首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of long- and short-term manipulations of uterine blood flow on fetal plasma levels of IGF-I and -II have been studied in sheep at days 125-139 of pregnancy and compared with those in near term rats and guinea pig. The primary objective is to show that both long- and short-term reduction of uterine blood flow is associated with increase in the fetal plasma concentration of IGF-II while that of IGF-I falls. In the pregnant sheep long-term depression of utero-placental blood flow was caused by surgical reduction in placental mass (carunclectomy) prior to conception. This reduced fetal weight to 2.42 +/- 0.49 kg (SD) compared with 3.41 +/- 0.46 in controls; the respective values for uterine blood flow being 1694 +/- 558 and 913 +/- 324 ml/min respectively. This was associated with a fall in fetal plasma IGF-I concentration from 22.6 +/- 3.4 ng/ml to 14.9 +/- 1.31 ng/ml and a rise in IGF-II from 1952 +/- 284 ng/ml to 3360 +/- 914 ng/ml respectively. Similar changes in the plasma concentrations of IGF peptides were observed in fetal rats and guinea pigs in response to uterine artery ligation. Short-term reduction (60 min) of the uterine blood flow was caused either by compression of the common uterine artery to depress flow from 1491 +/- 375 to 648 +/- 216 ml/min or through intraarterial infusion of adrenaline at 35 ug/min to lower flow from 1628 +/- 339 to 1195 +/- 128 ml/min. Such falls in uterine blood flow had no significant effect on fetal plasma IGF-I levels but increased IGF-II levels by 30 to 60%.  相似文献   

2.
IGF-I and IGF-II are thought to be unique in their ability to promote muscle cell differentiation. Murine C2 myoblasts differentiate when placed into low serum media (LSM), accompanied by increased IGF-II and IGF binding protein-5 (IGFBP-5) production. Addition of 20 ng/ml TNF alpha on transfer into LSM blocked differentiation, IGF-II and IGFBP-5 secretion and induced apoptosis. We, therefore, wished to assess whether IGFs could protect against the effects of TNF alpha. Neither inhibition of differentiation or induction of apoptosis was rescued by co-incubation with IGF-I or IGF-II. A lower dose of TNF alpha (1 ng/ml) while not inducing apoptosis still inhibited myoblast differentiation by 56% +/- 12, (P < 0.001), indicating that induction of apoptosis is not the sole mechanism by which TNF alpha inhibits myoblast differentiation. Addition of IGF-I or IGF-II alone reduced differentiation by 49% +/- 15 and 33% +/- 20, respectively, (P < 0.001), although neither induced apoptosis. For muscle cells to differentiate, they must arrest in G0. We established that addition of IGF-I, IGF-II or TNF alpha to the myoblasts promoted proliferation. The myoblasts could not exit the cell cycle as efficiently as controls and differentiation was thus reduced. Unexpectedly, co-incubation of IGF-I or IGF-II with 1 ng/ml TNF alpha enhanced the inhibition of differentiation and induced apoptosis. In the absence of apoptosis we show an association between IGF-induced inhibition of differentiation and increased IGFBP-5 secretion. These results indicate that the effects of the IGFs on muscle may depend on the cytokine environment. In the absence of TNF alpha, the IGFs delay differentiation and promote myoblast proliferation whereas in the presence of TNF alpha the IGFs induce apoptosis.  相似文献   

3.
Retinal photocoagulation reduces the incidence of severe visual loss in proliferative diabetic retinopathy (PDR). Reduced levels of VEGF/VPF might result in an improved function of the blood-retina barrier and cause a decrease of blood derived intraocular growth factors such as IGF-I. This study investigates whether retinal photocoagulation is able to normalize the concentrations of IGF-I, IGF-II and IGF-BP3 in the vitreous humor of patients undergoing vitrectomy. Levels of IGFs and the permeability marker, albumin, were measured in serum and vitreous of 52 patients. Three groups were compared: controls without proliferating eye disease (n = 19) and patients with PDR with (PDR+; n = 25) and without (PDR-; n = 8) previous retinal photocoagulation. IGF-I, IGF-II, IGF-BP3 and albumin were determined by immunological methods and were confirmed to be increased in patients with PDR compared to controls. Retinal photocoagulation influenced neither the intraocular concentration of the permeability marker albumin (PDR+: 253.2 +/- 46 mg/dl; PDR-: 256.4 +/- 66.5 mg/dl) nor the levels of IGFs (PDR+: IGF-I: 1.2 +/- 0.1 ng/ml; p = 0.38; IGF-II: 34.8 +/- 2.2 ng/ml; p = 0.1; IGF-BP3: 75.7 +/- 9.7 ng/ml; p = 0.27; PDR-: IGF-I: 1.1 +/- 0.2ng/ml; IGF-II: 29.3 +/- 5.2 ng/ml; IGF-BP3: 61.5 +/- 18.3 ng/ml). Systemic levels of albumin and IGFs were not changed significantly by retinal photocoagulation. These results demonstrate that previous retinal photocoagulation in patients undergoing vitrectomy does not functionally reestablish the blood-retina barrier despite decreases in VEGF/VPF. The lack of influence on intraocular concentrations of the serum-derived growth factors, IGF-I, IGF-II and IGF-BP3, might in part explain the failure of previous photocoagulation in the investigated patients. These results suggest that a combined treatment with retinal photocoagulation and growth hormone-lowering drugs, such as somatostatin analogues, could be a useful treatment, which may prevent further loss of visual acuity in patients with PDR.  相似文献   

4.
Insulin-like growth factors (IGFs) stimulate proliferation and differentiation of PC12 rat pheochromocytoma cells and modulate catecholamine release in bovine adrenal medullary cells. Dexamethasone increases catecholamine synthesis in PC12 cells. We therefore studied the effects of IGFs and dexamethasone on catecholamine content in PC12 cells. Dopamine (DA) and norepinephrine (NE) content of PC12 cells were measured after incubation for 72 h with IGFs (100 ng/ml) and/or dexamethasone (500 nM). IGF-I (100 ng/ml) and IGF-II (100 ng/ml) decreased DA and NE content to approximately 35% and approximately 25% of control, respectively. [Leu27]IGF-II, which binds to the IGF-I receptor with markedly decreased affinity, did not reduce catecholamine levels, indicating that the effect is likely to be mediated by the IGF-I receptor. Dexamethasone (500 nM) increased levels of DA and NE to 173 +/- 20% and 331 +/- 48% of controls, respectively. Coincubation with IGFs did not significantly affect the stimulation of DA by dexamethasone, but abolished the rise in NE. Levels of tyrosine hydroxylase mRNA, protein and activity were increased following incubation with dexamethasone, but were unchanged by IGFs. These results indicate that IGFs decrease catecholamine content in PC12 cells via the IGF-I receptor. Complex regulation involving multiple synthetic and/or degradative steps is implicated in this process.  相似文献   

5.
We investigated the effect of an isocaloric maternal low-protein diet during pregnancy in rats on the proliferative capacity of cultured fetal hepatocytes. The potential roles of these changes on the IGF-IGF-binding protein (IGFBP) axis, and the role of insulin and glucocorticoids in liver growth retardation, were also evaluated. Pregnant Wistar rats were fed a control (C) diet (20% protein) or a low-protein (LP) diet (8%) throughout gestation. In primary culture, the DNA synthesis of hepatocytes derived from LP fetuses was decreased by approximately 30% compared with control hepatocytes (P < 0.05). In parallel, in vivo moderate protein restriction in the dam reduced the fetal liver weight and IGF-I level in fetal plasma (P < 0.01) and augmented the abundance of 29- to 32-kDa IGFBPs in fetal plasma (P < 0.01) and fetal liver (P < 0.01). By contrast, the abundance of IGF-II mRNA in liver of LP fetuses was unaffected by the LP diet. In vitro, the LP-derived hepatocytes produced less IGF-I (P < 0.01) and more 29- to 32-kDa IGFBPs (P < 0.01) than hepatocytes derived from control fetuses. These alterations still appeared after 3-4 days of culture, indicating some persistence in programming. Dexamethasone treatment of control-derived hepatocytes decreased cell proliferation (54 +/- 2.3%, P < 0.01) and stimulated 29- to 32-kDa IGFBPs, whereas insulin promoted fetal hepatocyte growth (127 +/- 5.5%, P < 0.01) and inhibited 29- to 32-kDa IGFBPs. These results show that liver growth and cell proliferation in association with IGF-I and IGFBP levels are affected in utero by fetal undernutrition. It also suggests that glucocorticoids and insulin may modulate these effects.  相似文献   

6.
Summary Previous investigations have demonstrated specific receptors and associated mitogenic actions for insulin and insulinlike growth factors I and II (IGF-I and II) in postnatal bovine aortic smooth muscle. Using fetal tissue we have observed different patterns of binding and action for these peptides. Smooth muscle cells isolated from near-term fetal bovine aortae were studied in early passage. Specific receptors for both IGF-I and IGF-II were identified. Specific binding averaged 5.7%/2.5×105 cells for IGF-I, and 16.2% for IGF-II, and 0.3% for insulin. High affinity K d for both IGF receptors were nanomolar. IGF-II was fivefold less potent than IGF-I in displacing IGF-I binding. IGF-I showed no affinity for the IGF-II receptor. Insulin, at physiologic concentrations, was incapable of displacing either IGF-I or IGF-II binding. Cellular incorporation of [methyl-3H]thymidine was stimulated at the lowest dose of IGF-I tested, 0.5 ng/ml. IGF-II showed no effect up to 100 ng/ml, after which a sharp increase in incorporation was noted. Insulin had a similar effect only at concentrations &gt;0.5 μg/ml, with a maximal response noted at 5 to 10 μg/ml. Our results indicate that fetal bovine aortic smooth muscle cells have an abundance of IGF receptors but lack specific insulin receptors. In addition, IGF-II binding levels are three times higher than for IGF-I. These results are consistent with observations in other species, in which a predominance of IGF over insulin receptors has been demonstrated in fetal tissue, and provide further evidence for a role for the IGFs in embryonic cellular metabolism. This project was supported by grants AM22190 (R. L. H.), AM28229 (R. G. R.) from the National Institutes of Health, Bethesda, MD, and Research Career Development Award AM01275 from the NIH (R. G. R.). Dr. Lee was the recipient of a fellowship award from the Juvenile Diabetes Foundation International and is currently supported by funds from the American Diabetes Association. Dr. Benitz is the recipient of a Clinician-Scientist Award from the American Heart Association, with funds contributed in part by the California Affiliate.  相似文献   

7.
The insulin-like growth factors (IGF-I and -II) are potential mediators of the effects of maternal undernutrition on fetal growth and muscle development. The effects of a 40% reduction in maternal feed intake on serum levels of the IGFs, the thyroid hormones and cortisol, were investigated for the last two trimesters (day 25 to birth). This level of undernutrition is known to cause a 35% reduction in fetal and placental weights, and a 20-25% reduction in muscle fibre number. Maternal IGF-I level was greater than non-pregnant levels on day 25 gestation, in both control and restricted dams, and declined with gestational age. The increase in IGF-I level in the 40% restricted group was approximately two-thirds that of control animals. Fetal serum IGF-I was also reduced in undernourished fetuses throughout gestation. Maternal IGF-II did not change with gestational age and was unaffected by undernutrition. Fetal IGF-II reached a peak at day 55 of gestation, this peak was greatly diminished by maternal feed restriction. Both IGF-I and IGF-II tended to be related to fetal, placental and muscle weights at day 65 of gestation. Thyroid hormone concentration declined in maternal serum and increased in fetal serum with increasing gestational age. Levels were not significantly affected by undernutrition. Both triiodothyronine (T3) and thyroxine (T4) were correlated with IGF-I in maternal serum (P < 0.05), but not in fetal serum. Cortisol levels were elevated by undernutrition in both maternal and fetal serum, and increased with gestational age. Cortisol was inversely correlated with serum IGF-I in both maternal and fetal serum. Maternal serum IGF-I may mediate the effects of undernutrition on fetal growth by affecting the growth and establishment of the feto-placental unit in mid-gestation. Fetal IGF-I may mediate the effects on muscle growth, whereas IGF-II seems to be related to hepatic glycogen deposition. Cortisol may play a role via its effect on the IGFs, but the thyroid hormones are unlikely to be important until the late gestation/early postnatal period.  相似文献   

8.
INTRODUCTION: The liver is the main source of serum insulin-like growth factors (IGFs) and IGF-binding proteins (IGFBPs) and the concentration of these proteins might reflect liver function. METHODS: In a retrospective longitudinal study we examined serum levels of total and free IGF-I, IGF-II, IGFBP-1, IGFBP-2, IGFBP-3 and IGFBP-6 in 21 adult patients with end-stage liver disease before and after orthotopic liver transplantation (LTX) by sensitive and specific RIAs. In each patient, the mean value of at least three measurements before and after LTX was calculated. RESULTS: Before LTX, serum levels of total and free IGF-I, IGF-II, IGFBP-3 were low and showed a rapid and significant increase in almost all patients after successful LTX (total IGF-I: 30 +/- 7 vs. 256 +/- 30 ng/ml, p < 0.001; free IGF-I: 1.3 +/- 0.3 vs. 3.5 +/- 0.6 ng/ml, p < 0.01; IGF-II: 177 +/- 28 vs. 618 +/- 30 ng/ml, p < 0.001; IGFBP-3: 1,230 +/- 136 vs. 3,665 +/- 264 ng/ml, p < 0.001). In contrast, IGFBP-1 was found to be high immediately before LTX, and declined to normal levels after LTX (210 +/- 40 vs. 90 +/- 15 ng/ml, p < 0.01), while IGFBP-2 did not show any significant changes (1,154 +/- 296 vs. 1,303 +/- 192 ng/ ml). Positive correlations were found between IGF-I, IGF-II or IGFBP-3, and serum pseudocholinesterase (R = 0.50, 0.72 and 0.61 respectively, p < 0.001). Negative correlations were found between IGF-I, IGF-II or IGFBP-3, and prothrombin time (R = 0.50, 0.59 and 0.51 respectively, p < 0.001). CONCLUSION: Patients with severe liver disease show decreased levels of total and free IGF-I, IGF-II and IGFBP-3, and increased levels of IGFBP-1. These abnormalities are promptly normalized after successful LTX. Thus, serum levels of IGF-I, IGF-II and IGFBP-3 might be useful parameters for the assessment of liver function.  相似文献   

9.
Appropriate partitioning of nutrients between the mother and conceptus is a major determinant of pregnancy success, with placental transfer playing a key role. Insulin-like growth factors (IGFs) increase in the maternal circulation during early pregnancy and are predictive of fetal and placental growth. We have previously shown in the guinea pig that increasing maternal IGF abundance in early to midpregnancy enhances fetal growth and viability near term. We now show that this treatment promotes placental transport to the fetus, fetal substrate utilization, and nutrient partitioning near term. Pregnant guinea pigs were infused with IGF-I, IGF-II (both 1 mg.kg-1.day-1) or vehicle subcutaneously from days 20-38 of pregnancy (term=69 days). Tissue uptake and placental transfer of the nonmetabolizable radio analogs [3H]methyl-D-glucose (MG) and [14C]aminoisobutyric acid (AIB) in vivo was measured on day 62. Early pregnancy exposure to elevated maternal IGF-I increased placental MG uptake by>70% (P=0.004), whereas each IGF increased fetal plasma MG concentrations by 40-50% (P<0.012). Both IGFs increased fetal tissue MG uptake (P<0.048), whereas IGF-I also increased AIB uptake by visceral organs (P=0.046). In the mother, earlier exposure to either IGF increased AIB uptake by visceral organs (P<0.014), whereas IGF-I also enhanced uptake of AIB by muscle (P=0.044) and MG uptake by visceral organs (P=0.016) and muscle (P=0.046). In conclusion, exogenous maternal IGFs in early pregnancy sustainedly increase maternal substrate utilization, placental transport of MG to the fetus, and fetal utilization of substrates near term. This was consistent with the previously observed increase in fetal growth and survival following IGF treatment.  相似文献   

10.
Increased intraocular levels of angiogenic growth factors such as insulin-like growth factor I (IGF-I) have been demonstrated in proliferative diabetic retinopathy (PDR). It is unclear whether increased leakage of the blood retina barrier or local synthesis primarily determine intraocular levels of IGFs in man, which is of special interest regarding possible therapeutic options with somatostatin analogues in PDR. This is the first study investigating parallelly serum and vitreous levels of IGF-I/II, IGF-BP3 and the liver-derived permeability marker albumin to determine in vivo the amount of circulation-derived intraocular IGFs. A control group without retinal proliferation and patients with PDR were compared. Levels of IGF-I/II, IGF-BP3 and albumin were determined by immunological methods. Vitreous levels of albumin were 2.2-fold elevated in patients with PDR (254.1 +/- 37.2mg/dl; n = 27; p = 0.0027) compared to controls (115.7 +/- 36.2mg/dl; n =10), whereas serum levels were slightly decreased in diabetes patients (5049 +/- 196 mg/dl vs. 4330 +/- 186 mg/dl; p = 0.0283). This was comparable to an increase of IGF-I/11 and IGF-BP3 in vitreous from PDR patients (IGF-I: 2.3 +/- 1.1 ng/ml p = 0.005. IGF-II: 37.9 +/- 4.9 ng/ml; p = 0.0003. IGF-BP3: 97.9 +/- 26.9 ng/ml; p = 0.0001; n = 34) compared to controls (IGF-I: 0.7 +/- 0.1 ng/ml. IGF-II: 21.3 +/- 4.2 ng/ml. IGF-BP3: 31.3 +/- 4.9 ng/ml: n = 19). Serum levels did not differ significantly among the groups regarding IGF-I, II and IGF-BP3. Intraocular albumin and IGF-I levels calculated as percentage of the respective serum levels correlated significantly (r = 0.42; p = 0.012). This study demonstrates that influx of IGF-I, II and IGF-BP3 in PDR quantitatively parallels influx of the liver derived serum protein albumin suggesting that leakage of the blood retina barrier and serum levels of IGF primarily determine intravitreal IGF levels rather than local synthesis. Suppression of systemic IGF levels by new, highly effective somatostatin-analogues therefore provides a promising approach to prevent PDR.  相似文献   

11.
Maternal malnutrition adversely affects fetal body and brain growth during late gestation. We utilized a fetal brain cell culture model to examine whether alternations in circulating factors may contribute to reduce brain growth during maternal starvation; we then used specific immunoassay and western blotting techniques, and purified peptides to investigate the potential role that altered levels of insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) may play in impaired growth during maternal nutritional restriction.Fetal, body, liver, and brain weight were reduced after 72 hr maternal starvation, and plasma from starved fetuses were less potent than fed fetal plasma in stimulating brain cell growth. Circulating levels of IGF-I were reduced in starved compared to fed fetuses, while levels of IGF-II were similar in both groups. In contrast, [125I]-IGF-I binding assay demonstrated an increase in the availability of plasma IGFBPs following starvation. Western ligand blotting and densitometry indicated that levels of 32 Kd IGFBPs were 2-fold higher in starved compared to fed fetal plasma. Immunoblotting and immunoprecipitation with antiserum against rat IGFBP-1 confirmed that heightened levels of immunoreactive IGFBP-1 accounted for the increase in 32 Kd IGFBPs in starved plasma. Levels of 34 Kd BPs, representing IGFBP-2, were unaffected by starvation. Reconstitution experiments in cell culture showed that IGF-I promoted fetal brain cell growth, and that when they were supplemented with IGF-I, the growth promoting activity of starved fetal plasma was restored to fed levels. These changes were measured using MTT to assess mitochondrial reductase activity. Conversely, addition of physiological amounts of rat IGFBP-1 inhibited the effects of fed fetal plasma on brain cell growth, and bioactivity was reduced even further with higher concentrations of IGFBP-1. Based on these results, we conclude that reciprocal changes in circulating levels of IGFBP-1 (increased) and IGF-I (decreased) may combine to reduce the availability of IGF-I to this tissue and limit fetal brain cell growth when maternal nutrition is impaired.  相似文献   

12.
To examine a possible role for IGF-II in the regulation of IGF-I receptors we measured 125I-IGF-I binding on IM-9 cells following pre-incubation with IGF-II/IGF-I mixtures, purified MSA (a rat IGF-II-like peptide), pure IGF-I, or insulin. Whereas all preparations tested induced down-regulation of IGF-I binding after 20 hours, distinct differences were noted after six hour pre-incubation: IGF-I (100 ng/ml) and insulin (1 microgram/ml) both induced down-regulation of IGF-I binding (15 +/- 2% and 19 +/- 2% respectively). However, a mixture of IGF-II and IGF-I (100 ng/ml each) induced consistent up-regulation of IGF-I binding (16 +/- 2%) (mean +/- SE, n = 14), and a preparation enriched in IGF-II (250 ng/ml IGF-II and 75 ng/ml IGF-I) induced 20 +/- 5% (n = 3) up-regulation at six hours. Purified MSA (200 ng/ml) induced 15% up-regulation of IGF-I binding at six hours. Scatchard analysis of displacement curves showed that increased binding was due to loss of low affinity binding, with enhancement of high affinity sites. The up-regulation of IGF-I binding was unaffected by treatment with 0.1 mM cycloheximide, but was blunted by 5 microM colchicine. It is concluded that 1. IGF-II induces up-regulation of IGF-I receptors on IM-9 cells following 6 hour pre-incubation; 2. This phenomenon is not mimicked by the structurally-related peptides IGF-I or insulin; The up-regulation is due to enhanced high affinity binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Breast-fed preterm infants often show a better outcome, partly ascribed to the benefit of insulin-like growth factors (IGFs) and their binding proteins (IGFBP). We compared IGF-I, IGF-II, IGFBP-2 and IGFBP-3 levels, measured by radioimmunoassays in milk samples from 30 mothers of preterm (<31 weeks) and from 19 mothers of term (>37 weeks) infants at days 7 and 21 postpartum. Proteolysis of IGFBP-2 within mother's milk and digestion of (125)I-IGF-II and (125)I-IGFBP-2 by gastric juice from neonates were assessed by electrophoretic techniques. Mean concentrations did not differ between preterm and term milk: IGF-I (2.8 +/- 0.2 vs. 2.3 +/- 0.1 ng/ml), IGF-II (12.0 +/- 0.4 vs. 12.2 +/- 0.5 ng/ml), IGFBP-3 (100.0 +/- 5.1 vs. 80.0 +/- 5.8 ng/ml), but did so for IGFBP-2 (3,144 +/- 172 vs. 2,428 +/- 188 ng/ml, p < 0.02). Immunoblots revealed 42% (p < 0.05) more IGFBP-2 fragments of 14 and 25 kDa in preterm milk. Incubation with gastric juice caused cleavage of (125)I-IGFBP-2 and partial cleavage of (125)I-IGF-II. Mutual complexation protected IGF-II and IGFBP-2 from cleavage, suggesting that both are likely to arrive in the bowel in an intact form to exert promotive effects. The results provide further evidence that IGFBP-2 and IGF-II in breast milk are relevant factors for the early development of preterm infants.  相似文献   

14.
Induction of circulating neonatal stem cell populations   总被引:2,自引:0,他引:2  
N Dainiak  M Sanders  S Sorba 《Blood cells》1991,17(2):339-343
Hematopoietic cell differentiation and growth are regulated by paracrine molecules that include insulin and insulin-like growth factors (IGFs). IGF-I and -II stimulation of erythropoiesis in cultures of adult bone marrow and peripheral blood cells and murine fetal liver cells has been previously reported. In order to investigate whether these paracrines also influence differentiation and proliferation of human neonatal progenitor cells, we assessed their effects in cultures of umbilical cord blood and adult blood and marrow cells, using a serum-substituted system. IGF-I stimulated colony-forming unit-erythroid (CFU-E)-derived colony formation by adult cells by up to 265%, while IGF-II augmented colony formation by up to 100% in the presence of erythropoietin. Stimulation occurred in a saturable fashion over concentrations of 0 to 200 ng/ml. Similar results were obtained in subcultures of adult-circulating progenitors. Moreover, a subpopulation of erythropoietin-independent adult CFU-E was stimulated to proliferate by IGF-I but not by IGF-II. In contrast to these effects in adult marrow culture, IGF-II exerted a greater stimulatory effect on neonatal CFU-E proliferation than did IGF-I in erythropoietin-containing cultures. Additionally, IGF-II stimulated proliferation of erythropoietin-independent neonatal CFU-Es in a concentration-dependent fashion. Together, the data are consistent with the hypothesis that somatomedins are involved in developmental regulation of erythropoiesis.  相似文献   

15.
Growth hormone (GH) and insulin-like growth factors (IGFs) are recognized as regulators of ovarian function. This study was designed to compare the effect of GH and IGFs added alone or together on porcine theca interna and granulosa cells proliferation and steroidogenesis. Moreover, the effect of GH on IGF-I secretion was examined. Cells were isolated from medium size follicles and cultured in vitro for 48 h in serum free medium. Estradiol and IGF-I medium concentrations were determined by radioimmunoassays. Proliferation was evaluated by alamar blue assay and by radiolabelled thymidine incorporation. GH increased IGF secretion by granulosa cells while decreased its secretion by theca cells. Proliferation of both cell types was stimulated by IGF-I and IGF-II (30 ng/ml) and modestly inhibited by GH (100 ng/ml). Insulin-like growth factor II increased, in a statistically significant manner, estradiol secretion by both cell types, while IGF-I stimulated estradiol secretion to a greater extent by granulosa then by theca cells. The synergistic action of GH and IGFs on estradiol secretion was stimulatory in theca cells and inhibitory in granulosa cells. These data demonstrate that despite its direct action on estradiol secretion by granulosa and theca cells, GH also modulated estradiol secretion induced by IGFs. Differences in the estradiol production in response to GH alone and the effect of the synergistic action of GH and IGFs suggest that different cellular mechanisms for these hormones are triggered in each cell type.  相似文献   

16.
Fetal murine neuronal cells bear somatomedin receptors which can be classified according to their affinities for IGF-I, IGF-II and insulin. Binding of 125I-IGF-I is half-maximally displaced by 7 ng/ml IGF-I while 15- and 700-fold higher concentrations are required for, respectively, IGF-II and insulin. Linear Scatchard plots of competitive-binding data with IGF-I suggest one single class of type I IGF receptors (Ka = 2.6 X 10(9) M-1; Ro = 4500 sites per cell). The occurrence of IGF-II receptors appears from the specific binding of 125I-IGF-II and competition by unlabeled IGF-II; the IGF-II binding sites display a low affinity for IGF-II and no affinity for insulin. IGF-II also interacts with insulin receptors although 50- to 100-fold less potent than insulin in competing for 125I-insulin binding. The presence of distinct receptors for IGF-I, IGF-II and insulin on fetal neuronal cells is consistent with a role of these peptides in neuronal development, although our data also indicate that IGF-I receptors could mediate the growth promoting effects of insulin.  相似文献   

17.
In blood, circulating IGFs are bound to six high-affinity IGFBPs, which modulate IGF delivery to target cells. Serum IGFs and IGFBP-3, the main carrier of IGFs, are upregulated by GH. The functional role of serum IGFBP-3-bound IGFs is not well understood, but they constitute the main reservoir of IGFs in the circulation. We have used an equation derived from the law of mass action to estimate serum IGFBP-3-bound IGF-I and IGFBP-3-bound IGF-II, as well as serum free IGF-I and free IGF-II, in 129 control children and adolescents (48 girls and 81 boys) and in 13 patients with GHD. Levels of serum total IGF-I, total IGF-II, IGFBP-1, IGFBP-2 and IGFBP-3 were determined experimentally, while those of IGFBP-4, IGFBP-5 and IGFPB-6, as well as the 12 affinity constants of association of the two IGFs with the six IGFBPs, were taken from published values. A correction for in vivo proteolysis of serum IGFBP-3 was also considered. In controls, serum total IGF-I, total IGF-II, IGFBP-3, IGFBP-3-bound IGF-I, IGFBP-3-bound IGF-II and free IGF-I increased linearly with age, from less than 1 to 15 years, in the two sexes. The concentrations of serum free IGF-I and free IGF-II were approximately two orders of magnitude below published values, as well as below the affinity constant of association of IGF-I with the type-1 IGF receptor. Therefore, it is unlikely that these levels can interact with the receptor. In the 13 patients with GHD, mean (+/- SD) SDS of serum IGFBP-3-bound IGF-I was -2.89 +/- 0.97. It was significantly lower than serum total IGF-I, free IGF-I or IGFBP-3 SDSs (-2.35 +/- 0.83, -1.12 +/- 0.78 and -2.55 +/- 1.07, respectively, p = 0.0001). The mean SDS of serum total IGF-II, IGFBP-3-bound IGF-II and free IGF-II were -1.25 +/- 0.68, -2.03 +/- 0.87 and 0.59 +/- 1.10, respectively, in GHD. In control subjects, 89.8 +/- 4.47% of serum total IGF-I and 77.3 +/- 9.4% of serum total IGF-II were bound to serum IGFBP-3. In patients with GHD, the mean serum IGFBP-3-bound IGF-I and IGFBP-3-bound IGF-II were 8.63 +/- 8. 53 and 19.1 +/- 14.7% below the respective means of control subjects (p < 0.02). In conclusion, in GHD there was a relative change in the distribution of serum IGFs among IGFBPs, due to the combined effects of the decrease in both total IGF-I and IGFBP-3. As a result, serum IGFBP-3-bound IGF-I and IGFBP-3 bound IGF-II, the main reservoirs of serum IGFs, were severely affected. This suggests that the decrease in serum IGFPB-3-bound IGF-I and IGFBP-3-bound IGF-II might have a negative effect for growth promotion and other biological effects of IGF-I and IGF-II. Finally, the estimation of serum IGFBP-3-bound IGF-I, or the percentage of total IGF-I and IGF-II bound to IGFBP-3, might be useful markers in the diagnosis of GHD.  相似文献   

18.
Thyroid stimulating hormone (TSH) is shown to have definite anabolic effects on skeletal metabolism. Previous studies have demonstrated that Insulin-like growth factors (IGF-I and IGF-II) and their six high affinity binding proteins (IGFBPs 1-6) regulate proliferation and differentiation of bone-forming osteoblasts. The current study was intended to determine whether the anabolic effects of TSH on human osteoblastic (SaOS2) cells are mediated through insulin-like growth factor system components. TSH given at 0.01 ng to 10 ng/ml dose levels for 24 and 48 h significantly increased human osteoblastic (SaOS2) cell proliferation and alkaline phosphatase activity, the differentiation marker. TSH significantly increased IGFs (IGF-I and IGF-II) mRNA expression after 6 and 24 h and their protein levels after 24 and 48 h of treatment, respectively. Unlike the IGFs, the IGFBPs responded differently to TSH treatment. Though there were some inconsistencies in the regulation of stimulatory IGF binding protein-3 and -5 by TSH treatment, there was an overall increase at the mRNA abundance and protein levels. Again, the inconsistency persisted at the regulation of the inhibitory IGFBPs 2, 4, and 6 especially at the level of mRNA expression due to TSH treatment, there is an overall decrease in the levels of IGFBP-2, 4, and 6 in the conditioned media (CM) of SaOS2 cell cultures. The IGFBP proteases which control the availability of IGFs are also regulated by hormones. Pregnancy-Associated Plasma Protein-A (PAPP-A) is responsible for the proteolysis of IGFBP-4. TSH treatment significantly unregulated the expression of PAPP-A both at mRNA and protein levels. In conclusion, TSH promotes human osteoblastic (SaOS2) cell proliferation and differentiation by upregulating IGFs and their stimulatory IGF binding proteins and down regulating the inhibitory IGF binding proteins.  相似文献   

19.
The effects of hypoinsulinaemia and altered metabolite concentrations on the fetal plasma concentrations of insulin-like growth factors (IGF) have been investigated in chronically catheterized fetal sheep made insulin deficient by pancreatic ablation. Fetal pancreatectomy reduced significantly the plasma IGF-1 concentration and increased plasma IGF-2 activity in comparison with the values observed in sham operated fetuses. Mean plasma IGF-1 concentrations in the sham operated and pancreatectomized fetuses were 18.6 +/- 3.1 ng/ml (n = 7) and 13.4 +/- 1.4 ng/ml (n = 13) respectively. When all the data were combined, there was a significant positive correlation between the plasma concentrations of IGF-1 and insulin in utero. The mean IGF-2 activity was 2349 +/- 83 ng/ml (n = 7) in the sham operated fetuses and 3800 +/- 532 ng/ml in the pancreatectomized animals (n = 13). Plasma IGF-2 activity was correlated positively with plasma glucose, fructose and alpha-amino nitrogen levels and inversely related to the plasma insulin concentration in utero. These observations demonstrate that the fetal pancreas is essential for normal IGF production in the fetus and suggest that insulin, substrate availability and the IGFs may interact in the regulation of fetal growth.  相似文献   

20.
The effects of prenatal growth restriction caused by uterine artery ligation at midgestation has been studied in pregnant guinea pigs. Ligation of a uterine artery at day 30 of pregnancy commonly caused a reduction in fetal growth of greater than 45% by days 40-65 of gestation. This was associated with substantial delays in the development of a number of fetal tissues and in particular that of the skeleton which remained cartilagenous for longer than normal. Hence normally by day 50 of pregnancy clear evidence of epiphyseal ossification in the long bones of the fore- and hindlimbs was present, but in growth retarded fetuses of less than 50% of normal size such evidence was sparce. Delayed skeletal development and the slowing of fetal growth rate correlated well with marked depression of plasma sulphation-promoting activity. Indeed plasma from fetuses that were less than 40% of normal size inhibited sulphate incorporation into pig costal cartilage. This indicated the presence of inhibitory factors in the plasma of such fetuses, an interpretation that was re-inforced by the observation that plasma IGF-II concentrations were 2-4 times above normal. In contrast plasma IGF-I concentration was depressed upto 50% by growth retardation in line with the fall in fetal plasma insulin concentration. The changes in plasma sulphation-promoting activity and of IGF-I are consistent with slowing of DNA, RNA and protein synthesis and of gene expression in tissues of the growth-retarded fetus. The elevated fetal plasma IGF-II concentration provided further evidence that in the fetal guinea pig this hormone has a potentially glyconeogenic action and maintains essential glycogen stores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号