首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is believed that static magnetic fields (SMF) cannot affect the pattern formation of the Belousov-Zhabotinsky (BZ) reaction, which has been frequently studied as a simplified experimental model of a nonequilibrium open system, because SMF produces no induced current and the magnetic force of SMF far below 1 T is too low to expect the effects on electrons in the BZ reaction. In the present study, we examined whether the velocity of chemical waves in the unstirred BZ reaction can be affected by a moderate-intensity SMF exposure depending on the spatial magnetic gradient. The SMF was generated by a parallel pair of attracting rectangular NdFeB magnets positioned opposite each other. The respective maximum values of magnetic flux density (B(max)), magnetic flux gradient (G(max)), and the magnetic force product of the magnetic flux density its gradient (a magnetic force parameter) were 206 mT, 37 mT/mm, and 3,000 mT(2)/mm. The ferroin-catalyzed BZ medium was exposed to the SMF for up to 16 min at 25 degrees C. The experiments demonstrated that the wave velocity was significantly accelerated primarily by the magnetic gradient. The propagation of the fastest wave front indicated a sigmoid increase along the peak magnetic gradient line, but not along the peak magnetic force product line. The underlying mechanisms of the SMF effects on the anomalous wave propagation could be attributed primarily to the increased concentration gradient of the paramagnetic iron ion complexes at the chemical wave fronts induced by the magnetic gradient.  相似文献   

2.
The effects of potentially perturbating influences on the respiration of glucose-grown Candida utilis were studied using an open oxygen electrode system. Periods of anaerobiosis as short as 2 min produced an oscillation in respiration after the air supply was restored. Longer exposure to anoxia was followed by an overshoot in dissolved oxygen after switching back to a gas phase of air. Centrifugation, cold shock or nutrient starvation caused less disturbance to respiration rates than did anaerobiosis. The high frequency oscillations (period about 5 min) resulting from anaerobic-aerobic transitions are contrasted with the slow cell cycle-dependent oscillations previously observed in synchronous cultures.  相似文献   

3.
Synchronization in two interacting oscillatory systems.   总被引:1,自引:0,他引:1  
Nonlinear phenomena arising from the interaction of two oscillating systems of chemical reactions are studied experimentally. The system of two connected flow-through continuous stirred tank reactors (cells) with controlled exchange of reaction mixture is used. The Belousov reaction (oxidation of malonic acid by bromate in sulphuric acid with ceric/cerous ions as catalyst) served as model system. The frequency of oscillations was controlled by change of the reaction temperature. Phenomena such as synchronization of oscillations at a common frequency, synchronization at multiples of a common frequency, rhythm splitting and amplitude amplification were observed, depending on the degree of interaction and the differences in the original oscillation frequencies. Mathematical modelling of the above phenomena failed, probably due to insufficient knowledge of a kinetic model.  相似文献   

4.
The influence of compensation of the geomagnetic field to levels below 0.4 μT (referred to below as “zero magnetic field”) on human cognitive processes has been studied. 40 participants in the study were assigned to four groups according to their gender and age. The study focused on the assessment of cognitive processes. Each participant took part in two experiments, one of which was set up under normal (control) conditions, whereas the second one was set up under the conditions of a zero magnetic field. 45 min of exposure to zero magnetic field caused statistically significant changes in five out of eight parameters in the cognitive tests. The magnitude of the effects varied between 1.3 and 6.2%, with an average value of 2.1% for all tests ( p < 0.002, MANOVA). It was found that exposure to a zero magnetic field resulted in an increased number of errors and extension of the time required to complete the tasks compared to normal conditions. Men outperformed women under zero magnetic field conditions and young people performed better than older people. It was found that factors other than age and gender affected the cognitive performance under zero magnetic field conditions.  相似文献   

5.
Many stimuli cause intracellular concentration oscillations of second messengers or metabolites, which, in turn, may encode information in their amplitudes and frequencies. We now test the hypothesis that synergistic cellular responses to dual cytokine exposure correlate with cross-talk between metabolic signaling pathways of leukocytes. Polarized RAW264.7 macrophages and human neutrophils and monocytes exhibited NAD(P)H autofluorescence oscillation periods of congruent with20 s. IFN-gamma tripled the NAD(P)H oscillatory amplitude for these cells. Although IL-6 had no effect, incubation of cells with IFN-gamma and IL-6 increased both oscillatory amplitude and frequency. Parallel changes were noted after treatment with IFN-gamma and IL-2. However, IL-1beta and TNF-alpha did not display frequency doubling with or without IFN-gamma exposure. To determine whether frequency doubling required complete IFN-gamma signaling or simply metabolic amplitude modulation, an electric field was applied to cells at NAD(P)H troughs, which has been shown to enhance NAD(P)H amplitudes. Electric field application led to frequency doubling in the presence of IL-6 or IL-2 alone, suggesting that amplitude modulation is crucial to synergism. Because NADPH participates in electron trafficking to NO, we tested NO production during cytokine exposure. Although IL-6 and IL-2 alone had no effect, IFN-gamma plus IL-6 and IFN-gamma plus IL-2 enhanced NO release in comparison to IFN-gamma treatment alone. When NO production was examined for single cells, it incrementally increased with the same phase and period as NAD(P)H. We suggest that amplitude and frequency modulation of cellular metabolic oscillations contribute to intracellular signaling synergy and entrain NO production.  相似文献   

6.
The effect of extremely low frequency and low amplitude magnetic fields on gap junctional permeability was investigated by using reconstituted connexin32 hemi channel in liposomes. Cytochrome c was loaded inside these proteoliposomes and its reduction upon addition of ascorbate in the bulk aqueous phase was adopted as the index of hemi channel permeability. The permeability rate of the hemi channels, expressed as DeltaA/min, was dependent on the incubation temperature of proteoliposomes. The effect of exposures to magnetic fields at different frequencies (7, 13 and 18 Hz) and amplitudes (50, 50 and 70 microT, respectively), and at different temperatures (16, 18 and 24 degrees C) was studied. Only the exposure of proteoliposomes to 18-Hz (B(acpeak) and B(dc)=70 microT) magnetic field for 60 min at 16+/-0.4 degrees C resulted in a significant enhancement of the hemi channel permeability from DeltaA/min=0.0007+/-0.0002 to DeltaA/min=0.0010+/-0.0001 (P=0.030). This enhancement was not found for magnetic field exposures of liposomes kept at the higher temperatures tested. Temperature appears to influence lipid bilayer arrangement in such a way as being capable to mask possible effects induced by the magnetic field. Although the observed effect was very low, it seems to confirm the applicability of our model previously proposed for the interaction of low frequency electromagnetic fields with lipid membrane.  相似文献   

7.
The effect of the extremely low frequency (ELF) magnetic field on citric acid and cellulase production by Aspergillus niger using liquid Charles culture medium was studied during shake flask culture. The cellular suspension was exposed to a magnetic field (t = 4 h, B = 1 mT, and f = 50 Hz). The dependence of yield of citric acid and activity of cellulase on time of exposure and on the value of the magnetic field induction B was measured. Both yield of citric acid and activity of cellulase increased with increasing exposure time and/or induction B, but the quantity of the effect was dependent on the chemical structure of metabolites. The metabolism of citric acid was more sensitive to the magnetic field than that of cellulase. From the measurement of the metabolism dynamics we concluded that the increase in the citric acid and activity of cellulase started immediately after the magnetic field was switched on.  相似文献   

8.
B. Novak  H. Greppin 《Planta》1979,144(3):235-240
The microelectrode technique was used to follow oscillations in membrane potential in mesophyll cells of spinach (Spinacia oleracea L.) during exposure do different photoperiodic conditions. Both high-frequency oscillations and circadian variations were observed. The circadian rhythm was imposed on the period of high-frequency oscillation during short days as well as in continuous light: The free-running period was 25.2 h. The average period of high-frequency oscillation increased from 7.64 min in the dark to 19.95 min in the light within several minutes after dark to light transition. This period length coincides with the established period length for oscillations in the redox potential in the chloroplast suspensions of spinach.Abbreviations CL continuous light - SD short day - MP membrane potential  相似文献   

9.
Electromagnetic acceleration of electron transfer reactions   总被引:3,自引:0,他引:3  
The Moving Charge Interaction (MCI) model proposes that low frequency electromagnetic (EM) fields affect biochemical reactions through interaction with moving electrons. Thus, EM field activation of genes, and the synthesis of stress proteins, are initiated through EM field interaction with moving electrons in DNA. This idea is supported by studies showing that EM fields increase electron transfer rates in cytochrome oxidase. Also, in studies of the Na,K-ATPase reaction, estimates of the speed of the charges accelerated by EM fields suggest that they too are electrons. To demonstrate EM field effects on electron transfer in a simpler system, we have studied the classic oscillating Belousov--Zhabotinski (BZ) reaction. Under conditions where the BZ reaction oscillates at about 0.03 cycles/sec, a 60 Hz, 28 microT (280 mG) field accelerates the overall reaction. As observed in earlier studies, an increase in temperature accelerates the reaction and decreases the effect of EM fields on electron transfer. In all three reactions studied, EM fields accelerate electron transfer, and appear to compete with the intrinsic chemical forces driving the reactions. The MCI model provides a reasonable explanation of these observations.  相似文献   

10.
11.
The effect of extremely low frequency and low amplitude magnetic fields on gap junctional permeability was investigated by using reconstituted connexin32 hemi channel in liposomes. Cytochrome c was loaded inside these proteoliposomes and its reduction upon addition of ascorbate in the bulk aqueous phase was adopted as the index of hemi channel permeability. The permeability rate of the hemi channels, expressed as ΔA/min, was dependent on the incubation temperature of proteoliposomes. The effect of exposures to magnetic fields at different frequencies (7, 13 and 18 Hz) and amplitudes (50, 50 and 70 μT, respectively), and at different temperatures (16, 18 and 24 °C) was studied. Only the exposure of proteoliposomes to 18-Hz (Bacpeak and Bdc=70 μT) magnetic field for 60 min at 16±0.4 °C resulted in a significant enhancement of the hemi channel permeability from ΔA/min=0.0007±0.0002 to ΔA/min=0.0010±0.0001 (P=0.030). This enhancement was not found for magnetic field exposures of liposomes kept at the higher temperatures tested. Temperature appears to influence lipid bilayer arrangement in such a way as being capable to mask possible effects induced by the magnetic field. Although the observed effect was very low, it seems to confirm the applicability of our model previously proposed for the interaction of low frequency electromagnetic fields with lipid membrane.  相似文献   

12.
Sarimov RM  Bingi VN  Miliaev VA 《Biofizika》2008,53(5):856-866
The influence of the compensation of the geomagnetic field to a level less than 0.4 microT on human cognitive processes has been studied. Forty persons took part in the study; they were divided by sex and age into four groups. The cognitive abilities of the persons were tested. Each person took part in two experiments: in control conditions and under the exposure to zero magnetic field. A 45-min exposure to zero magnetic field caused statistically significant changes in five of eight parameters of the cognitive tests. The magnitude of the effects varied between 1.3 and 6.2%, with an average value for all tests being 2.1% (p < 0.002, MANOVA). Exposure to zero magnetic field led predominantly to an increase in the number of errors and the time the task was performed as compared with the controls. Men passed the tests in zero magnetic field better than women, and young people did it better than aged persons. Groups of persons were distinguished that responded differently to zero magnetic field, the differences being not related to the age or gender.  相似文献   

13.
Praziquantel (PQ) is a commonly used drug to treat patients with schistosomiasis. Previous studies using cells in vitro have shown that PQ can enhance the mutagenic activities of known mutagens. We have conducted a cytogenetic - urine metabolite study to determine the in vivo clastogenic and co-clastogenic potential of PQ with a ubiquitous environmental contaminant, benzene (BZ). 16 groups of adult male ICR mice (5 animals per group) were used. They were negative control, solvent controls (cremophore E1 3%, olive oil and combined), positive control (BZ 440 mg/kg b.w.) and 11 exposed groups. To test for clastogenicity of PQ, mice were treated orally with 100, 400, 800 and 1200 mg/kg b.w. PQ and sacrificed 30 h later for determination of micronuclei (MN) frequency in bone-marrow polychromatic erythrocytes (PCE). None of these PQ does induced an increase of MN frequency. On the other hand, BZ induced, as expected, a high frequency of MN (46.4 +/- 6.34/1000 PCE). The enhancement effect of PQ was tested in 7 groups of mice using 3 different protocols. Mice were treated with 440 mg/kg b.w. BZ and 1 h later with 0, 100, 200, 400, 800 and 1200 mg/kg b.w. PZ. In another group, 800 mg/kg PQ was administered at 3 h after BZ exposure. In the last group, PQ (800 mg/kg) was administered at 1 h prior to BZ exposure. Results from the first combined exposure group showed a significant PQ dose-dependent increase in the frequency of MN in PCE (p less than 0.05). The increase with the two high doses of praziquantel is significantly higher (p less than 0.05) than the MN frequencies in the benzene control and the expected value based on the additive effects of the two agents. Studies with other combined treatment groups showed that the induction of MN was highest when PQ was administered at 1 h before BZ exposure. Moreover, the presence of BZ metabolites (muconic acid, phenol, catechol and hydroquinone) in urine was studied in 6 of the combined treatment groups. This metabolite study revealed that PQ enhanced the metabolism of BZ towards the pathway to form muconaldehyde which is converted to muconic acid in urine. In conclusion, our study showed that PQ is not a clastogen but can enhance the clastogenic activity of BZ in vivo by shifting the metabolic pathways of BZ towards formation of muconaldehyde which may be responsible for the enhancement effect.  相似文献   

14.
Based on the distribution of activation energies around the experimental mean and averaging of rate constants we propose a theoretical scheme to examine the temperature dependence and temperature compensation of time periods of chemical oscillations. The critical finite width of the distribution is characteristic of endogeneous oscillations for compensating kinetics as observed in circadian oscillations, while the vanishing width corresponds to Arrhenius temperature dependent kinetics of non-endogeneous chemical oscillation in Belousov-Zhabotinskii reaction in a CSTR or glycolysis in cell-free yeast extracts. Our theoretical analysis is corroborated with experimental data.  相似文献   

15.
Histamine stimulates [Ca(2+)](i) oscillations in human aortic endothelial cells (HAEC), the frequency of which regulates the activity of nuclear factor-kappaB (NF-kappaB). This study was performed to determine whether phospholipase D (PLD) is involved in this signaling pathway. At a concentration of 1 microM, which stimulates [Ca(2+)](i) oscillations in this cell type, histamine initiated a twofold increase in [(32)P]phosphatidybutanol (PBt), an index of PLD activity as early as 5 min after stimulation. During established [Ca(2+)](i) oscillations induced by 1 microM histamine, 0.3% n-butanol, which "functionally" redirects phosphatidic acid formed by PLD to PBt, decreased [Ca(2+)](i) oscillation frequency by approximately 50% and produced a similar reduction in NF-kappaB activity. In the presence of the inositol 1,4,5-trisphosphate receptor blocker xestospongin C, which itself decreases the frequency of histamine-stimulated [Ca(2+)](i) oscillations, n-butanol produced a further decrease in oscillation frequency that was not associated with an additional reduction in NF-kappaB activity. This study shows that activation of PLD by histamine regulates [Ca(2+)](i) oscillation frequency and NF-kappaB activity in HAEC.  相似文献   

16.
Two groups of SENCAR mice were treated with a single dose of carcinogen and then, for 23 weeks, with a chemical tumor promoter to induce skin tumors. During this period, one group was coexposed to a 2 mT power frequency (60 Hz) magnetic field, while the other was exposed to sham conditions. Application of the tumor promoter ceased after 23 weeks, but the exposure to sham conditions or magnetic fields continued for an additional 29 weeks. No difference was found between the two groups of mice in terms of the incidence of total tumors (P =.297) or squamous cell carcinomas (SSC) (P =.501). In summary, there was no evidence to support the hypotheses that 60 Hz magnetic fields (MF) can influence the development of either papillomas or SSC under our defined experimental conditions. The overall results add to previous animal studies that find no association between exposure to 60 Hz MF and the incidence of benign or malignant tumors.  相似文献   

17.
The objective of this study was to observe whether a rotating magnetic field (RMF) could change the anomalous chemical wave propagation induced by a moderate‐intensity gradient static magnetic field (SMF) in an unstirred Belousov–Zhabotinsky (BZ) reaction. The application of the SMF (maximum magnetic flux density = 0.22 T, maximum magnetic flux density gradient = 25.5 T/m, and peak magnetic force product (flux density × gradient) = 4 T2/m) accelerated the propagation velocity in a two‐dimensional pattern. Characteristic anomalous patterns of the wavefront shape were generated and the patterns were dependent on the SMF distribution. The deformation and increase in the propagation velocity were diminished by the application of an RMF at a rotation rate of 1 rpm for a few minutes. Numerical simulation by means of the time‐averaged value of the magnetic flux density gradient or the MF gradient force over one rotation partially supported the experimental observations. These considerations suggest that RMF exposure modulates the chemical wave propagation and that the degree of modulation could be, at least in part, dependent on the time‐averaged MF distribution over one rotation. Bioelectromagnetics 34:220–230, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The influence of a strong homogeneous and stationary magnetic field (SMF) on the activity of the enzyme thymidine kinase (TdR-K) in bone marrow cells, and as a consequence of this on the incorporation of 125I-labelled 5-iodo-2-deoxyuridine (125IUdR) into DNA of mice and into isolated bone marrow cells in vitro, was assayed after exposure of immobilized mice. No effect could be elicited in moving mice, in cells in suspension or in enzyme in solution. The response depended on the body temperature during exposure: at 27 degrees C and 29 degrees C there was an increase and at 37 degrees C and a depression of enzyme activity. The TdR-K activity at low temperature increased with the field strength ranging from 0.2 to 1.4T. Thirty minutes were required for full expression of the effect at 1.4T; 5-10 min were needed after exposure for a return to base-line levels. Mice were given total-body irradiation at a dose of 0.1 Gy 137Cs gamma rays and then exposed immediately to a magnetic field at 1.4T for 30 min at a body temperature of 27 degrees C; gamma irradiation no longer inhibited the enzyme. Exposure to the magnetic field further removed from the time of gamma irradiation, did not negate the inhibitory effect of gamma irradiation. The observed responses to given challenges in this complex system support the hypothesis that the magnetic field affects TdR-K activity by way of a mediating structure, such as a membrane.  相似文献   

19.
Continuing evidence suggests that extremely low frequency magnetic fields (ELF MFs) can affect animal and human behavior. We have previously demonstrated that after a 15 min exposure to a pulsed ELF MF, with most power at frequencies between 0 and 500 Hz, human brain electrical activity is affected as measured by electroencephalography (EEG), specifically within the alpha frequency (8-13 Hz). Here, we report that a pulsed ELF MF affects the human EEG during the exposure period. Twenty subjects (10 males; 10 females) received both a magnetic field and a sham session of 15 min in a counterbalanced design. Analysis of variance (ANOVA) revealed that alpha activity was significantly lower over the occipital electrodes (O1, Oz, O2) [F(1,16) = 5.376, P < .01, eta2 = 0.418] after the first 5 min of magnetic field exposure and was found to be related to the order of exposure (MF-sham vs. sham-MF). This decrease in alpha activity was no longer significant in the 1st min post-exposure, compared to sham (P > .05). This study is among the first to assess EEG frequency changes during a weak (+/-200 microTpk), pulsed ELF MF exposure.  相似文献   

20.
The hypothesis that frequency and amplitude response can be used in a complicated metabolic pathway kinetics model for optimal parameter estimation, as speculated by its successful prior usage for a mechanical oscillator and a heterogeneous chemical system, is tested here. Given the complexity of the glycolysis model of yeast chosen, this question is limited to three kinetics parameters of the 87 in the in vitro model developed in the literature. The direct application of the approach, used with the uninformed selection of operating conditions for the oscillation of external glucose concentration, led to miring the data assimilation process in local minima. Application of linear systems theory, however, identified two natural resonant frequencies that, when excited by external forced oscillations of the same frequency, result in the expression of many harmonics in the Fourier spectra, that is, information-rich experiments. A single such information-rich experiment at one of the resonant frequencies was sufficient to break away from the local minima to find the optimum kinetics parameter estimates. The resonant frequencies themselves represent oscillation modes in glycolysis akin to those previously observed. Furthermore, operation of the bioreactor with large amplitude oscillations of glucose feed (25%) leads to enhanced ethanol average yield by 1.6% at the resonant frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号