首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Since Svf1 is phosphoprotein, we investigated whether it was a substrate for protein kinase CK2. According to the amino acid sequence Svf1 harbours 20 putative CK2 phosphorylation sites. Here, we have reported cloning, overexpression, purification and characterization of yeast Svf1 as a substrate for three forms of yeast CK2. Svf1 serves as a substrate for both the recombinant CK2α (K m 0.35 μM) and CK2α′ (K m 0.18 μM) as well as CK2 holoenzyme (K m 1.1 μM). Different K m values argue that CK2β(β′) subunit has an inhibitory effect on the activity of both CK2α and CK2α′ towards surviving factor Svf1. Reconstitution of α′2ββ′ isoform of CK2 holoenzyme shows that β/β′ subunits have regulatory effect depending on the kind of CK2 catalytic subunit. This effect was not observed in the case of α2ββ′ isoform, which may be due to interaction between Svf1 and regulatory CK2β subunit (shown by co-immunoprecipitation experiments). Interactions between CK2 subunits and Svf1 protein may have influence on ATP as well as ATP-competitive inhibitors (TBBt and TBBz) binding. CK2 phosphorylates up to six serine residues in highly acidic peptide K199EVIPESDEEESSADEDDNEDEDEESGDSEEESGSEEESDSEEVEITYED248 of the Svf1 protein in vitro. Presented data may help to elucidate the role of protein kinase CK2 and Svf1 in the regulation of cell survival pathways.  相似文献   

3.
Protein kinase CK2 is a ubiquitous, highly pleiotropic, and constitutively active phosphotransferase that phosphorylates mainly serine and threonine residues. CK2 has been studied and characterized in many organisms, from yeast to mammals. The holoenzyme is generally composed of two catalytic (α and/or α′) and two regulatory (β) subunits, forming a differently assembled tetramer. The free and catalytically active α/α′ subunits can be present in cells under some circumstances. We present here the isolation of a putative catalytic CK2α subunit and holoenzyme from gills of the mussel Mytilus galloprovincialis capable of phosphorylating the purified recombinant ribosomal protein rMgP1. For further analysis of M. galloprovincialis protein kinase CK2, the cDNA molecules of CK2α and CK2β subunits were constructed and cloned into expression vectors, and the recombinant proteins were purified after expression in Escherichia coli. The recombinant MgCK2β subunit and MgP1 were phosphorylated by the purified recombinant MgCK2α subunit. The mussel enzyme presented features typical for CK2: affinity for GTP, inhibition by both heparin and ATP competitive inhibitors (TBBt, TBBz), and sensitivity towards NaCl. Predicted amino acid sequence comparison showed that the M. galloprovincialis MgCK2α and MgCK2β subunits have similar features to their mammalian orthologs.  相似文献   

4.
Protein kinase CK2 is a highly conserved Ser/Thr protein kinase that is ubiquitous among eucaryotic organisms and appears to play an important role in many cellular functions. This enzyme in yeast has a tetrameric structure composed of two catalytic (α and/or α′) subunits and two regulatory β and β′ subunits. Previously, we have reported isolation from yeast cells four active forms of CK2, composed of αα′ββ′, α2ββ′, α′2ββ′ and a free α′-catalytic subunit. Now, we report that in Saccharomyces cerevisiae CK2 holoenzyme regulatory β subunit cannot substitute other β′ subunit and only both of them can form fully active enzymatic unit. We have examined the subunit composition of tetrameric complexes of yeast CK2 by transformation of yeast strains containing single deletion of the β or β′ regulatory subunits with vectors carrying lacking CKB1 or CKB2 genes. CK2 holoenzyme activity was restored only in cases when both of them were present in the cell. Additional, co-immunoprecypitation experiments show that polyadenylation factor Fip1 interacts with catalytic α subunits of CK2 and interaction with beta subunits in the holoenzyme decreases CK2 activity towards this protein substrate. These data may help to elucidate the role of yeast protein kinase CK2β/β′ subunits in the regulation of holoenzyme assembly and phosphotransferase activity.  相似文献   

5.
Since Fip1 is phosphoprotein we investigated whether it is a substrate for protein kinase CK2. According to the amino acid sequence Fip1 harbours twenty putative CK2 phosphorylation sites. Here we have report characterization of Fip1 as a substrate for both forms of CK2. Fip1 serves as a substrate for both the recombinant CK2α ′ (K m 1.28 μM) and holoenzyme (K m 1.4 μM) but not for CK1. By MALDI-MS we identified the two serine residues at positions 73 and 77 as the possible in vitro phosphorylation sites. These data may help to elucidate the role of Fip1 in the mRNA 3'-OH polyadenylation process and the involvement of CK2 mediated phosphorylation in regulation of interactions and activity members of cleavage/polyadenylation factor (CPF) complex.  相似文献   

6.
Altering the balance between pro- and anti-inflammatory responses can influence an animal’s susceptibility to acute or chronic inflammatory disease; bovine mastitis is no exception. Genetic variation in the form of single nucleotide polymorphisms (SNPs) may alter the function and expression of genes that regulate inflammation, making them important candidates for defining an animal’s risk of developing acute or chronic mastitis. The objective of the present study was to identify SNPs in genes that regulate anti-inflammatory responses and test their association with estimated breeding values (EBVs) for somatic cell score (SCS), a trait highly correlated with the incidence of mastitis. These genes included bovine interleukin-10 (IL-10) and its receptor (IL-10R), and transforming growth factor β1 (TGF-β1) and its receptor (TGF-βR). Sequencing-pooled DNA allowed for the identification of SNPs in IL-10 (n = 2), IL-10Rα (n = 6) and β (n = 2), and TGF-β1 (n = 1). These SNPs were subsequently genotyped in a cohort of Holstein (n = 500), Jersey (n = 83), and Guernsey (n = 50) bulls. Linear regression analysis identified significant SNP effects for IL-10Rα 1185C>T with SCS. Haplotype IL-10Rα AAT showed a significant effect on increasing SCS compared to the most common haplotype. The results presented here indicate that SNPs in IL-10Rα may contribute to variation in the SCS of dairy cattle. Although functional studies are necessary to ascertain whether these SNPs are causal polymorphisms or merely in linkage with the true causal SNP(s), a selection program incorporating these markers could have a beneficial influence on the average SCS and productivity of a dairy herd.  相似文献   

7.
8.
人TNFAIP1基因克隆及其在常见细胞系中的表达   总被引:5,自引:0,他引:5  
杨利平  周爱冬  李红  张文峰  吴艳阳  张健  韩梅 《遗传》2006,28(8):918-922
人类TNFAIP1蛋白是第一个被鉴定受肿瘤坏死因子α诱导的蛋白,有实验证明TNFAIP1 蛋白可能参与DNA复制、合成、细胞凋亡以及人类的各种疾病等重要过程,但对其确切功能和作用机制研究不多。本文克隆人的TNFAIP1基因到GST原核表达载体,并在原核细胞进行表达纯化。利用实时定量PCR的方法检测其在几种常用的细胞系的表达情况,发现在COS7以及NIH3T3细胞系中高表达,而在HeLa、HepG2、SW480、PanC1、MCF7等癌细胞系中低表达。由此推测TNFAIP1可能在癌症的发生中起到一定的作用。  相似文献   

9.
Epithelial–mesenchymal transition (EMT) plays an important role in the invasiveness and metastasis of gastric cancer. Therefore, identifying key molecules involved in EMT will provide new therapeutic strategy for treating patients with gastric cancer. TIPE1 is a newly identified member of the TIPE (TNFAIP8) family, and its contributions to progression and metastasis have not been evaluated. In this study, we found that the levels of TIPE1 were significantly reduced and inversely correlated with differentiation status and distant metastasis in primary gastric cancer tissues. We further observed overexpression of TIPE1 in aggressive gastric cancer cell lines decreased their metastatic properties both in vitro and in vivo as demonstrated by markedly inhibiting EMT and metastasis of gastric cancer cells in nude mice. Consistently, gene silencing of TIPE1 in well‐differentiated gastric cancer cell line (AGS) inhibited these processes. Mechanistically, we found that TIPE1‐medicated Wnt/β‐catenin signalling was one of the critical signal transduction pathways that link TIPE1 to EMT inhibition. Importantly, TIPE1 dramatically restrained the expression and activities of MMP2 and MMP9 which are demonstrated to promote tumour progression and are implicated in EMT. Collectively, these findings provide new evidence for a better understanding of the biological activities of TIPE1 in progression and metastasis of gastric cancer and suggest that TIPE1 may be an innovative diagnostic and therapeutic target of gastric cancer.  相似文献   

10.
In the search for potential cytotoxic substances produced by Nomuraea rileyi, an active compound was isolated from mycosed insects through an activity guided fractionation process. The compound, cytotoxic against the Sf9 insect cell line, was identified to be ergosterol peroxide (5α, 8α-epidioxy-24(R)-methylcholesta-6, 22-dien-3β-ol) using nuclear magnetic resonance techniques, infrared spectrometry, and mass spectroscopy. Anticancer screens demonstrated that ergosterol peroxide at micromolar concentrations inhibited the growth of hormone-dependent breast cancer cell line (T47D), hormone-independent breast cancer cell line (MDA-MB-231), human epidermoid carcinoma in mouth cell line (KB), human cervical carcinoma cell line (HeLa), lung cancer cell line (H69AR) and human cholangiocarcinoma cell line (HuCCA-1). Ergosterol peroxide showed moderate effects against Spodoptera litura larvae; 46.7% mortality via topical application after 7 day post-treatment whereas the insect’s death was not found in per os application. The amounts of ergosterol peroxide produced by N. rileyi cultures under in vitro and in vivo were determined. The physiological levels of ergosterol peroxide detected in mycosed and mummified cadavers were very low (0.011 and 0.386 μg/larva) less then levels that either inhibited insect cell proliferation or caused insecticidal activity.  相似文献   

11.
12.
Myostatin, a member of the TGF-β superfamily, is a potent negative regulator of skeletal muscle and growth. Previously, we reported Mstn1 from zebrafish and studied its influence on muscle development. In this study, we identified another form of Myostatin protein which is referred to as Mstn2. The size of Mstn2 cDNA is 1342 bp with 109 and 132 bp of 5′ and 3′-untranslated regions (UTRs), respectively. The coding region is 1101 bp encoding 367 amino acids. The identity between zebrafish Mstn1 and 2 is 66%. The phylogenetic tree revealed that the Mstn2 is an ancestral form of Mstn1. To study the functional aspects, we overexpressed mstn2 and noticed that embryos became less active and the juveniles with bent and curved phenotypes when compared to the control. The RT-PCR and in situ hybridization showed concurrent reduction of dystrophin associated protein complex (DAPC). In cryosection and in situ hybridization, we observed the disintegration of somites, lack of transverse myoseptum and loss of muscle integrity due to the failure of muscle attachment in mstn2 overexpressed embryos. Immunohistochemistry and western blot showed that there was a reduction of dystrophin, dystroglycan and sarcoglycan at translational level in overexpressed embryos. Taken together, these results indicate the suitability of zebrafish as an excellent animal model and our data provide the first in vivo evidence of muscle attachment failure by the overexpression of mstn2 and it leads to muscle loss which results in muscle dystrophy that may contribute to Duchenne syndrome and other muscle related diseases. A. Anusha Amali and Cliff Ji-Fan Lin contributed equally.  相似文献   

13.
An α-galactosidase was isolated from a culture filtrate of Lenzites elegans (Spreng.) ex Pat. MB445947 grown on citric pectin as carbon source. It was purified to electrophoretic homogeneity by ammonium sulfate precipitation, gel filtration chromatography and anion-exchange chromatography. The relative molecular mass of the native purified enzyme was 158 kDa determined by gel filtration and it is a homodimer (Mr subunits = 61 kDa). The optimal temperature for enzyme activity was in the range 60–80 °C. This α-galactosidase showed a high thermostability, retaining 94 % of its activity after preincubation at 60 °C for 2 h. The optimal pH for the enzyme was 4.5 and it was stable from pH 3 to 7.5 when the preincubation took place at 60 °C for 2 h. It was active against several α-galactosides such as p-nitrophenyl-α-d-galactopyranoside, α-d-melibiose, raffinose and stachyose. The α-galactosidase is a glycoprotein with 26 % of structural sugars. Galactose was a non-competitive inhibitor with a Ki = 22 mM versus p-nitrophenyl-α-d-galactoside and 12 mM versus α-d-melibiose as substrates. Glucose was a simple competitive inhibitor with a Ki = 10 mM. Cations such as Hg2+ and p-chloromercuribenzoate were also inhibitors of this activity, suggesting the presence of –SH groups in the active site of the enzyme. On the basis of the sequence of the N-terminus (SPDTIVLDGTNFALN) the studied α-galactosidase would be a member of glycosyl hydrolase family 36 (GH 36). Given the high optimum temperature and heat stability of L. elegans α-galactosidase, this fungus may become a useful source of α-galactosidase production for multiple applications.  相似文献   

14.
15.
Alternan is a unique glucan with a backbone structure of alternating α-(1 → 6) and α-(1 → 3) linkages. Previously, we isolated strains of Penicillium sp. that modify native, high molecular weight alternan in a novel bioconversion process to a lower molecular weight form with solution viscosity properties similar to those of commercial gum arabic. The mechanism of this modification was unknown. Here, we report that these Penicillium sp. strains secrete dextranase during germination on alternan. Furthermore, alternan is modified in vitro by commercial dextranases, and dextranase-modified alternan appears to be identical to bioconversion-modified alternan. This is surprising, since alternan has long been considered to be resistant to dextranase. Results suggest that native alternan may have localized regions of consecutive α-(1 → 6) linkages that serve as substrates for dextranase. Dextranase treatment of native alternan, particularly with GRAS enzymes, may have practical advantages for the production of modified alternan as a gum arabic substitute. U.S. Department of Agriculture—Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

16.
Fairmount 1 thorny” (“FM1 thorny”) (a Rosa multiflora Thunb ex. J. Murr.) and a thornless sport of “FM1 thorny” (“Fairmount 1” (“FM1”)) were established in vitro to investigate chimeral segregation under various levels of BA and to obtain a pure thornless rose. While the chimeral thornless sport was expected to segregate in vitro and yield both thorny and thornless plantlets, “FM1 thorny” was to yield only thorny plants. “FM1” segregated in vitro into its constituent genotypes and yielded thorny and thornless plantlets, suggesting that “FM1” is chimeral. “FM1 thorny” produced only thorny plants in vitro. These results indicate that the “FM1 thorny” clone was not chimeral (pure thorny) and that the thornless regenerates of “FM1” did not develop via somaclonal variation. There was a significant linear relationship between increasing BA concentration and the percentage of thorny plants. Among a population of 690 tissue culture derived plants from all the BA experiments, 6 plants were classified as pure thornless plants 1 year later.  相似文献   

17.
18.
4′′-O-isovalerylspiramycins are the major components of bitespiramycin complex consisting of a group of 4′′-O-acylated spiramycins. The availability of isovaleryl group, usually in vivo derived from leucine, one of the branched-chain amino acids, affects the content of isovaleryispiramycin significantly. In this study, the effect of glucose on the activity of branched-chain α-keto acid dehydrogenase (BCKDH), which catalyzed the rate-limiting as well as the first irreversible reaction oxidative decarboxylation for branched-chain amino acids degradation, and isovaleryispiramycin biosynthesis was investigated. In the initial glucose concentration experiment, when the residual glucose concentration in the medium declined to 2–4 g/L, the BCKDH activity rose rapidly, and glucose deprivation and the summit of BCKDH activity appeared nearly at the same time. After a delay of about 6 h, the maximal isovalerylspiramycin content was observed. However, the shortage of glucose at the later production phase resulted in the marked decrease in BCKDH activity and isovaleryispiramycin content. In the fermentation in a 50 L fermentor, glucose feeding at the late production phase helped to maintain the residual glucose concentration between 0 and 1 g/L, leading to the high level of BCKDH activity and thus isovalerylspiramycin content. These suggested that glucose concentration could be used as a key parameter to regulate BCKDH activity and isovaleryispiramycin biosynthesis in the bitespiramycin production.  相似文献   

19.
Human nuclear respiratory factor 2 alpha subunit (NRF-2α) is fundamentally important to cell function and the development. We aimed to establish the monoclonal antibody (MAb) against the human NRF-2α protein and to investigate its distribution in human hepatocellular carcinoma (HCC) and tumor-adjacent tissues. The 6× His-NRF-2α fusion protein was successfully induced and purified. One monoclonal antibody (MAb) against human NRF-2α, 1-D10-E1-B11-G3 (IgG1), effective in detecting the recombinant and the cellular protein, was characterized. Using immunohistochemical analysis, the expression of NRF-2α was investigated in 38 cases of HCC specimens and 14 cases of tumor-adjacent specimens. Staining was found positive in 9 cases of HCC tissues (23.7%) and 8 cases of normal hepatic tissues (57.1%). The higher-grade frequency of expression of NRF-2α in tumor-adjacent tissues was significantly higher (P < 0.01) than that in tumor tissues, suggesting that NRF-2α may play important roles in carcinogenesis of HCC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号