首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Oxidative folding of insulin-like growth factor I (IGF-I) and single-chain insulin analogs proceeds via one- and two-disulfide intermediates. A predominant one-disulfide intermediate in each case contains the canonical A20-B19 disulfide bridge (cystines 18-61 in IGF-I and 19-85 in human proinsulin). Here, we describe a disulfide-linked peptide model of this on-pathway intermediate. One peptide fragment (19 amino acids) spans IGF-I residues 7-25 (canonical positions B8-B26 in the insulin superfamily); the other (18 amino acids) spans IGF-I residues 53-70 (positions A12-A21 and D1-D8). Containing only half of the IGF-I sequence, the disulfide-linked polypeptide (designated IGF-p) is not well ordered. Nascent helical elements corresponding to native alpha-helices are nonetheless observed at 4 degrees C. Furthermore, (13)C-edited nuclear Overhauser effects establish transient formation of a native-like partial core; no non-native nuclear Overhauser effects are observed. Together, these observations suggest that early events in the folding of insulin-related polypeptides are nucleated by a native-like molten subdomain containing Cys(A20) and Cys(B19). We propose that nascent interactions within this subdomain orient the A20 and B19 thiolates for disulfide bond formation and stabilize the one-disulfide intermediate once formed. Substitutions in the corresponding region of insulin are associated with inefficient chain combination and impaired biosynthetic expression. The intrinsic conformational propensities of a flexible disulfide-linked peptide thus define a folding nucleus, foreshadowing the structure of the native state.  相似文献   

2.
Isolation and characterization of a genetic variant of bovine proinsulin   总被引:1,自引:0,他引:1  
A genetic variant of bovine proinsulin has been isolated using preparative reverse-phase HPLC. The new proinsulin (bovine proinsulin II) differs from the known proinsulin (bovine proinsulin I) by a single amino acid residue at position C-48 in the connecting peptide. The amino acid replacement is a leucine substitution for proline. The two proinsulins were found in a ratio of approximately 9:1, proinsulin I: proinsulin II. No chemical or biological differences were observed for the two proinsulins other than their different elution times on reverse-phase HPLC.  相似文献   

3.
The amino acid sequence of the ferredoxin from Sambucus nigra consists of a single polypeptide chain of 97 amino acid residues, 5 of which are cysteine. The positions of the 4 cysteine residues which bind the iron atoms of the active centre are identical to those of other ferredoxins. Due to difficulties of obtaining pure protein, residues 87–90 have only been identified from the amino acid analysis of peptide C 10 and by homology with other higher plant ferredoxins.  相似文献   

4.
G J Arlaud  J Gagnon 《Biochemistry》1983,22(8):1758-1764
The amino acid sequence of human C1-r b chain hs been determined, from sequence analysis performed on fragments obtained by CNBr cleavage, dilute acid hydrolysis, tryptic cleavage of the succinylated protein, and subcleavages by staphylococcal protease. The polypeptide chain contains 242 amino acids (Mr 27 096), and the sequence shows strong homology with other mammalian serine proteases. The histidine, aspartic acid, and serine residues of the active site (His-57, Asp-102, and Ser-195 in bovine chymotrypsinogen) are located at positions 39, 94, and 191, respectively. The chain which lacks the "histidine-loop" disulfide bridge, contains five half-cystine residues, of which four (positions 157-176 and 187-217) are homologous to residues involved in disulfide bonds generally conserved in serine proteases, whereas the half-cystine residue at position 114 is likely to be involved in the single disulfide bridge connecting the catalytic b chain to the n-terminal a chain. Two carbohydrate moieties are attached to the polypeptide chain, both via asparagine residues at positions 51 and 118.  相似文献   

5.
Amino acid sequence of bovine osteoinductive factor   总被引:1,自引:0,他引:1  
The complete amino acid sequence of bovine osteoinductive factor (OIF) was determined by automated Edman degradation of S-pyridylethylated bovine OIF and selected fragments. Cleavage with endoproteinase Lys-C, endoproteinase Glu-C, or endoproteinase Asp-N established all fragments in an unambiguous sequence. Bovine OIF contains 105 residues with a calculated molecular weight of 12,055. It is a single chain polypeptide containing two intramolecularly linked cysteines at residues 62 and 95. Two asparagine-linked glycosylation sites at positions 52 and 65 were found by comparing sequence data and peptide profiles of native and deglycosylated OIF fragments. The amino acid sequence of OIF has no homology to other reported proteins.  相似文献   

6.
The amino acid sequence of human C1r A chain was determined, from sequence analysis performed on fragments obtained from C1r autolytic cleavage, cleavage of methionyl bonds, tryptic cleavages at arginine and lysine residues, and cleavages by staphylococcal proteinase. The polypeptide chain has an N-terminal serine residue and contains 446 amino acid residues (Mr 51,200). The sequence data allow chemical characterization of fragments alpha (positions 1-211), beta (positions 212-279) and gamma (positions 280-446) yielded from C1r autolytic cleavage, and identification of the two major cleavage sites generating these fragments. Position 150 of C1r A chain is occupied by a modified amino acid residue that, upon acid hydrolysis, yields erythro-beta-hydroxyaspartic acid, and that is located in a sequence homologous to the beta-hydroxyaspartic acid-containing regions of Factor IX, Factor X, protein C and protein Z. Sequence comparison reveals internal homology between two segments (positions 10-78 and 186-257). Two carbohydrate moieties are attached to the polypeptide chain, both via asparagine residues at positions 108 and 204. Combined with the previously determined sequence of C1r B chain [Arlaud & Gagnon (1983) Biochemistry 22, 1758-1764], these data give the complete sequence of human C1r.  相似文献   

7.
This review summarizes currently available information on thecomposition and structure of vertebrate insulins and proinsulins.Consideration is given to the important structural featuresof insulin and its precursor that are involved in the functionand formation of the active hormone. Studies on the biosynthesisof insulin in teleost fishes indicate the existence of largersingle chain precursor forms similar to the mammalian proinsulins.Preliminary results of experiments on insulin biosynthesis inthe hagfish (Myxine glutinosa), which has the most primitiveislet parenchyma of all vertebrates, indicate the existenceof a similar biosynthetic mechanism. The major storage productin the B-cells in all the vertebrate species studies thus faris insulin rather than proinsulin. In fishes an intracellulartryspin-like enzyme may suffice to convert proinsulin to insulin,while in mammals a more complex mechanism involving both anendopeptidase and an exopeptidase is probably required. Conversionoccurs within the Golgi apparatus and newly formed secretorygranules in the B-cells. The similarity to the higher vertebrates in the biosynthesisand molecular structure of insulin in the primitive hagfishindicates that the properties and biological role of this hormonehave remained fairly constant throughout several hundred millionyears, or that its evolution has followed the same pattern inmost extant organisms despite considerable differences in theirorigin and living conditions. A hypothesis for the evolutionof insulin and of the B-cells based on the biosynthetic mechanisminvolving proinsulin and its conversion to insulin is brieflyconsidered.  相似文献   

8.
To identify structural characteristics of the closely related cell surface receptors for insulin and IGF-I that define their distinct physiological roles, we determined the complete primary structure of the human IGF-I receptor from cloned cDNA. The deduced sequence predicts a 1367 amino acid receptor precursor, including a 30-residue signal peptide, which is removed during translocation of the nascent polypeptide chain. The 1337 residue, unmodified proreceptor polypeptide has a predicted Mr of 151,869, which compares with the 180,000 Mr IGF-I receptor precursor. In analogy with the 152,784 Mr insulin receptor precursor, cleavage of the Arg-Lys-Arg-Arg sequence at position 707 of the IGF-I receptor precursor will generate alpha (80,423 Mr) and beta (70,866 Mr) subunits, which compare with approximately 135,000 Mr (alpha) and 90,000 Mr (beta) fully glycosylated subunits.  相似文献   

9.
The primary structure of the cytotoxin restrictocin   总被引:3,自引:0,他引:3  
The complete amino acid sequence of the single polypeptide chain of cytotoxin restrictocin has been determined. Its structure was established by automated Edman degradation of the intact molecule reduced and [14C]carboxymethylated and of fragments obtained by chemical cleavage of the protein with cyanogen bromide and BNPS-skatole and by enzymatic cleavage of the polypeptide chain with trypsin. The molecule consists of 149 amino acid residues with a calculated relative molecular mass of 16836. The protein presents two disulfide bridges, one between cysteine residues at positions 5 and 147 and the other one formed by cysteine residues at positions 75 and 131. The amino acid sequence of restrictocin shows a high degree of homology (86%) with that of the cytotoxin named alpha-sarcin.  相似文献   

10.
The amino acid sequence of the proinsulin C-peptide isolated from guinea pig pancreas was determined and experimental data are presented. Digestion of the C-peptide with chymotrypsin provided two dodecapeptides, a tetrapeptide, and glutamine, which account for the intact chain. Reaction of the C-peptide with cyanogen bromide resulted in cleavage at the single methionine and provided two additional fragments. Digestion of the large peptides with papain provided a variety of small peptides and the complete sequence was assigned by identification of the fragments. Although guinea pig insulin differs markedly from mammalian insulins, guinea pig C-peptide has many features of primary structure in common with the C-peptides of other mammals. The conservation of specific residues in C-peptides indicates that these residues form essential elements in the three-dimensional structure of proinsulin.  相似文献   

11.
From neurohaemal lobes of corpora cardiaca of Locusta migratoria a 5-kDa peptide has been isolated and its sequence established [see the accompanying paper, by Hietter et al. (1990) Eur. J. Biochem. 187, 241-247]. We have designed oligonucleotide probes from the peptide sequence of this molecule and screened a library prepared from mRNA of the neurosecretory cell region of the brain of this insect. Several positive cDNAs were isolated, the combined nucleotide sequences of which predict a large precursor of 145 residues (15770 Da) containing the newly isolated 5-kDa peptide. The peptide is flanked by regions homologous to the A and B chains of the superfamily of insulins. The overall organization of the precursor is as follows: signal peptide/domain homologous to the B chain of insulins/C (connecting)-peptide (corresponding to the newly isolated 5-kDa peptide)/domain homologous to the A chain of insulins. The numbers and relative positions of the cysteines of the Locusta peptide are equivalent to those of the other members of the insulin superfamily and most of the hydrophobic core residues are conserved.  相似文献   

12.
人胰岛素原类似物(BKRA)基因的合成与表达   总被引:4,自引:0,他引:4  
为了利用基因工程生产胰岛素,按照已知的人胰岛素A、B链氨基酸序列和大肠杆菌偏爱的氨基酸密码子设计并合成了人胰岛素原类似物(BKRA)基因,其中以赖(K)-精(R)二肽编码区取代人胰岛素原C肽编码区.为了避免其编码蛋白在大肠杆菌中表达时被降解,通过人工接头将2个BKRA基因串联起来,接头部分氨基酸序列为Arg-Arg-Asn-Ser.将串联的BKRA基因克隆到表达载体pET-28a(+),实现了在大肠杆菌中的融合表达,表达产物以包含体形式存在,约占细菌总蛋白24%.表达产物氨基末端具有六组氨酸肽段,以HiTrap凝胶进行亲和层析,一步纯化可达纯度95%以上.放射免疫测定表明,纯化的融合蛋白具有胰岛素抗原活性.表明已构建成人胰岛素原类似物的高效表达菌株  相似文献   

13.
Amino acid sequence of porcine spleen cathepsin D light chain   总被引:5,自引:0,他引:5  
The complete amino acid sequence of the light chain of cathepsin D from porcine spleen has been determined. The light chain consists of a single polypeptide chain with 97 amino acid residues. The sequence is: (formula; see text) The molecular weight of the light chain was calculated from this sequence to be 10,548 (without carbohydrates). A single disulfide bond links two half-cystine residues between positions 46 and 53. A cysteine residue is located at position 27. The light chain sequence is extensively homologous to the NH2-terminal sequence of other aspartyl proteases. It shows a 59% identity with the sequence of mouse submaxillary gland renin and a 49% identity with that of porcine pepsin. A single glycosylation site is located at residue 70 of the cathepsin D light chain. This site corresponds to position 67 of pepsin by homology. The active site aspartyl residue, corresponding to Asp-32 of pepsin, is located at residue 33 in the cathepsin D light chain.  相似文献   

14.
A method for the simplified, reproducible production of both normal and altered versions of human proinsulin has been developed. A polyhistidine/proinsulin fusion protein was expressed using a prokaryotic expression system and partially purified by affinity chromatography. Disulfide bonds within the polypeptide were formed prior to removal of the affinity tag. The proinsulin cleaved from the fusion protein was then subjected to a final purification step of semipreparative reversed-phase high-performance liquid chromatography. Integrity of both the normal and mutant proinsulins was confirmed by peptide mapping and mass spectrometry. The different versions of proinsulin will be used to map those residues of the substrate used in cleavage site recognition by members of the furin/PC family of converting enzymes.  相似文献   

15.
We have isolated a new toxin, calitoxin (CLX), from the sea anemone Calliactis parasitica whose amino acid sequence differs greatly from that of other sea anemone toxins. The polypeptide chain contains 46 amino acid residues, with a molecular mass of 4886 Da and an isoelectric point at pH 5.4. The amino acid sequence determined by Edman degradation of the reduced, S-carboxymethylated polypeptide chain and tryptic and chymotryptic peptides is Ile-Glu-Cys-Lys-Cys-Glu-Gly-Asp-Ala-Pro-Asp-Leu-Ser-His-Met-Thr-Gly-Thr- Val-Tyr - Phe-Ser-Cys-Lys-Gly-Gly-Asp-Gly-Ser-Trp-Ser-Lys-Cys-Asn-Thr-Tyr-Thr-Ala- Val-Ala - Asp-Cys-Cys-His-Glu-Ala. No cysteine residues were present in the peptide. Similarly to other sea anemone toxins, calitoxin interacts, in crustacean nerve muscle preparations, with axonal and not with muscle membranes, inducing a massive release of neurotransmitter that causes a strong muscle contraction. The low homology of CLX with RP II and ATX II toxins has implications regarding the role played by particular amino acid residues.  相似文献   

16.
The primary structure of calf chymosin.   总被引:6,自引:0,他引:6  
The complete amino acid sequence of calf chymosin (rennin) (EC 3.4.23.4) has been determined. The sequence consists of a single peptide chain of 323 amino acid residues. The primary structure of the precursor part of calf prochymosin was published previously (Pedersen, V.B., and Foltmann, B. (1975) Eur. J. Biochem. 55, 95-103), thus we are now able to account for the total 365 amino acid residues of calf prochymosin. Comparison of the sequence of calf prochymosin with that of pig pepsinogen A (EC 3.4.23.1) shows extensive homology. In the precursor part of the sequence, 15 residues are located at identical positions, as compared to 189 identical residues in the respective enzymes. Furthermore comparison to Penicillium janthinellum acid proteinase (penicillopepsin) (EC 3.4.23.7) shows that 76 residues are common to this enzyme and to the two gastric proteinases. These homologies in sequence further suggest that the folding of the peptide chain in chymosin is very similar to that of other acid proteinases.  相似文献   

17.
We have isolated a proinsulin cDNA from the Amphibian Rana pipiens. The predicted R. pipiens insulin A- and B-chain amino acid sequences differ from that deduced from the closely related Rana catesbeiana at one residue (Asp for Pro at B2). The R. pipiens and Xenopus laevis proinsulin precursor sequences are of identical length, with the amino acid sequences of the mature A- and B-chains being well conserved. The proinsulin C-peptide amino acid sequence is less well conserved between R. pipiens and X. laevis and also differs in length. The R. pipiens C-peptide is shorter than the homologous X. laevis sequence due to a two amino acid residue truncation. The truncation of the R. pipiens C-peptide compensates for a two amino acid residue extension observed at the N-terminal of the A-chains of insulins from Ranid frogs. A change in the site of proinsulin processing can explain both the C-peptide and A-chain length differences. The evolution of the new proinsulin processing site required two amino acid substitutions.  相似文献   

18.
The amino acid sequence of a single polypeptide chain, B-4, from fowl feather barbs has been determined. The B-4 chain was found to consist of 96 amino acid residues and to have a molecular weight of 10206 in the S-carboxymethylated form. The N terminus of this protein was an N-acetylserine residue. The B-4 protein contained seven S-carboxymethylcysteine residues, six of which are located in the N-terminal region (residues 1-26), and other one in C terminus. The central region of the peptide chain was rich in hydrophobic residues. There were homologous amino acids at 66 positions in the sequences of the feather keratins of fowl, emu and silver gull. The variation (substitution, deletion and insertion) in sequence was found to be localized in both terminal sections of the polypeptide chain. The B-4 protein structure was predicted to contain beta-sheet (about 30%), turn and random-coil-like structure, and no alpha-helix. beta-Sheet structure is mostly located in the central region (residues 22-70). On the other hand, both terminal regions are almost devoid of secondary structure.  相似文献   

19.
20.
Mouse J chain was isolated from an IgM-producing hybridoma by gel filtration and ion-exchange chromatography. The sequence of the amino-terminal 25 residues was determined. At these positions, the results agree with the amino acid sequence deduced from the cDNA sequence determined previously by Koshland and co-workers and indicate that a leader sequence terminating in glycine is removed to form the mature J chain. Tryptic peptides of J chain were isolated by high pressure liquid chromatography and their amino acid compositions were compared with those expected from the cDNA sequence. The amino acid sequence of the carboxy-terminal peptide and a mixture of two other peptides was determined. The results were consistent with the cDNA sequence except that we found valine, not leucine, at position 67, and arginine, not glycine, at position 117. The presence of aspartic acid at the carboxy-terminus, as predicted from the cDNA, indicates that processing does not occur at this end of the polypeptide chain. Upon amino acid analysis, glucosamine was found in tryptic peptides 47-57 and 47-58. J chain was also cleaved at aspartylproline bonds with formic acid and the unfractionated digest was subjected to automated Edman degradation. The mixed sequence was consistent with the sequence deduced from the cDNA at positions 1 to 13, 28 to 40, 52 to 64, and 73 to 85. In conjunction with the results obtained previously by analysis of cDNA, these data show that mouse J chain is a polypeptide containing 137 amino acid residues, 93 of which are identical to residues in human J chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号