首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enteric pathogen Vibrio cholerae secretes a water-soluble 80-kD cytolysin, Vibrio cholerae cytolysin (VCC) that assembles into pentameric channels following proteolytic activation by exogenous proteases. Until now, VCC has been placed in a unique class of pore-forming toxins, distinct from paradigms such as Staphyloccal alpha-hemolysin. However, as reported here, amino acid sequence analysis and three-dimensional structure modeling indicate that the core component of the VCC toxin is related in sequence and structure to a family of hemolysins from Staphylococcus aureus that include leukocidin F and alpha-hemolysin. Furthermore, our analysis has identified the channel-forming region of VCC and a potential lipid head-group binding site, and suggests a conserved mechanism of assembly and lysis. An additional domain in the VCC toxin is related to plant lectins, conferring additional target cell specificity to the toxin.  相似文献   

2.
The beta-barrel is a transmembrane structural motif commonly encountered in bacterial outer membrane proteins and pore-forming toxins (PFTs). Alpha-hemolysin (alphaHL) is a cytotoxin secreted by Staphylococcus aureus that assembles from a water-soluble monomer to form a membrane-bound heptameric beta-barrel on the surface of susceptible cells, perforating the cell membranes, leading to cell death and lysis. The mechanism of heptamer assembly, which has been studied extensively, occurs in a stepwise manner, and the structures of the initial, monomeric form and final, membrane-embedded pore are known. The toxin's ability to assemble from an aqueous, hydrophilic species to a membrane-inserted oligomer is of interest in understanding the assembly of PFTs in particular and the folding and structure of beta-barrel membrane proteins in general. Here we review the structures of the monomeric and heptamer states of LukF and alphaHL, respectively, the mechanism of toxin assembly, and the relationships between alphaHL and nontoxin beta-barrel membrane proteins.  相似文献   

3.
The alpha-hemolysin is an archetypal pore-forming protein that is secreted from Staphylococcus aureus as a water-soluble monomer. When the monomer binds to the membrane of a susceptible cell, the membrane-bound molecules assemble into the lytic heptamer. Although a bilayer or a bilayer-like environment are essential to toxin assembly, there is no high resolution information on toxin-phospholipid complexes. We have determined the structures of detergent-solubilized alpha-hemolysin heptamer bound to glycerophosphocholine or dipropanoyl glycerophosphocholine at 1.75-1.80 A resolution and 110 K. The phosphocholine head group binds to each subunit in a crevice between the rim and the stem domains. The quaternary ammonium group interacts primarily with aromatic residues, whereas the phosphodiester moiety interacts with a conserved arginine residue. These structures provide a molecular basis for understanding why alpha-hemolysin preferentially assembles on membranes comprised of phosphocholine lipids.  相似文献   

4.
Staphylococcal leukocidin (Luk) and alpha-hemolysin (alphaHL) are members of the same family of beta barrel pore-forming toxins (betaPFTs). Although the alphaHL pore is a homoheptamer, the Luk pore is formed by the co-assembly of four copies each of the two distantly related polypeptides, LukF and LukS, to form an octamer. Here, we examine N- and C-terminal truncation mutants of LukF and LukS. LukF subunits missing up to nineteen N-terminal amino acids are capable of producing stable, functional hetero-oligomers with WT LukS. LukS subunits missing up to fourteen N-terminal amino acids perform similarly in combination with WT LukF. Further, the simultaneous truncation of both LukF and LukS is tolerated. Both Luk subunits are vulnerable to short deletions at the C terminus. Interestingly, the N terminus of the LukS polypeptide becomes resistant to proteolytic digestion in the fully assembled Luk pore while the N terminus of LukF remains in an exposed conformation. The results from this work and related experiments on alphaHL suggest that, although the N termini of betaPFTs may undergo reorganization during assembly, they are dispensable for the formation of functional pores.  相似文献   

5.
The β-barrel is a transmembrane structural motif commonly encountered in bacterial outer membrane proteins and pore-forming toxins (PFTs). α-Hemolysin (αHL) is a cytotoxin secreted by Staphylococcus aureus that assembles from a water-soluble monomer to form a membrane-bound heptameric β-barrel on the surface of susceptible cells, perforating the cell membranes, leading to cell death and lysis. The mechanism of heptamer assembly, which has been studied extensively, occurs in a stepwise manner, and the structures of the initial, monomeric form and final, membrane-embedded pore are known. The toxin's ability to assemble from an aqueous, hydrophilic species to a membrane-inserted oligomer is of interest in understanding the assembly of PFTs in particular and the folding and structure of β-barrel membrane proteins in general. Here we review the structures of the monomeric and heptamer states of LukF and αHL, respectively, the mechanism of toxin assembly, and the relationships between αHL and nontoxin β-barrel membrane proteins.  相似文献   

6.
alpha-Hemolysin (alphaHL) is secreted by Staphylococcus aureus as a water-soluble monomer that assembles into a heptamer to form a transmembrane pore on a target membrane. The crystal structures of the LukF water-soluble monomer and the membrane-bound alpha-hemolysin heptamer show that large conformational changes occur during assembly. However, the mechanism of assembly and pore formation is still unclear, primarily because of the difficulty in obtaining structural information on assembly intermediates. Our goal is to use disulfide bonds to selectively arrest and release alphaHL from intermediate stages of the assembly process and to use these mutants to test mechanistic hypotheses. To accomplish this, we created four double cysteine mutants, D108C/K154C (alphaHL-A), M113C/K147C (alphaHL-B), H48C/ N121C (alphaHL-C), I5C/G130C (alphaHL-D), in which disulfide bonds may form between the pre-stem domain and the beta-sandwich domain to prevent pre-stem rearrangement and membrane insertion. Among the four mutants, alphaHL-A is remarkably stable, is produced at a level at least 10-fold greater than that of the wild-type protein, is monomeric in aqueous solution, and has hemolytic activity that can be regulated by the presence or absence of reducing agents. Cross-linking analysis showed that alphaHL-A assembles on a membrane into an oligomer, which is likely to be a heptamer, in the absence of a reducing agent, suggesting that oxidized alphaHL-A is halted at a heptameric prepore state. Therefore, conformational rearrangements at positions 108 and 154 are critical for the completion of alphaHL assembly but are not essential for membrane binding or for formation of an oligomeric prepore intermediate.  相似文献   

7.
Proteins exist in one of two generally incompatible states: either membrane associated or soluble. Pore-forming proteins are exceptional because they are synthesized as a water-soluble molecule but end up being located in the membrane -- that is, they are nonconstitutive membrane proteins. Here we report the pronounced effect of the single point mutation Y221G of the pore-forming toxin aerolysin. This mutation blocks the hemolytic activity of the toxin but does not affect its initial structure, its ability to bind to cell-surface receptors or its capacity to form heptamers, which constitute the channel-forming unit. The overall structure of the Y221G protein as analyzed by cryo-negative staining EM and three-dimensional reconstruction is remarkably similar to that of the wild type heptamer. The mutant protein forms a mushroom-shaped complex whose stem domain is thought to be within the membrane in the wild type toxin. In contrast to the wild type heptamer, which is a hydrophobic complex, the Y221G heptamer is fully hydrophilic. This point mutation has, therefore, converted a normally membrane-embedded toxin into a soluble complex.  相似文献   

8.
9.
Staphylococcal alpha-hemolysin (alphaHL) is a beta barrel pore-forming toxin that is secreted by the bacterium as a water-soluble monomeric protein. Upon binding to susceptible cells, alphaHL assembles via an inactive prepore to form a water-filled homoheptameric transmembrane pore. The N terminus of alphaHL, which in the crystal structure of the fully assembled pore forms a latch between adjacent subunits, has been thought to play a vital role in the prepore to pore conversion. For example, the deletion of two N-terminal residues produced a completely inactive protein that was arrested in assembly at the prepore stage. In the present study, we have re-examined assembly with a comprehensive set of truncation mutants. Surprisingly, we found that after truncation of up to 17 amino acids, the ability of alphaHL to form functional pores was diminished, but still substantial. We then discovered that the mutation Ser(217) --> Asn, which was present in our original set of truncations but not in the new ones, promotes complete inactivation upon truncation of the N terminus. Therefore, the N terminus of alphaHL cannot be critical for the prepore to pore transformation as previously thought. Residue 217 is involved in the assembly process and must interact indirectly with the distant N terminus during the last step in pore formation. In addition, we provide evidence that an intact N terminus prevents the premature oligomerization of alphaHL monomers in solution.  相似文献   

10.
The two staphylococcal bi-component toxins, leukocidin and γ-hemolysin share LukF [Kamio et al, FEBS Lett., 321, 15-18 (1993)]. This report identifies the pivotal amino acid residues in the N-terminal region of LukF for the leukocytolytic and hemolytic activities in the presence of LukS and Hlg2, respectively, measuring the toxin activiy of a series of LukF mutants with truncated N-terminals. The data obtained showed that the LukF mutant TF21, lacking 20 amino acid residues at the N-terminus of LukF, failed to have any hemolytic activity and had less 10% leukocytolytic activity than that of the intact LukF, while 16-residue truncations retained both toxin activities without loss. The LukF mutants lacking 18- through 19-residue segments from the N-terminus showed low toxin activity on both target cells. All mutants having no toxin activity were also not capable of binding to the human erythrocytes. It can thus be concluded that the 3-residue segment, L18Y19K20 of LukF is crucial for the biological activity of the toxin.  相似文献   

11.
Crossing three membranes. Channel formation by aerolysin.   总被引:2,自引:0,他引:2  
J T Buckley 《FEBS letters》1992,307(1):30-33
Aerolysin is a channel-forming toxin responsible for the pathogenicity of Aeromonas hydrophila. It crosses the inner and outer membranes of the bacteria in separate steps and is released as a 52-kDa inactive protoxin which is activated by proteolytic removal of approximately 40 amino acids from the C terminus. The toxin binds to the erythrocyte transmembrane protein glycophorin and oligomerizes before inserting into the membrane, producing a voltage gated, anion selective channel about 1 nm in diameter. Remarkably, proaerolysin appears to be dimeric, whereas the oligomer is a heptamer. Using chemical modification and site-directed mutagenesis, we have identified some of the regions of the molecule which appear to be involved in secretion and in channel formation.  相似文献   

12.
Clostridium perfringens Delta toxin is one of the three hemolysin-like proteins produced by C. perfringens type C and possibly type B strains. One of the others, NetB, has been shown to be the major cause of Avian Nectrotic Enteritis, which following the reduction in use of antibiotics as growth promoters, has become an emerging disease of industrial poultry. Delta toxin itself is cytotoxic to the wide range of human and animal macrophages and platelets that present GM2 ganglioside on their membranes. It has sequence similarity with Staphylococcus aureus β-pore forming toxins and is expected to heptamerize and form pores in the lipid bilayer of host cell membranes. Nevertheless, its exact mode of action remains undetermined. Here we report the 2.4 Å crystal structure of monomeric Delta toxin. The superposition of this structure with the structure of the phospholipid-bound F component of S. aureus leucocidin (LukF) revealed that the glycerol molecules bound to Delta toxin and the phospholipids in LukF are accommodated in the same hydrophobic clefts, corresponding to where the toxin is expected to latch onto the membrane, though the binding sites show significant differences. From structure-based sequence alignment with the known structure of staphylococcal α-hemolysin, a model of the Delta toxin pore form has been built. Using electron microscopy, we have validated our model and characterized the Delta toxin pore on liposomes. These results highlight both similarities and differences in the mechanism of Delta toxin (and by extension NetB) cytotoxicity from that of the staphylococcal pore-forming toxins.  相似文献   

13.
alpha-Hemolysin from Staphylococcus aureus assembles from a water-soluble, monomeric species to a membrane-bound heptamer on the surface of target cells, creating water-filled channels that lead to cell death and lysis. Staphylococcus aureus also produces the gamma-hemolysin and leukocidin toxins, which function as two component toxins in the disruption and lysis of erythrocytes and leukocytes. Analysis of the aligned sequences of alpha-hemolysin, gamma-hemolysin, and leukocidin in the context of the alpha-hemolysin heptamer structure supports the conclusion that even though the level of sequence identity between alpha-hemolysin and the gamma-hemolysin and leukocidin toxins is in the so-called twilight zone, the three-dimensional structures of the protomers are probably conserved. By analogy with alpha-hemolysin, gamma-hemolysin and leukocidin may also form oligomeric, transmembrane channels in which an antiparallel beta-barrel constitutes the primary membrane-embedded domain.  相似文献   

14.
Staphylococcus aureus strains causing human pathologies produce several toxins, including a pore-forming protein family formed by the single-component alpha-hemolysin and the bicomponent leukocidins and gamma-hemolysins. The last comprise two protein elements, S and F, that co-operatively form the active toxin. alpha-Hemolysin is always expressed by S. aureus strains, whereas bicomponent leukotoxins are more specifically involved in a few diseases. X-ray crystallography of the alpha-hemolysin pore has shown it is a mushroom-shaped, hollow heptamer, almost entirely consisting of beta-structure. Monomeric F subunits have a very similar core structure, except for the transmembrane stem domain which has to refold during pore formation. Large deletions in this domain abolished activity, whereas shorter deletions sometimes improved it, possibly by removing some of the interactions stabilizing the folded structure. Even before stem extension is completed, the formation of an oligomeric pre-pore can trigger Ca(2+)-mediated activation of some white cells, initiating an inflammatory response. Within the bicomponent toxins, gamma-hemolysins define three proteins (HlgA, HlgB, HlgC) that can generate two toxins: HlgA+HlgB and HlgC+HlgB. Like alpha-hemolysin they form pores in planar bilayers with similar conductance, but opposite selectivity (cation instead of anion) for the presence of negative charges in the ion pathway. gamma-Hemolysin pores seem to be organized as alpha-hemolysin, but should contain an even number of each component, alternating in a 1:1 stoichiometry.  相似文献   

15.
The structure of the pore-forming domain of the bacterial toxin colicin A was studied by attenuated total-reflection polarized Fourier-transform infrared spectroscopy. This channel-forming fragment interacts with dimyristoylglycerophosphoglycerol (Myr2GroPGro) vesicles and forms disk-like complexes. Analysis of the shape of the amide I' band indicates that its secondary structure is not affected by the pH 5.0-7.2. However, 5-10% of the peptide amino acids adopt an alpha-helical structure upon complex formation with Myr2GroPGro, while the random-coil and beta-sheet structure contents decrease. Interestingly, the increase in alpha-helical content is essentially due to an increase in the high-frequency component of the alpha-helical domain of amide I'. The fact that only this component was 90 degrees polarized (i.e. the helix is parallel to the acyl chain) suggests that only this particular type of helix is associated with the Myr2GroPGro bilayer.  相似文献   

16.
Staphylococcal leukocidin (Luk) consists of LukS and LukF, which cooperatively lyse human polymorphonuclear leukocytes (HPMNLs), monocytes, and macrophages. Here we found that LukS and LukF assembles into hetero-oligomeric pore complexes on the detergent-resistant membrane microdomains, lipid rafts of HPMNLs. When HPMNLs were treated with LukS alone, 24% of the added LukS was localized in lipid rafts. Furthermore, in HPMNLs treated with both LukS and LukF simultaneously, about 90% of high molecular-mass complexes of 100 kDa, which consists of LukS and LukF, were detected in the lipid raft fractions. In contrast, in HPMNLs treated with LukF alone, LukF was not localized in lipid rafts despite binding to the target cell membranes. Ten mM methyl-beta-cyclodextrin, a dysfunctioning agent of lipid rafts, completely inhibited assembly of Luk on lipid rafts, and resulted in null leukocytolytic activity of Luk. Hence, we concluded that assembly of LukS and LukF into the pore-complex occurs in lipid rafts in HPMNLs and that LukF can bind to LukS, which had already bound to lipid rafts, to assemble into hetero-oligomers.  相似文献   

17.
Staphylococcal leukocidin pores are formed by the obligatory interaction of two distinct polypeptides, one of class F and one of class S, making them unique in the family of beta-barrel pore-forming toxins (beta-PFTs). By contrast, other beta-PFTs form homo-oligomeric pores; for example, the staphylococcal alpha-hemolysin (alpha HL) pore is a homoheptamer. Here, we deduce the subunit composition of a leukocidin pore by two independent methods: gel shift electrophoresis and site-specific chemical modification during single-channel recording. Four LukF and four LukS subunits coassemble to form an octamer. This result in part explains properties of the leukocidin pore, such as its high conductance compared to the alpha HL pore. It is also pertinent to the mechanism of assembly of beta-PFT pores and suggests new possibilities for engineering these proteins.  相似文献   

18.
Staphylococcal leukocidin (Luk) consists of LukS and LukF, which cooperatively lyse human polymorphonuclear leukocytes (HPMNLs), monocytes, and macrophages. Here we found that LukS and LukF assembles into hetero-oligomeric pore complexes on the detergent-resistant membrane microdomains, lipid rafts of HPMNLs. When HPMNLs were treated with LukS alone, 24% of the added LukS was localized in lipid rafts. Furthermore, in HPMNLs treated with both LukS and LukF simultaneously, about 90% of high molecular-mass complexes of 100 kDa, which consists of LukS and LukF, were detected in the lipid raft fractions. In contrast, in HPMNLs treated with LukF alone, LukF was not localized in lipid rafts despite binding to the target cell membranes. Ten mM methyl-β-cyclodextrin, a dysfunctioning agent of lipid rafts, completely inhibited assembly of Luk on lipid rafts, and resulted in null leukocytolytic activity of Luk. Hence, we concluded that assembly of LukS and LukF into the pore-complex occurs in lipid rafts in HPMNLs and that LukF can bind to LukS, which had already bound to lipid rafts, to assemble into hetero-oligomers.  相似文献   

19.
Synthetic peptides with amino acid sequences corresponding to predicted transmembrane segments of tetanus toxin were used as probes to identify a channel-forming motif. A peptide denoted TeTx II, with sequence GVVLLLEYIPEITLPVIAALSIA, forms cation-selective channels when reconstituted in planar lipid bilayers. The single channel conductance in 0.5 M NaCl or KCl is 28 +/- 3 and 24 +/- 2 pS, respectively. In contrast, a peptide with sequence NFIGALETTGVVLLLEYIPEIT, denoted as TeTx I, or a peptide with the same amino acid composition as TeTx II but with a randomized sequence, do not form channels. Conformational energy calculations show that a bundle of four amphipathic alpha-helices is a plausible structural motif underlying observable pore properties. The identified functional module may account for the channel-forming activity of both tetanus toxin and the homologous botulinum toxin A.  相似文献   

20.
The assembly of bacterial toxins and virulence factors is critical to their function, but the regulation of assembly during infection has not been studied. We begin to address this question using anthrax toxin as a model. The protective antigen (PA) component of the toxin assembles into ring-shaped homooligomers that bind the two other enzyme components of the toxin, lethal factor (LF) and edema factor (EF), to form toxic complexes. To disrupt the host, these toxic complexes are endocytosed, such that the PA oligomer forms a membrane-spanning channel that LF and EF translocate through to enter the cytosol. Using single-channel electrophysiology, we show that PA channels contain two populations of conductance states, which correspond to two different PA pre-channel oligomers observed by electron microscopy—the well-described heptamer and a novel octamer. Mass spectrometry demonstrates that the PA octamer binds four LFs, and assembly routes leading to the octamer are populated with even-numbered, dimeric and tetrameric, PA intermediates. Both heptameric and octameric PA complexes can translocate LF and EF with similar rates and efficiencies. Here, we report a 3.2-Å crystal structure of the PA octamer. The octamer comprises ∼ 20-30% of the oligomers on cells, but outside of the cell, the octamer is more stable than the heptamer under physiological pH. Thus, the PA octamer is a physiological, stable, and active assembly state capable of forming lethal toxins that may withstand the hostile conditions encountered in the bloodstream. This assembly mechanism may provide a novel means to control cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号