance for KRAS. CastPCR assay Ct values were on average 2 cycles lower than Therascreen.

Conclusion

There was excellent correlation between the two methods. Although castPCR assay shows lower Ct values than Therascreen, this is unlikely to be clinically significant.  相似文献   

12.
Lung cancer is currently the most deadly malignancy in industrialized countries and accounts for 18% of all cancer-related deaths worldwide. Over 70% of patients with non-small cell lung cancer (NSCLC) are diagnosed at a late stage, with a 5-year survival below 10%. KRAS and the EGFR are frequently mutated in NSCLC and while targeted therapies for patients with EGFR mutations exist, oncogenic KRAS is thus far not druggable. KRAS activates multiple signalling pathways, including the PI3K/Akt pathway, the Raf-Mek-Erk pathway and the RalGDS/Ral pathway. Lung-specific expression of BrafV600E, the most prevalent BRAF mutation found in human tumors, results in Raf-Mek-Erk pathway activation and in the formation of benign adenomas that undergo widespread senescence in a Cre-activated Braf mouse model (BrafCA). However, oncogenic KRAS expression in mice induces adenocarcinomas, suggesting additional KRAS-activated pathways cooperate with sustained RAF-MEK-ERK signalling to bypass the oncogene-induced senescence proliferation arrest.To determine which KRAS effectors were responsible for tumor progression, we created four effector domain mutants (S35, G37, E38 and C40) in G12V-activated KRAS and expressed these alone or with BrafV600E in mouse lungs… The S35 and E38 mutants bind to Raf proteins but not PI3K or RalGDS; the G37 mutant binds to RalGDS and not Raf or PI3K and the C40 mutant is specific to PI3K. We designed lentiviral vectors to code for Cre recombinase along with KRAS mutants (V12, V12/S35, V12/G37, V12/E38 or V12/C40) or EGFP as a negative control.. These lentiviruses were used to infect BrafCA and wild-type mice. Surprisingly there was a significant decrease in tumor number and penetrance with each KRAS effector domain mutant relative to controls, suggesting that KRAS directly activates effectors with tumor suppressive functions.  相似文献   

13.
The purpose of this study is to determine the genetic frequency of GNAS activating mutations in colorectal cancer and the corresponding pathology of GNAS mutant tumors. Oncogenic mutations in GNAS have been described in a number of neoplasms including those of the pituitary, kidney, pancreas, and, more recently, in colon cancer. To ascertain the frequency in colon cancer we employed a sensitive pyrosequencing platform for mutation detection of the R201C and R201H GNAS hotspots in tumor samples representing all clinical stages. We additionally assayed for KRAS and BRAF mutations as previous reports have shown that these often co-occur with activating GNAS mutations. Of the 428 colon tumors assayed, mutations in GNAS were present in 10 of the samples (2.3%), indicating this is a significant, albeit infrequent, mutation in colorectal tumors. Nine GNAS mutant tumors (90%) harbored concomitant activating mutations in either the KRAS or BRAF oncogene, which was significantly greater than the mutation frequency of these genes in the tumor population (56%, p<0.0305). All ten of the GNAS mutant tumors arose in the right (proximal) colon (p<0.007), and 7 of 8 reviewed cases exhibited a marked villous morphology. Taken together, these data indicate that GNAS mutant colon tumors commonly have synchronous mutations in KRAS or BRAF, are right-sided in location, and are associated with a villous morphology.  相似文献   

14.

Introduction

In this article, we report 7 novel KRAS gene mutations discovered while retrospectively studying the prevalence and pattern of KRAS mutations in cancerous tissue obtained from 56 Saudi sporadic colorectal cancer patients from the Eastern Province.

Methods

Genomic DNA was extracted from formalin-fixed, paraffin-embedded cancerous and noncancerous colorectal tissues. Successful and specific PCR products were then bi-directionally sequenced to detect exon 4 mutations while Mutector II Detection Kits were used for identifying mutations in codons 12, 13 and 61. The functional impact of the novel mutations was assessed using bioinformatics tools and molecular modeling.

Results

KRAS gene mutations were detected in the cancer tissue of 24 cases (42.85%). Of these, 11 had exon 4 mutations (19.64%). They harbored 8 different mutations all of which except two altered the KRAS protein amino acid sequence and all except one were novel as revealed by COSMIC database. The detected novel mutations were found to be somatic. One mutation is predicted to be benign. The remaining mutations are predicted to cause substantial changes in the protein structure. Of these, the Q150X nonsense mutation is the second truncating mutation to be reported in colorectal cancer in the literature.

Conclusions

Our discovery of novel exon 4 KRAS mutations that are, so far, unique to Saudi colorectal cancer patients may be attributed to environmental factors and/or racial/ethnic variations due to genetic differences. Alternatively, it may be related to paucity of clinical studies on mutations other than those in codons 12, 13, 61 and 146. Further KRAS testing on a large number of patients of various ethnicities, particularly beyond the most common hotspot alleles in exons 2 and 3 is needed to assess the prevalence and explore the exact prognostic and predictive significance of the discovered novel mutations as well as their possible role in colorectal carcinogenesis.  相似文献   

15.
Since a KRAS oncogene mutation is an early event in colorectal cancer development and cigarette smoking is thought to have an effect on early stages of colorectal tumorigenesis, smoking, especially long-term smoking, may be associated with the risk for colorectal cancer with KRAS oncogene mutations. In the Netherlands Cohort Study on diet and cancer (n=120,852 men and women), using a case-cohort design, adjusted incidence rate ratios (RR) and 95% confidence intervals (CI) were computed for colorectal tumors with wild-type and with mutated KRAS gene, and with specific G:C-->T:A or G:C-->A:T point mutations in KRAS, according to cigarette smoking status, frequency, duration, pack years, age at first exposure, years since cessation, inhalation and filter usage. After 7.3 years and excluding the first 2.3 years, 648 cases and 4083 sub-cohort members were included in the analyses. Ex-smokers, but not current smokers, were at increased risk for colorectal cancer with wild-type KRAS gene tumors when compared with never smokers, albeit not statistically significant (RR 1.26, 95% CI 0.96-1.66). This was not observed for KRAS mutated tumors when comparing ex-smokers with never smokers (RR 1.15, 95% CI 0.79-1.66). The highest category of smoking frequency (>20 cigarettes/day) and inhalation of smoke were associated with an increased risk for colorectal cancer with wild-type KRAS gene tumors, though not statistically significant, when compared with never smoking (frequency: RR 1.24, 95% CI 0.90-1.71 and inhalation: RR 1.25, 95% CI 0.94-1.67). These associations were strongest in men (ex-smokers: RR 1.79, 95% CI 1.00-3.20; frequency: RR 1.91, 95% CI 1.03-3.52; inhalation: RR 1.69, 95% CI 0.94-3.04). No associations were observed between any of the smoking characteristics and the risk for colorectal cancer with mutated KRAS gene tumors, nor where there any clear associations with tumors with specific G:C-->A:T transitions or G:C-->T:A transversions. These results suggest that, in contrast to the hypothesis, smoking does not increase the risk for colorectal tumors with a mutated KRAS gene. Some smoking characteristics, i.e. being an ex-smoker, frequency and inhalation, may be associated with risk for colorectal cancer characterized by the wild-type KRAS gene, especially in men.  相似文献   

16.
Mutations in multiple oncogenes including KRAS, CTNNB1, PIK3CA and FGFR2 have been identified in endometrial cancer. The aim of this study was to provide insight into the clinicopathological features associated with patterns of mutation in these genes, a necessary step in planning targeted therapies for endometrial cancer. 466 endometrioid endometrial tumors were tested for mutations in FGFR2, KRAS, CTNNB1, and PIK3CA. The relationships between mutation status, tumor microsatellite instability (MSI) and clinicopathological features including overall survival (OS) and disease-free survival (DFS) were evaluated using Kaplan-Meier survival analysis and Cox proportional hazard models. Mutations were identified in FGFR2 (48/466); KRAS (87/464); CTNNB1 (88/454) and PIK3CA (104/464). KRAS and FGFR2 mutations were significantly more common, and CTNNB1 mutations less common, in MSI positive tumors. KRAS and FGFR2 occurred in a near mutually exclusive pattern (p = 0.05) and, surprisingly, mutations in KRAS and CTNNB1 also occurred in a near mutually exclusive pattern (p = 0.0002). Multivariate analysis revealed that mutation in KRAS and FGFR2 showed a trend (p = 0.06) towards longer and shorter DFS, respectively. In the 386 patients with early stage disease (stage I and II), FGFR2 mutation was significantly associated with shorter DFS (HR = 3.24; 95% confidence interval, CI, 1.35-7.77; p = 0.008) and OS (HR = 2.00; 95% CI 1.09-3.65; p = 0.025) and KRAS was associated with longer DFS (HR = 0.23; 95% CI 0.05-0.97; p = 0.045). In conclusion, although KRAS and FGFR2 mutations share similar activation of the MAPK pathway, our data suggest very different roles in tumor biology. This has implications for the implementation of anti-FGFR or anti-MEK biologic therapies.  相似文献   

17.
Alterations in cellular energy metabolism play critical roles in colorectal cancer (CRC). These alterations, which correlate to KRAS mutations, have been identified as energy metabolism signatures. This review summarizes the relationship between colorectal tumors associated with mutated KRAS and energy metabolism, especially for the deregulated energy metabolism that affects tumor cell proliferation, invasion, and migration. Furthermore, this review will concentrate on the role of metabolic genes, factors and signaling pathways, which are coupled with the primary energy source connected with the KRAS mutation that induces metabolic alterations. Strategies for targeting energy metabolism in mutated KRAS CRC are also introduced. In conclusion, deregulated energy metabolism has a close relationship with KRAS mutations in colorectal tumors. Therefore, selective inhibitors, agents against metabolic targets or KRAS signaling, may be clinically useful for colorectal tumor treatment through a patient-personalized approach.  相似文献   

18.
19.
While tissue KRAS2 mutations have been extensively investigated, the role of circulating mutant KRAS2 gene in patients with colorectal carcinoma remains obscure. The aim of the present study was to explore the prognostic significance of circulating KRAS2 gene mutational status in subjects undergoing primary treatment for colorectal cancer. Codon 12 KRAS2 mutations were examined in DNA samples extracted from the serum of 86 patients with colorectal cancer and were compared with the KRAS2 status of their primary tumors. Tissue and serum KRAS2 status was compared with other clinicopathological variables (including CEA and CA 19-9 levels) and with cancer-related survival. KRAS2 mutations were found in tissue samples of 28 patients (33%); serum KRAS2 mutations were detected in 10 of them (36%). Serum KRAS2 status was significantly associated with Dukes' stage D (p=0.001) and with preoperative CA 19-9 levels (p=0.01). At multivariate analysis, cancer-related survival was associated with Dukes' stage (p<0.0001), CEA level (p=0.02), and mutant circulating KRAS2 (p=0.01). All 7 stage D patients with serum KRAS2 mutations died of the disease within 24 months of primary treatment; cancer-related survival was significantly better in 9 stage D patients without serum KRAS2 mutations, with 5 patients (56%) alive after 24 months and 1 patient (13%) alive after 44 months. Residual disease after surgery was evident in all 7 stage D patients with mutant circulating KRAS2, and in 5 out of 9 stage D patients without serum mutations. Serum KRAS2 status may impact substantially on the management of stage D colorectal carcinoma, since it appears to cor-relate with prognosis in this patient subgroup.  相似文献   

20.
Lv N  Lin S  Xie Z  Tang J  Ge Q  Wu M  Xie X  Xie X  Wei W 《Cancer epidemiology》2012,36(4):341-346
Aims: The epidermal growth factor receptor (EGFR) is an available target of effective anti-EGFR therapy for human breast cancer. KRAS, the human homolog of the Kirsten rat sarcoma-2 virus oncogene, encodes a main downstream signaling molecule in the EGFR pathway. The aim of this study was to assess the presence of EGFR and KRAS gene mutations in breast cancer. Materials and methods: EGFR and KRAS gene mutations were investigated in formalin-fixed, paraffin-embedded tissues from 143 Chinese female patients with breast cancer by means of real-time quantitative polymerase chain reaction (RT-PCR). Results: Based on RT-PCR, 2/143 (1.4%) samples and 1/143 (0.7%) had EGFR and KRAS gene mutations, respectively. Overall, none of the cases was identified with mutations of both of these two genes. Conclusions: In this study, both EGFR and KRAS mutations were present rarely in this cohort of samples with breast cancer. This suggested that mutation analyses for EGFR and KRAS are not useful as screening tests for sensitivity to anti-EGFR therapy for breast carcinomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号