首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesophyll cells isolated from Zinnia elegans L. cv. Canary Bird were cultured for 96 h in a liquid medium containing 0.1 mg l-1 -naphthaleneacetic acid and 1 mg l-1 benzyladenine in which both differentiation of tracheary elements (TE) and cell division were induced, or in a medium containing 0.1 mg l-1 -naphthaleneacetic acid and 0.001 mg l-1 benzyladenine, in which cell division was induced but TE differentiation was not. Lignification was found to occur only in the former medium, fairly synchronously after 76 h of culture, 5 h later than the onset of visible secondary wall thickening. Changes in the soluble phenolics were not correlated with TE differentiation. Of three important enzymes which have been reported to play a role in TE differentiation, the activity of phenylalanine ammonia-lyase (EC 4.3.1.5) in the TE-inductive culture was higher than that in the control culture between 72 and 96 h of culture, when TE differentiation progressed and lignin was synthesized actively. O-Methyltransferase (EC 2.1.1.6) activity was higher in the control culture than in the TE-inductive culture, indicating that this enzyme was not a marker enzyme of TE differentiation. The activities of peroxidases (EC 1.11.1.7), one extractable and the other nonextractable, with CaCl2 from the cell walls, reached peaks at 72 h (just before lignification) and 84 h of culture (active lignin synthesis), respectively, in the TE-inductive culture only, whereas the activity of soluble peroxidase showed a similar pattern of increase in the TE-inductive to the control culture. These results indicate that phenylalanine ammonia-lyase and peroxidase bound to the cell walls can be marker proteins for the differentiation of TE.Abbreviations OMT O-methyltransferase - PO peroxidase - PAL phenylalanine ammonia-lyase - TE tracheary element(s)  相似文献   

2.
T Demura  H Fukuda 《Plant physiology》1993,103(3):815-821
Mesophyll cells isolated mechanically from leaves of Zinnia elegans L. cv Canary bird differentiate into tracheary elements (TE) semisynchronously and at high frequency. Using this system, three cDNA clones, TED2 to TED4, whose corresponding mRNAs were expressed in a close association with tracheary element differentiation, were isolated by differential screening of a lambda gt11 cDNA library. The library was prepared using poly(A)+ RNA from cells cultured in a TE-induced medium for 48 h prior to morphological changes, including secondary cell-wall thickenings and autolysis. Northern analysis indicated that mRNAs corresponding to the clones were expressed preferentially in cells differentiating into TEs prior to the morphological changes. The expression of the mRNAs was found not to be induced by alpha-naphthaleneacetic acid or benzyladenine solely and not to be associated directly with cell division. Analysis of the nucleotide sequence of TED4 showed that the cDNA contains an open reading frame of 285 bp, encoding a polypeptide comprising 95 amino acid residues with a predicted molecular mass of 10.0 kD. A homology search of the nucleotide and amino acid sequences of TED4 with several data bases revealed a significant similarity to those of the barley aleurone-specific clone B11E, which was isolated as an aleurone-specific cDNA from 20-d postanthesis grain.  相似文献   

3.
4.
5.
Xylogenic cultures of zinnia (Zinnia elegans) provide a unique opportunity to study signaling pathways of tracheary element (TE) differentiation. In vitro TEs differentiate into either protoxylem (PX)-like TEs characterized by annular/helical secondary wall thickening or metaxylem (MX)-like TEs with reticulate/scalariform/pitted thickening. The factors that determine these different cell fates are largely unknown. We show here that supplementing zinnia cultures with exogenous galactoglucomannan oligosaccharides (GGMOs) derived from spruce (Picea abies) xylem had two major effects: an increase in cell population density and a decrease in the ratio of PX to MX TEs. In an attempt to link these two effects, the consequence of the plane of cell division on PX-MX differentiation was assessed. Although GGMOs did not affect the plane of cell division per se, they significantly increased the proportion of longitudinally divided cells differentiating into MX. To test the biological significance of these findings, we have determined the presence of mannan-containing oligosaccharides in zinnia cultures in vitro. Immunoblot assays indicated that beta-1,4-mannosyl epitopes accumulate specifically in TE-inductive media. These epitopes were homogeneously distributed within the thickened secondary walls of TEs when the primary cell wall was weakly labeled. Using polysaccharide analysis carbohydrate gel electrophoresis, glucomannans were specifically detected in cell walls of differentiating zinnia cultures. Finally, zinnia macroarrays probed with cDNAs from cells cultured in the presence or absence of GGMOs indicated that significantly more genes were down-regulated rather than up-regulated by GGMOs. This study constitutes a major step in the elucidation of signaling mechanisms of PX- and MX-specific genetic programs in zinnia.  相似文献   

6.
7.
Uniconazole [S-3307; (E)-l-(4-chlorophenyl)-4,4-dimethyl-2-(l,2,4-triazol-l-yl)-l-penten-3-ol],a synthetic plant-growth retardant, inhibited the differentiationof isolated mesophyll cells of Zinnia elegans L. into trachearyelements (TEs) but had no effect on cell division when it wasadded to the culture medium at a concentration of 3.4 µM.In the presence of uniconazole, none of the cytological eventscharacteristic of the processes of TE differentiation, suchas aggregation of actin filaments, bundling of microtubulesor localized thickening and lignification of secondary walls,was observed. Uniconazole was effective when it was added tothe medium within 36 h after the start of culture. Brassinosteroids(0.2 nM brassinolide or 2 µM homobrassinolide), but notgibberellin A3, counteracted the inhibitory effect of uniconazoleon TE differentiation. Brassinosteroids were most effectivewhen they were added to cultures between 24 and 30 h after thestart of culture. Exogenously applied brassinosteroids promotedTE differentiation. It is suggested that the synthesis of brassinosteroidsis essential for the differentiation of the cells into TEs andthat uniconazole inhibits this differentiation through its inhibitoryeffect on the biosynthesis of brassinosteroids. (Received May 9, 1991; )  相似文献   

8.
9.
During differentiation of isolated Zinnia mesophyll cells into tracheary elements (TEs), lignification on TEs progresses by supply of monolignols not only from TEs themselves but also from surrounding xylem parenchyma-like cells through the culture medium. However, how lignin polymerizes from the secreted monolignols has not been resolved. In this study, we analyzed phenol compounds in culture medium with reversed-phase HPLC, gas chromatography-mass spectrometry and nuclear magnetic resonance spectrometry, and found 12 phenolic compounds including coniferyl alcohol and four dilignols, i.e. erythro-guaiacylglycerol-beta-coniferyl ether, threo-guaiacylglycerol-beta-coniferyl ether, dehydrodiconiferyl alcohol and pinoresinol, in the medium in which TEs were developing. Coniferyl alcohol applied to TE-inductive cultures during TE formation rapidly disappeared from the medium, and caused a sudden increase in dilignols. Addition of the dilignols promoted lignification of TEs in which monolignol biosynthesis was blocked by an inhibitor of phenylalanine anmmonia-lyase (PAL), L-alpha-aminooxy-beta-phenylpropionic acid (AOPP). These results suggested that dilignols can act as intermediates of lignin polymerization.  相似文献   

10.
An alternative methylation pathway in lignin biosynthesis in Zinnia.   总被引:17,自引:1,他引:16       下载免费PDF全文
Z H Ye  R E Kneusel  U Matern    J E Varner 《The Plant cell》1994,6(10):1427-1439
S-Adenosyl-L-methionine:trans-caffeoyl-coenzyme A 3-O-methyltransferase (CCoAOMT) is implicated in disease resistant response, but whether it is involved in lignin biosynthesis is not known. We isolated a cDNA clone for CCoAOMT in differentiating tracheary elements (TEs) induced from Zinnia-isolated mesophyll cells. RNA gel blot analysis showed that the expression of the CCoAOMT gene was markedly induced during TE differentiation from the isolated mesophyll cells. Tissue print hybridization showed that the expression of the CCoAOMT gene is temporally and spatially regulated and that it is associated with lignification in xylem and in phloem fibers in Zinnia organs. Both CCoAOMT and caffeic acid O-methyltransferase (COMT) activities increased when the isolated Zinnia mesophyll cells were cultured, whereas only CCoAOMT activity was markedly enhanced during lignification in the in vitro-differentiating TEs. The induction pattern of the OMT activity using 5-hydroxyferuloyl CoA as substrate during lignification was the same as that using caffeoyl CoA. Taken together, the results indicate that CCoAOMT is associated with lignification during xylogenesis both in vitro and in the plant, whereas COMT is only involved in a stress response in vitro. We propose that CCoAOMT is involved in an alternative methylation pathway in lignin biosynthesis. In Zinnia in vitro-differentiating TEs, the CCoAOMT mediated methylation pathway is dominant.  相似文献   

11.
We postulated that apolysis was processed in accordance with apoptotic changes occurring in a cestode, Spirometra erinacei (Pseudophyllidea). We cloned the novel putative apoptosis-associated gene from S. erinacei via screening of a S. erinacei cDNA library with a ced-3 gene (activator of apoptosis) probe from Caenorhabditis elegans. We identified a 261-bp cDNA sequence, which encodes for an 86-amino acid protein. The cloned gene expression was observed in the neck and gravid proglottids via Northern blotting, using cloned cDNA inserts as probes, but the clone was not expressed in any of other tissues. We suggest that this gene may be involved in the apolysis of S. erinacei during normal tissue development and differentiation in cestode parasites.  相似文献   

12.
13.
Motose H  Fukuda H  Sugiyama M 《Planta》2001,213(1):121-131
The transdifferentiation of isolated mesophyll cells of zinnia (Zinnia elegans L.) into tracheary elements (TEs) has been well studied as a model of plant cell differentiation. In order to investigate intercellular communication in this phenomenon, two types of culture method were developed, in which mesophyll cells were embedded in a thin sheet of agarose gel and cultured on solid medium, or embedded in microbeads of agarose gel and cultured in liquid medium. A statistical analysis of the two-dimensional distribution of TEs in the thin-sheet cultures demonstrated their aggregation. In the microbead cultures, the frequency of TE differentiation was shown to depend on the local cell density (the cell density in each microbead): TE differentiation required local cell densities of more than 105 cells ml−1. These results suggest that TE differentiation involves cell-cell communication mediated by a locally acting diffusible factor. This presumptive factor was characterized by applying a modified version of the sheet culture, which used two sheets of different cell densities, a low-density sheet and a high-density sheet. Differentiation of TEs in the former could be induced only by bringing it into contact with the latter. Insertion of a 25-kDa-cutoff membrane between the high-density and low-density sheets severely suppressed such induction of TEs in the low-density sheet while a 300-kDa-cutoff membrane suppressed induction only slightly. Insertion of agarose sheets containing immobilized pronase E or trypsin also interfered with the induction of TEs in the low-density sheets. Thus, a proteinaceous macromolecule of 25–300 kDa in molecular weight was assumed to mediate the local intercellular communication required for TE differentiation. This substance was designated “xylogen” with reference to its xylogenic activity. The time of requirement for xylogen during TE differentiation was assessed by experiments in which cells in the low-density sheet were separated from xylogen produced in the high-density sheet at various times by insertion of a 25-kDa-cutoff membrane between the two sheets, and was estimated to be from the 36th hour to the 60th hour of culture (12–36 h before visible thickening of secondary cell walls of TEs). Received: 13 July 2000 / Accepted: 4 October 2000  相似文献   

14.
15.
The nature of the peroxidase isoenzyme complement responsible for cell wall lignification in both Zinnia elegans seedlings and Z. elegans tracheary single-cell cultures have been studied. Results showed that both hypocotyls and stems from lignifying Z. elegans seedlings express a cell wall-located basic peroxidase of pI approximately 10.2, which was purified to homogeneity. Molecular mass determination under non-denaturing conditions showed an M(r) of about 43 000, similar to that of other plant peroxidases. The purified Z. elegans peroxidase showed absorption maxima at 403 (Soret band), and at 496-501 and 632-635 (alpha and beta absorption bands), indicating that this enzyme is a high spin ferric haem protein, belonging to the plant peroxidase superfamily, the prosthetic group being ferric protoporphyrin IX. The N-terminal amino acid sequence of this Z. elegans basic peroxidase was KVAVSPLS (peptide motif in bold), which shows strong homologies with the N-amino acid terminus of other strongly basic plant peroxidases. Isoenzyme and western blot analyses showed that this peroxidase isoenzyme is also expressed in trans-differentiating Z. elegans tracheary single-cell cultures. The results also showed that Z. elegans tracheary single-cell cultures not only express the same peroxidase isoenzyme as the Z. elegans lignifying xylem, but that this peroxidase isoenzyme acts as a marker of tracheary element differentiation in Z. elegans mesophyll single-cell cultures. From these results, it may be concluded that Z. elegans uses a single programme, i.e. an identical peroxidase isoenzyme complement, for lignification of the xylem, regardless of the existence of different ontogenesis pathways from either mesophyll cells (in the case of tracheary elements) or cambial derivatives (in the case of xylem vessels).  相似文献   

16.
17.
Local intercellular communication is involved in tracheary element (TE) differentiation of zinnia (Zinnia elegans L.) mesophyll cells and mediated by a proteinous macromolecule, which was designated xylogen. To characterize and isolate xylogen, a bioassay system to monitor the activity of xylogen was developed, in which mesophyll cells were embedded in microbeads of agarose gel at a low (2.0-4.3x10(4) cells ml(-1)) or high density (8.0-9.0x10(4) cells ml(-1)) and microbeads of different cell densities were cultured together in a liquid medium to give a total density of 2.1-2.5x10(4) cells ml(-1). Without any additives, the frequency of TE differentiation was much smaller in the low-density microbeads than in the high-density microbeads. This low level of TE differentiation in the low-density microbeads was attributable to the shortage of xylogen. When cultures were supplemented with conditioned medium (CM) prepared from zinnia cell suspensions undergoing TE differentiation, the frequency of TE differentiation in the low-density microbeads increased remarkably, indicating the activity of xylogen in the CM. The xylogen activity in CM was sensitive to proteinase treatments. Xylogen was bound to galactose-specific lectins such as Ricinus communis agglutinin and peanut agglutinin, and precipitated by beta-glucosyl Yariv reagent. These results indicate that xylogen is a kind of arabinogalactan protein.  相似文献   

18.
The effects of medium pH on cell expansion and tracheary element (TE) differentiation were investigated in differentiating mesophyll suspension cultures of Zinnia elegans L. In unbuffered cultures initially adjusted to pH 5.5, the medium pH fluctuated reproducibly, decreasing about 1 unit prior to the onset of TE differentiation and then increasing when the initiation of new Tes was complete. Elimination of large pH fluctuations by buffering the culture medium with 20 mM 2-(N-morpholino)ethanesulfonic acid altered both cell expansion and TE differentiation, whereas altering the starting pH of unbuffered culture medium had no effect on either process. Cell expansion in buffered cultures was pH dependent with an optimum of 5.5 to 6.0. The direction of cell expansion was also pH dependent in buffered cultures. Cells elongated at pH 5.5 to 6.0, whereas isodiametric cell expansion was predominant at pH 6.5 to 7.0. The onset of TE differentiation was delayed when the pH was buffered higher or lower than 5.0. However, TEs eventually appeared in cultures buffered at pH 6.5 to 7.0, indicating that a decrease in pH to 5.0 is not necessary for differentiation. Very large TEs with secondary cell wall thickenings resembling metaxylem differentiated in cultures buffered at pH 5.5 to 6.0, which also showed the greatest cell expansion. The correlation between cell expansion and delayed differentiation of large, metaxylem-like TEs may indicate a link between the regulatory mechanisms controlling cell expansion and TE differentiation.  相似文献   

19.
20.
The mammalian prion protein (PrPc) is a cellular protein of unknown function, an altered isoform of which (PrPsc) is a component of the infectious particle (prion) thought to be responsible for spongiform encephalopathies in humans and animals. The evolutionary conservation of the PrP gene has been reported in the genomes of many vertebrates as well as certain invertebrates. In the genome of nematode Caenorhabditis elegans, the sequence capable of hybridizing with the mammalian PrP cDNA probe has been demonstrated, predicting the presence of the PrP gene homologue in C.elegans. In this study, Southern analysis with the hamster PrP cDNA (HaPrP) probe confirmed the previous observation. Moreover, Northern analysis revealed that the sequence is actively transcribed in adult worms. Thus, we screened C.elegans cDNA libraries with the HaPrP probe and isolated a cDNA that hybridizes to the same sequence in C.elegans that hybridized with the HaPrP probe in the Southern and Northern analyses. The deduced amino acid sequence of this cDNA, however, is substantially homologous with heterogeneous nuclear ribonucleoprotein (hnRNP) core proteins rather than mammalian PrPc. The hnRNPs contain the glycine-rich domain in the C-terminal half of the molecule, which also seemed to be in PrPc at the N-terminal half of the molecule. Both of the glycine-rich domains are composed of tracts with high G + C content, indicating that these tracts may due to the hybridizing signals. These results suggest that this cDNA clone is derived from a novel hnRNP gene homologue in C.elegans but not from a predicted PrP gene homologue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号