首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Glycogen phosphorylase (EC 2.4.1.1) has been demonstrated in sections of liver from rats starved for 24 h. The method is based on the measurement of the amount of glycogen formed after incubation in a gelled medium containing glucose 1-phosphate as substrate, using the semipermeable membrane technique. Glycogen was demonstrated with the periodic acid-Schiff (PAS) reaction.Phosphorylase activity appeared to be highest in periportal areas. The optimum substrate concentration for revealing activity of the enzyme was 60–120mm. After incubation in the absence of substrate, the staining intensity, as measured cytophotometrically as the mean integrated absorbance at 560 nm, was similar to that of an unincubated section.p-Chloromercuribenzoate, a non-specific inhibitor of glycogen phosphorylase activity, reduced the formation of final reaction product attributable to phosphorylase activity completely. The Michaelis constants (K m ) of the enzyme in periportal and pericentral areas differed. This was probably due to the presence of thea form only in periportal areas and of thea andb forms in pericentral areas. The mean integrated absorbances in both the periportal and pericentral areas increased linearly with incubation time (4–16 min). A linear relationship was also found with section thickness (4–10 µm). The total activity of glycogen phosphorylase in the periportal areas was double the pericentral activity.It is concluded that the semipermeable membrane technique, combined with the PAS reaction for glycogen, can be used as a valid method for the demonstration and quantification of glycogen phosphorylase activity in livers from starved rats.  相似文献   

2.
Unfixed cryostat sections of rat liver were incubated to demonstrate D-amino acid oxidase activity at the ultrastructural level. Incubation was performed by mounting the sections on a semipermeable membrane which was stretched over a gelled incubation medium containing D-proline as substrate and cerium ions as capture reagent for hydrogen peroxide. After an incubation period of 30 min, ultrastructural morphology was retained to such an extent that the final reaction product could be localized in peroxisomes, whereas the crystalline core remained unstained. Control incubations were performed in the absence of substrate; the lack of final reaction product in peroxisomes indicated the specificity of the reaction. We conclude that the semipermeable membrane technique opens new perspectives for localization of enzyme activities at the ultrastructural level without prior tissue fixation, thus enabling localization of the activity of soluble and/or labile enzymes.  相似文献   

3.
H J Hacker 《Histochemistry》1978,58(4):289-296
A method is described for the histochemical demonstration of phosphorylase in unfixed cryostat sections of rat liver using semipermeable membranes and a gel medium. In comparison to the conventional methods this procedure has the following advantages: 1. Staining of sections through a semipermeable membrane prevents diffusion of cellular glycogen and guarantees optimal localisation of phosphorylase activity. 2. Since diffusion is effectively prevented by the membrane the total activity of this highly soluble enzyme can be demonstrated. 3. Tissue and cell structures are well preserved.  相似文献   

4.
The effects of ischemia in vitro for 0-60 min at 37 degrees C on glycogen phosphorylase activity in rat liver have been studied under different feeding conditions. Glycogen phosphorylase activity was demonstrated with a recently developed quantitative histochemical method using a semipermeable membrane and the PAS-reaction. The cytophotometrically measured glycogen phosphorylase activity in livers from 24 h-fasted rats was approximately five times the activity in livers from normally fed rats. The activity in periportal areas was about 1.5 times higher than the activity in pericentral areas in livers from starved rats, but more or less evenly distributed in livers from fed rats. Enzyme activity in pericentral areas of livers from 24 h-fasted rats started to decrease after 20 min of ischemia. After 50-60 min of ischemia, the activity was decreased to approximately 25% of the control activity. Livers from normally fed rats showed unchanged activity in periportal and pericentral areas after 10-60 min of ischemia. It has been assumed that the activation of the enzyme was disturbed by ischemia, possibly as a consequence of plasma membrane damage.  相似文献   

5.
1. Glycogen, glucose, lactate and glycogen phosphorylase concentrations and the activities of glycogen phosphorylase a and acid 1,4-alpha-glucosidase were measured at various times up to 120 min after death in the liver and skeletal muscle of Wistar and gsd/gsd (phosphorylase b kinase deficient) rats and Wistar rats treated with the acid alpha-glucosidase inhibitor acarbose. 2. In all tissues glycogen was degraded rapidly and was accompanied by an increase in tissue glucose and lactate concentrations and a lowering of tissue pH. In the liver of Wistar and acarbose-treated Wistar rats and in the skeletal muscle of all rats glycogen loss proceeded initially very rapidly before slowing. In the gsd/gsd rat liver glycogenolysis proceeded at a linear rate throughout the incubation period. Over 120 min 60, 20 and 50% of the hepatic glycogen store was degraded in the livers of Wistar, gsd/gsd and acarbose-treated Wistar rats, respectively. All 3 types of rat degraded skeletal muscle glycogen at the same rate and to the same extent (82% degraded over 2 hr). 3. In Wistar rat liver and skeletal muscle glycogen phosphorylase was activated soon after death and the activity of phosphorylase a remained well above the zero-time level at all later time points, even when the rate of glycogenolysis had slowed significantly. Liver and skeletal muscle acid alpha-glucosidase activities were unchanged after death. 4. The decreased rate and extent of hepatic glycogenolysis in both the gsd/gsd and acarbose-treated rats suggests that this process is a combination of phosphorolysis and hydrolysis. 5. Glycogen was purified from Wistar liver and skeletal muscle at various times post mortem and its structure investigated. Fine structural analysis revealed progressive shortening of the outer chains of the glycogen from both tissues, indicative of random, lysosomal hydrolysis. Analysis of molecular weight distributions showed inhomogeneity in the glycogen loss; in both tissues high molecular weight glycogen was preferentially degraded. This material is concentrated in lysosomes of both skeletal muscle and liver. These results are consistent with a role for lysosomal hydrolysis in glycogen degradation.  相似文献   

6.
Glycogen Metabolism in Bovine Adrenal Medulla   总被引:3,自引:2,他引:1  
Abstract: Glycogen content was determined both in whole adrenal medullary tissue and in isolated adrenal chromaffin cells, in which it responds to glucose deprivation and restoration. [14C]glucose incorporation into glycogen in isolated adrenal chromaffin cells is increased by previous glucose deprivation ("fasting"). Total glycogen synthase activities are 452 ± 66 mU/g in whole tissue and 305 ± 108 mU/g in isolated cells. The K m of glycogen synthase for UDP-glucose is 0.67 mM with 13 m m glucose-6-phosphate and 1 m m without this effector. The in vitro inactivation process of glycogen synthase a has been found to be mainly cyclic AMP-dependent, but it also responds to Ca2+. Total glycogen phosphorylase activities are 8.69 ± 1.26 U/g in whole tissue and 2.38 ± 0.30 U/g in isolated cells. The requirements for interconversion in vitro of both glycogen synthase and phosphorylase suggest a system similar to that of other tissues. During incubation of isolated adrenal chromaffin cells with 5 m m -glucose, phosphorylase a activity decreases and synthase a activity increases; these changes are more marked in "fasted" cells. Glycogen content and glycogen synthase and phosphorylase activities are higher in the adrenal medulla than in the brain, suggesting a greater metabolic role of glycogen in the adrenal medulla.  相似文献   

7.
Glycogen phosphorylase activity in both liver and kidney medulla of rabbit was stimulated in the presence of caffeine by various aminoglycoside antibiotics in the following rank order: gentamicin greater than neomycin greater than amikacin = kanamycin greater than or equal tobramycin, while streptomycin did not affect the enzyme activity. In contrast, in the presence of AMP, the stimulatory action of antibiotics was not observed. Since in the gentamicin-treated rabbits stimulation of glycogen phosphorylase activity by about 30% in both liver and kidney medulla was accompanied by a decrease of liver glycogen content by about 60% it is likely that a decline in liver glycogen level following antibiotic treatment is due to an increased glycogen phosphorylase activity.  相似文献   

8.
Hormonal regulation of glycogen metabolism in neonatal rat liver   总被引:5,自引:3,他引:2  
1. The development of active and inactive phosphorylase was determined in rat liver during the perinatal period. No inactive form could be found in tissues from animals less than 19 days gestation or older than the fifth postnatal day. 2. The regulation of phosphorylase in organ cultures of foetal rat liver was examined. None of the agents examined [glucagon, insulin or dibutyryl cyclic AMP (6-N,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate)] changed the amount of phosphorylase activity. 3. Glycogen concentration in these explants were nevertheless decreased more than twofold by 4h of incubation with glucagon or dibutyryl cyclic AMP. Incubation with insulin for 4h increased the glycogen content twofold. 4. Glycogen synthetase activity was examined in these explants. I-form activity (without glucose 6-phosphate) was found to decrease by a factor of two after 4h of incubation with dibutyryl cyclic AMP, whereas I+D activity (with glucose 6-phosphate) remained nearly constant. Incubation for 4h with insulin increased I-form activity threefold, with only a slight increase in I+D activity. 5. When explants were incubated with insulin followed by addition of dibutyryl cyclic AMP, the effects of insulin on glycogen concentration and glycogen synthetase activity were reversed. 6. These results indicate that the regulation of glycogen synthesis may be the major factor in the hormonal control of glycogen metabolism in neonatal rat liver.  相似文献   

9.
A model to study glycogen supercompensation (the significant increase in glycogen content above basal level) in primary rat skeletal muscle culture was established. Glycogen was completely depleted in differentiated myotubes by 2 h of electrical stimulation or exposure to hypoxia during incubation in medium devoid of glucose. Thereafter, cells were incubated in medium containing glucose, and glycogen supercompensation was clearly observed in treated myotubes after 72 h. Peak glycogen levels were obtained after 120 h, averaging 2.5 and 4 fold above control values in the stimulated- and hypoxia-treated cells, respectively. Glycogen synthase activity increased and phosphorylase activity decreased continuously during 120 h of recovery in the treated cells. Rates of 2-deoxyglucose uptake were significantly elevated in the treated cells at 96 and 120 h, averaging 1.4–2 fold above control values. Glycogenin content increased slightly in the treated cells after 48 h (1.2 fold vs. control) and then increased considerably, achieving peak values after 120 h (2 fold vs. control). The results demonstrate two phases of glycogen supercompensation: the first phase depends primarily on activation of glycogen synthase and inactivation of phosphorylase; the second phase includes increases in glucose uptake and glycogenin level.  相似文献   

10.
Glycogen phosphorylase (PHO) activity was demonstrated histochemically in unfixed cryostat sections of placentae from cadmium-treated and control rats with the use of the semipermeable membrane technique. Staining of the newly synthesized glycogen was performed by lugol. A high activity was present in glycogen cells, spongiotrophoblast and visceral yolk sac from cadmium-treated and control animals. A low but distinct activity could be demonstrated in placental labyrinth from control rats in late pregnancy. Cadmium-exposed rats showed a considerably higher activity in the labyrinth during this period of pregnancy. The elevated PHO activity and concomitant higher glycogen content indicate a disturbance by exposure to cadmium of placental carbohydrate metabolism from day 18 onwards.  相似文献   

11.
The diurnal variations of the glycogen content and of glycogen phosphorylase activity in periportal and pericentral areas of rat liver parenchyma have been analyzed in periodic acid Schiff (PAS)-stained cryostat sections using quantitative microdensitometry. Glycogen content and phosphorylase activity were always higher in periportal areas than in pericentral areas throughout the daily cycle. The glycogen content was highest at the end of the active period during darkness and lowest at the end of the resting period. Phosphorylase activity appeared to be inversely correlated with the glycogen content in both areas. It is concluded that the glycogen content is regulated by phosphorylase activity, which may be due to local cAMP concentration.  相似文献   

12.
1. In catfish (Ictalurus melas) after glucagon treatment blood glucose increased until 150 min, then it gradually decreased towards control values at the 5th hr. 2. In glucagon treated fish, liver glycogen levels were significantly lower then in controls 30 min after hormone administration; thereafter, liver glycogen levels returned rapidly to initial values. Glucagon did not induce any significant effect on the glycogen content in white and red muscles. 3. In liver slices, the addition of glucagon to the incubation medium significantly enhanced the glycogen phosphorylase activity and decreased the level of glycogen. Both phosphorylase activity and glycogen content of white and red muscle slices were practically unaffected by glucagon.  相似文献   

13.
Summary Glycogen phosphorylase (PHO) activity was demonstrated histochemically in unfixed cryostat sections of placentae from cadmium-treated and control rats with the use of the semipermeable membrane technique. Staining of the newly synthesized glycogen was performed by lugol. A high activity was present in glycogen cells, spongiotrophoblast and visceral yolk sac from cadmium-treated and control animals. A low but distinct activity could be demonstrated in placental labyrinth from control rats in late pregnancy. Cadmium-exposed rats showed a considerably higher activity in the labyrinth during this period of pregnancy. The elevated PHO activity and concomitant higher glycogen content indicate a disturbance by exposure to cadmium of placental carbohydrate metabolism from day 18 onwards.  相似文献   

14.
Synopsis The effect of fixation with a bicarbonate-buffered solution of paraformaldehyde and polyvinyl pyrrolidone (PVP) on the ultrastructural demonstration of glycogen and phosphorylase activity in rat hepatocytes has been studied. Phosphorylase was demonstrated by the precipitation of liberated phosphate ions with ferrous ions. 7.5% PVP was included in all steps in the procedure before post-fixation in osmium tetroxide.Glycogen particles were well preserved. Structures connecting membranes and glycogen particles were also evident. Phosphorylase activity was rapidly inhibited by the fixative; the fixation time was, therefore, kept very short. The final reaction product was localized on glycogen particles and on endoplasmic membranes in association with glycogen particles. The results support the view that endoplasmic membranes are involved in the metabolism of glycogen in hepatocytes.Paper presented at a symposium The changing directions of carbohydrate histochemistry at the Fifth International Congress of Cytochemistry and Histochemistry in Bucharest, Romania on 1 September 1976.  相似文献   

15.
16.
Glycogen synthase (labelled in sites-3) and glycogen phosphorylase from rabbit skeletal muscle were used as substrates to investigate the nature of the protein phosphatases that act on these proteins in the glycogen and microsomal fractions of rat liver. Under the assay conditions employed, glycogen synthase phosphatase and phosphorylase phosphatase activities in both subcellular fractions could be inhibited 80-90% by inhibitor-1 or inhibitor-2, and the concentrations required for half-maximal inhibition were similar. Glycogen synthase phosphatase and phosphorylase phosphatase activities coeluted from Sephadex G-100 as broad peaks, stretching from the void volume to an apparent molecular mass of about 50 kDa. Incubation with trypsin decreased the apparent molecular mass of both activities to about 35 kDa, and decreased their I50 for inhibitors-1 and -2 in an identical manner. After tryptic digestion, the I50 values for inhibitors-1 and -2 were very similar to those of the catalytic subunit of protein phosphatase-1 from rabbit skeletal muscle. The glycogen and microsomal fractions of rat liver dephosphorylated the beta-subunit of phosphorylase kinase much faster than the alpha-subunit and dephosphorylation of the beta-subunit was prevented by the same concentrations of inhibitor-1 and inhibitor-2 that were required to inhibit the dephosphorylation of phosphorylase. The same experiments performed with the glycogen plus microsomal fraction from rabbit skeletal muscle revealed that the properties of glycogen synthase phosphatase and phosphorylase phosphatase were very similar to the corresponding activities in the hepatic glycogen fraction, except that the two activities coeluted as sharp peaks near the void volume of Sephadex G-100 (before tryptic digestion). Tryptic digestion of the hepatic glycogen and microsomal fractions increased phosphorylase phosphatase about threefold, but decreased glycogen synthase phosphatase activity. Similar results were obtained with the glycogen plus microsomal fraction from rabbit skeletal muscle or the glycogen-bound form of protein phosphatase-1 purified to homogeneity from the same tissue. Therefore the divergent effects of trypsin on glycogen synthase phosphatase and phosphorylase phosphatase activities are an intrinsic property of protein phosphatase-1. It is concluded that the major protein phosphatase in both the glycogen and microsomal fractions of rat liver is a form of protein phosphatase-1, and that this enzyme accounts for virtually all the glycogen synthase phosphatase and phosphorylase phosphatase activity associated with these subcellular fractions.  相似文献   

17.
Glucose is the main fuel for energy metabolism in retina. The regulatory mechanisms that maintain glucose homeostasis in retina could include hormonal action. Retinopathy is one of the chemical manifestations of long-standing diabetes mellitus. In order to better understand the effect of hyperglycemia in retina, we studied glycogen content as well as glycogen synthase and phosphorylase activities in both normal and streptozotocin-induced diabetic rat retina and compared them with other tissues. Glycogen levels in normal rat retina are low (46 +/- 4.0 nmol glucosyl residues/mg protein). However, high specific activity of glycogen synthase was found in retina, indicating a substantial capacity for glycogen synthesis. In diabetic rats, glycogen synthase activity increased between 50% and 100% in retina, brain cortex and liver of diabetic rats, but only retina exhibited an increase in glycogen content. Although, total and phosphorylated glycogen synthase levels were similar in normal and diabetic retina, activation of glycogen synthase by glucose-6-P was remarkable increased. Glycogen phosphorylase activity decreased 50% in the liver of diabetic animals; it was not modified in the other tissues examined. We conclude that the increase in glycogen levels in diabetic retina was due to alterations in glycogen synthase regulation.  相似文献   

18.
The effects of weaning on the level of glycogen and the activities of glycogen synthase and phosphorylase were determined in rat liver. Glycogen levels in rat liver increased at the start of the weaning period and reached a plateau on postnatal day 20. The active form of glycogen synthase increased until postnatal day 19 and then declined. Total glycogen synthase (active + inactive) remained high during the suckling period and declined to a new low level during the weaning period. The activity ratio (active/total) increased from day 16 to days 18-22 and then decreased to the same level as found during the suckling period. At the onset of weaning the active form of phosphorylase decreased, whereas total phosphorylase initially increased and then decreased after postnatal day 20. Both forms of phosphorylase increased again at the end of the weaning period. The activity ratio decreased at the start of weaning and remained low throughout the rest of the weaning period. The effects of premature weaning were similar to those observed in normally weaned animals, but the changes occurred sooner and were more pronounced.  相似文献   

19.
The effect of glycogen content on the activation of glycogen phosphorylase during adrenaline stimulation was investigated in soleus muscles from Wistar rats. Furthermore, adrenergic activation of glycogen phosphorylase in the slow-twitch oxidative soleus muscle was compared to the fast-twitch glycolytic epitrochlearis muscle. The glycogen content was 96.4 +/- 4.4 mmol (kg dw)(-1) in soleus muscles. Three hours of incubation with 10 mU/ml of insulin (and 5.5 mM glucose) increased the glycogen content to 182.2+/-5.9 mmol (kg dw)(-1) which is similar to that of epitrochlearis muscles (175.7+/-6.9 mmol (kg dw)(-1)). Total phosphorylase activity in soleus was independent of glycogen content. Adrenaline (10(-6) M) transformed about 20% and 35% (P < 0.01) of glycogen phosphorylase to the a form in soleus with normal and high glycogen content, respectively. In epitrochlearis, adrenaline stimulation transformed about 80% of glycogen phosphorylase to the a form. Glycogen synthase activation was reduced to low level in soleus muscles with both normal and high glycogen content. In conclusion, adrenaline-mediated glycogen phosphorylase activation is enhanced in rat soleus muscles with increased glycogen content. Glycogen phosphorylase activation during adrenaline stimulation was much higher in epitrochlearis than in soleus muscles with a similar content of glycogen.  相似文献   

20.
Glycogen synthase D was prepared from rat liver by chromatographing the glycogen pellet on DE-52 columns. It was free of glycogen and phosphorylase and converted readily into synthase I upon incubation with glycogen synthase phosphatase. With this synthase D as substrate, the identity of rat liver glycogen synthase phosphatase was studied by means of DE-52 column chromatography. Under the conditions developed, synthase phosphatase emerged from the columns as a sharp, single peak, and phosphorylase phosphatase came off later. The two phosphatases were also different from each other in stability, synthase phosphatase being less stable than phosphorylase phosphatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号