首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have sequenced the long unique region (LUR) and characterized the terminal repeats of the genome of a rhesus rhadinovirus (RRV), strain 17577. The LUR as sequenced is 131,364 bp in length, with a G+C content of 52.2% and a CpG ratio of 1.11. The genome codes for 79 open reading frames (ORFs), with 67 of these ORFs similar to genes found in both Kaposi's sarcoma-associated herpesvirus (KSHV) (formal name, human herpesvirus 8) and herpesvirus saimiri. Eight of the 12 unique genes show similarity to genes found in KSHV, including genes for viral interleukin-6, viral macrophage inflammatory protein, and a family of viral interferon regulatory factors (vIRFs). Genomic organization is essentially colinear with KSHV, the primary differences being the number of cytokine and IRF genes and the location of the gene for dihydrofolate reductase. Highly repetitive sequences are located in positions corresponding to repetitive sequences found in KSHV. Phylogenetic analysis of several ORFs supports the similarity between RRV and KSHV. Overall, the sequence, structural, and phylogenetic data combine to provide strong evidence that RRV 17577 is the rhesus macaque homolog of KSHV.  相似文献   

2.
3.
Lin CL  Li H  Wang Y  Zhu FX  Kudchodkar S  Yuan Y 《Journal of virology》2003,77(10):5578-5588
Herpesviruses utilize different origins of replication during lytic versus latent infection. Latent DNA replication depends on host cellular DNA replication machinery, whereas lytic cycle DNA replication requires virally encoded replication proteins. In lytic DNA replication, the lytic origin (ori-Lyt) is bound by a virus-specified origin binding protein (OBP) that recruits the core replication machinery. In this report, we demonstrated that DNA sequences in two noncoding regions of the Kaposi's sarcoma-associated herpesvirus (KSHV) genome, between open reading frames (ORFs) K4.2 and K5 and between K12 and ORF71, are able to serve as origins for lytic cycle-specific DNA replication. The two ori-Lyt domains share an almost identical 1,153-bp sequence and a 600-bp downstream GC-rich repeat sequence, and the 1.7-kb DNA sequences are sufficient to act as a cis signal for replication. We also showed that an AT-palindromic sequence in the ori-Lyt domain is essential for the DNA replication. In addition, a virally encoded bZip protein, namely K8, was found to bind to a DNA sequence within the ori-Lyt by using a DNA binding site selection assay. The binding of K8 to this region was confirmed in cells by using a chromatin immunoprecipitation method. Further analysis revealed that K8 binds to an extended region, and the entire region is 100% conserved between two KSHV ori-Lyt's. K8 protein displays significant similarity to the Zta protein of Epstein-Barr virus (EBV), which is a known OBP of EBV. This notion, together with the ability of K8 to bind to the KSHV ori-Lyt, suggests that K8 may function as an OBP in KSHV.  相似文献   

4.
5.
Complete sequence and genomic analysis of murine gammaherpesvirus 68.   总被引:19,自引:13,他引:19       下载免费PDF全文
Murine gammaherpesvirus 68 (gammaHV68) infects mice, thus providing a tractable small-animal model for analysis of the acute and chronic pathogenesis of gammaherpesviruses. To facilitate molecular analysis of gammaHV68 pathogenesis, we have sequenced the gammaHV68 genome. The genome contains 118,237 bp of unique sequence flanked by multiple copies of a 1,213-bp terminal repeat. The GC content of the unique portion of the genome is 46%, while the GC content of the terminal repeat is 78%. The unique portion of the genome is estimated to encode at least 80 genes and is largely colinear with the genomes of Kaposi's sarcoma herpesvirus (KSHV; also known as human herpesvirus 8), herpesvirus saimiri (HVS), and Epstein-Barr virus (EBV). We detected 63 open reading frames (ORFs) homologous to HVS and KSHV ORFs and used the HVS/KSHV numbering system to designate these ORFs. gammaHV68 shares with HVS and KSHV ORFs homologous to a complement regulatory protein (ORF 4), a D-type cyclin (ORF 72), and a G-protein-coupled receptor with close homology to the interleukin-8 receptor (ORF 74). One ORF (K3) was identified in gammaHV68 as homologous to both ORFs K3 and K5 of KSHV and contains a domain found in a bovine herpesvirus 4 major immediate-early protein. We also detected 16 methionine-initiated ORFs predicted to encode proteins at least 100 amino acids in length that are unique to gammaHV68 (ORFs M1 to 14). ORF M1 has striking homology to poxvirus serpins, while ORF M11 encodes a potential homolog of Bcl-2-like molecules encoded by other gammaherpesviruses (gene 16 of HVS and KSHV and the BHRF1 gene of EBV). In addition, clustered at the left end of the unique region are eight sequences with significant homology to bacterial tRNAs. The unique region of the genome contains two internal repeats: a 40-bp repeat located between bp 26778 and 28191 in the genome and a 100-bp repeat located between bp 98981 and 101170. Analysis of the gammaHV68, HVS, EBV, and KSHV genomes demonstrated that each of these viruses have large colinear gene blocks interspersed by regions containing virus-specific ORFs. Interestingly, genes associated with EBV cell tropism, latency, and transformation are all contained within these regions encoding virus-specific genes. This finding suggests that pathogenesis-associated genes of gammaherpesviruses, including gammaHV68, may be contained in similarly positioned genome regions. The availability of the gammaHV68 genomic sequence will facilitate analysis of critical issues in gammaherpesvirus biology via integration of molecular and pathogenetic studies in a small-animal model.  相似文献   

6.
7.
8.
Members of the herpesviridae family including Kaposi's sarcoma-associated herpesvirus (KSHV) persist latently in their hosts and harbor their genomes as closed circular episomes. Propagation of the KSHV genome into new daughter cells requires replication of the episome once every cell division and is considered critically dependent on expression of the virus encoded latency-associated nuclear antigen (LANA). This study demonstrates a LANA-independent mechanism of KSHV latent DNA replication. A cis-acting DNA element within a discreet KSHV genomic region termed the long unique region (LUR) can initiate and support replication of plasmids lacking LANA-binding sequences or a eukaryotic replication origin. The human cellular replication machinery proteins ORC2 and MCM3 associated with the LUR element and depletion of cellular ORC2 abolished replication of the plasmids indicating that recruitment of the host cellular replication machinery is important for LUR-dependent replication. Thus, KSHV can initiate replication of its genome independent of any trans-acting viral factors.  相似文献   

9.
U V Wirth  K Gunkel  M Engels    M Schwyzer 《Journal of virology》1989,63(11):4882-4889
  相似文献   

10.
The Kaposi sarcoma associated herpesvirus (KSHV) genome encodes more than 85 open reading frames (ORFs). Serological evaluation of KSHV infection now generally relies on reactivity to just one latent and/or one lytic protein (commonly ORF73 and K8.1). Most of the other polypeptides encoded by the virus have unknown antigenic profiles. We have systematically expressed and purified products from 72 KSHV ORFs in recombinant systems and analyzed seroreactivity in US patients with KSHV-associated malignancies, and US blood donors (low KSHV seroprevalence population). We identified several KSHV proteins (ORF38, ORF61, ORF59 and K5) that elicited significant responses in individuals with KSHV-associated diseases. In these patients, patterns of reactivity were heterogeneous; however, HIV infection appeared to be associated with breadth and intensity of serological responses. Improved antigenic characterization of additional ORFs may increase the sensitivity of serologic assays, lead to more rapid progresses in understanding immune responses to KSHV, and allow for better comprehension of the natural history of KSHV infection. To this end, we have developed a bead-based multiplex assay detecting antibodies to six KSHV antigens.  相似文献   

11.
12.
13.
14.
15.
16.
Use of the Kaposi's sarcoma-associated herpesvirus (KSHV) bacterial artificial chromosome 36 (KSHV-BAC36) genome permits reverse genetics approaches to study KSHV biology. While sequencing the complete KSHV-BAC36 genome, we noted a duplication of a 9-kb fragment of the long unique region in the terminal repeat region. This duplication covers a part of open reading frame (ORF) 19, the complete ORFs 18, 17, 16, K7, K6, and K5, and the putative ORF in the left origin of lytic replication, and it contains the BAC cassette. This observation needs to be kept in mind if viral genes located within the duplicated region are to be mutated in KSHV-BAC36.  相似文献   

17.
18.
Bovine herpesvirus 4 (BoHV-4) is a gammaherpesvirus of cattle. The complete long unique coding region (LUR) of BoHV-4 strain 66-p-347 was determined by a shotgun approach. Together with the previously published noncoding terminal repeats, the entire genome sequence of BoHV-4 is now available. The LUR consists of 108,873 bp with an overall G+C content of 41.4%. At least 79 open reading frames (ORFs) are present in this coding region, 17 of them unique to BoHV-4. In contrast to herpesvirus saimiri and human herpesvirus 8, BoHV-4 has a reduced set of ORFs homologous to cellular genes. Gene arrangement as well as phylogenetic analysis confirmed that BoHV-4 is a member of the genus Rhadinovirus. In addition, an origin of replication (ori) in the genome of BoHV-4 was identified by DpnI assays. A minimum of 1.69 kbp located between ORFs 69 and 71 was sufficient to act as a cis signal for replication.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号