首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
The opisthonotal gland secretion of the acarid mite, Caloglyphus polyphyllae, contained two new monoterpenes, (E)-2-(2-hydroxyethylidene)-6-methyl-5-heptenal (1) and (E)-2-(2-hydroxyethyl)-6-methyl-2,5-heptadienal (2), to which we have given the trivial names alpha- and beta-acariolal in relation to alpha- and beta-acaridial (3 and 4), respectively. Elucidation of the structure of 1 was established mainly from 1H-NMR and GC/MS spectral data after partial purification, together with the fact that 1 was recovered in the more-polar fraction from a silica gel column than alpha- and beta-acaridial (3 and 4) present in the secretion. Compound 2 was obtained in the same fraction as a mixture with 1. Based on the facts that 2 had the same molecular weight by GC/MS and the same polarity as that of 1, compound 2 was assumed to be a structural analog of 1. The structures of compounds 1 and 2 were confirmed by their synthesis in nine and ten respective steps starting from alpha-bromo-gamma-butyrolactone.  相似文献   

2.
We have explored the synthesis of compounds that have good affinity for both mu- and delta-opioid receptors from the (alphaR,2S,5S) class of diaryldimethylpiperazines. These non-selective compounds were related to opioids that have been found to interact selectively with mu- or delta-opioid receptors as agonists or antagonists. In our initial survey, we found two compounds, (+)-4-[(alphaR)-alpha-(4-allyl-(2S,5S)-dimethylpiperazin-1-yl)-(3-hydroxyphenyl)methyl]-N-ethyl-N-phenylbenzamide (14) and its N-H relative, (-)-4-[(alphaR)-alpha-(2S,5S)-dimethylpiperazin-1-yl)-(3-hydroxyphenyl)methyl]-N-ethyl-N-phenylbenzamide (15), that interacted with delta-receptors with good affinity, and, as we hoped, with much higher affinity at mu-receptors than SNC80. The relative configuration of the benzylic position in (+)-4-[(alphaR)-alpha-(4-allyl-(2S,5S)-dimethyl-1-piperazinyl)-(3-methoxyphenyl)methyl]-benzyl alcohol (10) was determined by X-ray crystallographic analysis of a crystal that was an unresolved twin. The absolute stereochemistry of that benzylic stereogenic center was unequivocally derived by the X-ray crystallographic analysis from the two other centers of asymmetry in the molecule that were known. Those were established from the synthesis via a dipeptide cyclo-L-Ala-L-Ala in which the absolute stereochemistry was established.  相似文献   

3.
Chen L  Zhao XE  Lai D  Song Z  Kong F 《Carbohydrate research》2006,341(9):1174-1180
A concise and practical synthesis of the antigenic globotriose, alpha-D-Gal-(1-->4)-beta-D-Gal-(1-->4)-beta-D-Glc (13), was achieved by coupling of a monosaccharide donor, 3-O-allyl-2-O-benzoyl-4,6-O-benzylidene-alpha-D-galactopyranosyl trichloroacetimidate (4) with a disaccharide acceptor, p-methoxyphenyl 2,3,6-tri-O-benzoyl-beta-D-galactopyranosyl-(1-->4)-2,3,6-tri-O-benzoyl-beta-D-glucopyranoside (8), followed by deprotection. In spite of the existence of a C-2-ester substituent capable of neighboring-group participation in the donor, the coupling gave exclusively the alpha-linkage in satisfactory yield. The acceptor 8 was readily obtained from selective 3-O-benzoylation of the galactosyl ring of p-methoxyphenyl 2,6-di-O-benzoyl-beta-D-galactopyranosyl-(1-->4)-2,3,6-tri-O-benzoyl-beta-D-glucopyranoside (7), which was prepared from p-methoxyphenyl beta-D-lactoside (5) via isopropylidenation, benzoylation, and deisopropylidenation. Donor 4 was obtained from p-methoxylphenyl 3-O-allyl-2,4,6-tri-O-benzoyl-beta-D-galactopyranoside (1) via selective 4,6-di-O-debenzoylation, oxidative removal of 1-O-MP, benzylidenation, and trichloroacetimidate formation.  相似文献   

4.
The effects of estradiol and testosterone on prostacyclin (PGI2) release (measured as 6-keto-PGF1 alpha) by vascular tissues using rat aortic rings and cultured rabbit aortic smooth muscle cells (SMC) were investigated. Aortic SMC were prepared from either explants of atherosclerotic intima or those of normal media. Aortic rings obtained from male and female rats which had been treated with estradiol resulted in increased PGI2 synthesis. Furthermore, PGI2 synthesis by cultured medial SMC was significantly increased in the presence of estradiol (10(-7), 10(-9) M). An increased tendency in PGI2 synthesis was also observed in intimal SMC. On the other hand, aortic rings obtained from female rats treated with testosterone resulted in a significant decrease in PGI2 synthesis. However, aortic rings from testosterone-treated male rats and cultured medial and intimal SMC treated with testosterone (10(-6), 10(-8) M) for 48 hr did not show any significant changes in PGI2 synthesis. We also found greater PGI2 synthesis by intimal SMC compared with that by medial SMC. These results suggest that estradiol and testosterone may have opposite functions in the development of atherosclerosis, that is, estradiol for anti-atherosclerotic and testosterone for atherogenic, by modulating PGI2 synthesis by vascular tissues.  相似文献   

5.
R-(-)-1-(benzofuran-2-yl)-2-propylaminopentane [(-)-BPAP] is a potent "catecholaminergic and serotonergic activity enhancer (CAE/SAE)", which enhances the impulse-evoked catecholamines and serotonin release, e.g. (-)-BPAP enhances in vitro norepinephrine efflux from the slices of locus coeruleus in a bipolar manner with the two effective ranges of low (fM-pM level) and high (nM-microM level) concentrations. Here, the effects of (-)-BPAP and selegiline on the cultured mouse astrocytes were studied. The protein levels of the neurotrophic factors (NGF, BDNF and GDNF) in the conditioned medium of cultured astrocytes were determined by using ELISA. In the cultured astrocytes incubated for 24 h with selegiline, the synthesis of NGF and BDNF was significantly enhanced in the concentration dependent manner, with minimum effective concentrations of 4 x 10(-4) and 5 x 10(-4) M, respectively. (-)-BPAP also enhanced the NGF, BDNF and GDNF synthesis, with minimum effective concentrations of 5 x 10(-5), 1 x 10(-5), and 1 x 10(-6) M, respectively. Although the effects of (-)-BPAP on the NGF synthesis was tested in the range of 1 x 10(-15)-5 x 10(-4) M, the concentration response curve of (-)-BPAP was a single bell shape with the peak effect at 1 x 10(-4) M, and did not show any effects in low concentrations such as fM-pM level. Each concentration response curve of (-)-BPAP on BDNF and GDNF synthesis was a single bell shape with peak effects at 1 x 10(-3) M and 1 x 10(-4) M, respectively.  相似文献   

6.
The fibroblast growth factor (FGF) receptor complex is a regulator of adult organ homeostasis in addition to its central role in embryonic development and wound healing. FGF receptor 4 (FGFR4) is the sole FGFR receptor kinase that is significantly expressed in mature hepatocytes. Previously, we showed that mice lacking mouse FGFR4 (mR4(-/-)) exhibited elevated fecal bile acids, bile acid pool size, and expression of liver cholesterol 7alpha-hydroxylase (CYP7A1), the rate-limiting enzyme for canonical neutral bile acid synthesis. To prove that hepatocyte FGFR4 was a negative regulator of cholesterol metabolism and bile acid synthesis independent of background, we generated transgenic mice overexpressing a constitutively active human FGFR4 (CahR4) in hepatocytes and crossed them with the FGFR4-deficient mice to generate CahR4/mR4(-/-) mice. In mice expressing active FGFR4 in liver, fecal bile acid excretion was 64%, bile acid pool size was 47%, and Cyp7a1 expression was 10-30% of wild-type mice. The repressed level of Cyp7a1 expression was resistant to induction by a high cholesterol diet relative to wild-type mice. Expression of CahR4 in mR4(-/-) mouse livers depressed bile acid synthesis below wild-type levels from the elevated levels observed in mR4(-/-). Levels of phosphorylated c-Jun N-terminal kinase (JNK), which is part of a pathway implicated in bile acid-mediated repression of synthesis, was 30% of wild-type levels in mR4(-/-) livers, whereas CahR4 livers exhibited an average 2-fold increase. However, cholate still strongly induced phospho-JNK in mR4(-/-) livers. These results confirm that hepatocyte FGFR4 regulates bile acid synthesis by repression of Cyp7a1 expression. Hepatocyte FGFR4 may contribute to the repression of bile acid synthesis through JNK signaling but is not required for activation of JNK signaling by bile acids.  相似文献   

7.
The anti-inflammatory and analgesic effects of three dibenzylbutyrolactone lignans, (-)-hinokinin (2), (-)-6,6'-dinitrohinokinin (3), and (-)-6,6'-diaminohinokinin (4), obtained by partial synthesis from (-)-cubebin (1), were investigated using different animal models. It was observed that compounds (1) and (2) inhibited the edema formation in the rat paw edema assay at the same level and that all responses were dose dependent. Also, at the dose of 30 mg/kg, compounds 1, 2, 3, and 4 inhibited the edema formation by 53%, 63%, 54%, and 82%, respectively, at the third hour of the experiment. In the acetic acid-induced writhing test in mice, compounds 2 and 4 produced inhibition levels of 97% and 92%, respectively, while 3 displayed lower effect (75%), which was still higher than 1. The assayed compounds neither displayed activity in the cell migration test nor in the hot plate test.  相似文献   

8.
The Fmoc solid phase synthesis of A beta(1-40), a strongly aggregating peptide found in Alzheimer's disease brain, was performed using 2-hydroxy-4-methoxybenzyl (Hmb) backbone amide protection. Hmb-Gly residues were incorporated using N(alpha)-Fmoc-Hmb-Gly-OH rather than N,O-bisFmoc-Hmb-Gly-OPfp. Amino acid acylation of the sterically hindered Hmb-amino acids was monitored using 'semi-on-line' MALDI-TOF-MS in a novel application of this technique which significantly simplified the successful incorporation of these residues. Standard coupling conditions in N,N-dimethylformamide (DMF) were used throughout the synthesis. Comparative structural studies of acetyl-Hmb-protected and native A beta(1-40) were performed to investigate the structural basis of Hmb-mediated disaggregation. The incorporation of backbone amide protection was observed by circular dichroism spectroscopy and gel electrophoresis to strongly affect the solution structure of A beta(1-40). Despite the reported structure-breaking activity of Hmb groups, penta(acetyl-Hmb)A beta(1-40) was found to adopt both alpha-helix and intermolecular beta-sheet conformations. In 100% TFE a mixed alpha-helix/random coil structure was formed by the protected peptide indicating reduced alpha-helical propensity relative to A beta(1-40). The protected peptide formed beta-sheet structures in aqueous buffer. Gel electrophoresis indicated that, unlike native A beta(1-40), penta(acetyl-Hmb)A beta(1-40) did not form large aggregate species.  相似文献   

9.
10.
Xu L  Price NP 《Carbohydrate research》2004,339(6):1173-1178
Chirally deuterated (S)-D-(6-(2)H(1))glucose has been prepared in good overall yield from d-(6,6'-(2)H(2))glucose by a short, five-step synthesis from D-(6,6-(2)H(2))glucose utilizing (R)-(+)-Alpine-Borane [(R)-9-[(6,6-dimethylbicyclo[3.1.1]hept-2-yl)methyl]-9-borabicyclo[3.3.1]nonane]. Suitably protected methyl 2,3,4-tri-O-benzyl-D-(6,6-(2)H(2))glucopyranoside was prepared and the deuterated O-6 primary alcohol was oxidized to an aldehyde by Swern oxidation. Stereoselective reduction with nondeuterated (R)-(+)-Alpine-Borane gave methyl 2,3,4-tri-O-benzyl-(6S)-D-(6-(2)H(1))glucopyranoside, which was deprotected under standard conditions to afford the title compound. The key stereoselective reduction step was achieved in 90% yield. The preparation uses economical, commercially available starting materials and will be useful for elucidating biosynthetic mechanisms.  相似文献   

11.
ATP sulfurylase (ATP: sulfate adenylyltransferase, EC 2.7.7.4) was extensively purified from trophosome tissue of Riftia pachyptila, a tube worm that thrives in deep ocean hydrothermal vent communities. The enzyme is probably derived from the sulfide-oxidizing bacteria that densely colonize the tissue. Glycerol (20% v/v) protected the enzyme against inactivation during purification and storage. The native enzyme appears to be a dimer (MW 90 kDa +/- 10%) composed of identical size subunits (MW 48 kDa +/- 5%). At pH 8.0, 30 degrees C, the specific activities (units x mg protein-1) of the most highly purified sample are as follows: ATP synthesis, 370; APS synthesis, 23; molybdolysis, 65; APSe synthesis or selenolysis, 1.9. The Km values for APS and PPi at 5 mM Mg2+ are 6.3 and 14 microM, respectively. In the APS synthesis direction, the Km values for MgATP and SO4(2-) are 1.7 and 27 mM, respectively. The Km values for MgATP and MoO4(2-) in the molybdolysis reaction are 80 and 150 microM, respectively. The Kia for MgATP is 0.65 mM. APS is a potent inhibitor of molybdolysis, competitive with both MgATP and MoO4(2-) (Kiq = 2.2 microM). However, PPi (+ Mg2+) is virtually inactive as a molybdolysis inhibitor. Oxyanion dead end inhibitors competitive with SO4(2-) include (in order of decreasing potency) ClO4- greater than FSO3- (Ki = 22 microM) greater than ClO3- greater than NO3- greater than S2O3(2-) (Ki's = 5 and 43 mM). FSO3- is uncompetitive with MgATP, but S2O3(2-) is noncompetitive. Each subunit contains two free SH groups, at least one of which is functionally essential. ATP, MgATP, SO4(2-), MoO4(2-), and APS each protect against inactivation by excess 5,5'-dithiobis-(2-nitrobenzoate). FSO3- is ineffective as a protector unless MgATP is present. PPi (+Mg2+) does not protect against inactivation. Riftia trophosome contains little or no "ADP sulfurylase." The high trophosome level of ATP sulfurylase (67-176 ATP synthesis units x g fresh wt tissue-1 from four different specimens, corresponding to 4-10 microM enzyme sites), the high kcat of the enzyme for ATP synthesis (296 s-1), and the high Km's for MgATP and SO4(2-) are consistent with a role in ATP formation during sulfide oxidation, i.e., the physiological reaction is APS + MgPPi in equilibrium SO4(2-) + MgATP.  相似文献   

12.
The H(+)-ATPase from chloroplasts, CF(0)F(1), was isolated and purified. The enzyme contained one endogenous ADP at a catalytic site, and two endogenous ATP at non-catalytic sites. Incubation with 2-azido-[alpha-(32)P]AD(T)P leads to a tight binding of the azido-nucleotides. Free nucleotides were removed by three consecutive passages through centrifugation columns, and after UV-irradiation, the label was covalently bound. The labelled enzyme was digested by trypsin, the peptides were separated by ion exchange chromatography into nitreno-AMP, nitreno-ADP and nitreno-ATP labelled peptides, and these were then separated by reversed phase chromatography. Amino acid sequence analysis was used to identify the type of the nucleotide binding site. After incubation with 2-azido-[alpha-(32)P]ADP, the covalently bound label was found exclusively at beta-Tyr-362, i.e. binding occurs only to catalytic sites. Incubation conditions with 2-azido-[alpha-(32)P]ADP were varied, and conditions were found which allow selective binding of the label to different catalytic sites, either to catalytic site 2 or to catalytic site 3. For measurements of the degree of inhibition by covalent modification, CF(0)F(1) was reconstituted into phosphatidylcholine liposomes, and the membranes were energised by an acid-base transition in the presence of a K(+)/valinomycin diffusion potential. The rate of ATP synthesis was 120 s(-1), and the rate of ATP hydrolysis was 20 s(-1), both measured under multi-site conditions. Covalent modification of either catalytic site 2 or catalytic site 3 inhibited both ATP synthesis and ATP hydrolysis, the degree of inhibition being proportional to the degree of modification. Extrapolation to complete inhibition indicates that modification of one catalytic site, either site 2 or site 3, is sufficient to completely block multi-site ATP synthesis and ATP hydrolysis. The rate of ATP synthesis and the rate of ATP hydrolysis were measured as a function of the substrate concentration from multi-site to uni-site conditions with covalently modified CF(0)F(1) and with non-modified CF(0)F(1). The result was that uni-site ATP synthesis and ATP hydrolysis were not inhibited by covalent modification of either catalytic site 2 or site 3. The results indicate cooperative interactions between catalytic nucleotide binding sites during multi-site catalysis, whereas neither uni-site ATP synthesis nor uni-site ATP hydrolysis require interaction with other sites.  相似文献   

13.
Mei X  Heng L  Fu M  Li Z  Ning J 《Carbohydrate research》2005,340(15):2345-2351
A concise and effective synthesis of lauryl heptasaccharide 17 was achieved from the key intermediates lauryl 2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl-(1-->4)-2,3,6-tri-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2,4-di-O-benzoyl-beta-D-glucopyranoside (10) and isopropyl 2,4,6-tri-O-acetyl-3-O-allyl-beta-D-glucopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)]-2,4-di-O-acetyl-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-1-thio-beta-D-glucopyranoside (15). The key trisaccharide glycosyl acceptor 10 was constructed by coupling 2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl-(1-->4)-2,3,6-tri-O-benzoyl-alpha-D-glucopyranosyl trichloroacetimidate (3) with lauryl 6-O-acetyl-2,4-di-O-benzoyl-beta-D-glucopyranoside (9), followed by deacetylation. The thioglycoside donor 15 was obtained by condensation of 2,4,6-tri-O-acetyl-3-O-allyl-beta-D-glucopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)]-2,4-di-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (11) with isopropyl 4,6-O-benzylidene-1-thio-beta-D-glucopyranoside (12), followed by debenzylidenation and acetylation. A bioassay of the inhibition of S180 noumenal tumors showed that lauryl heptasaccharide 17 could be employed as a potential agent for cancer treatment.  相似文献   

14.
The synthesis of a series of (R)-1-alkyl-3-[2-(2-amino)phenethyl]-5-(2-fluorophenyl)-6-methyluracils is discussed. SAR around N-1 of the uracil was explored, which led to the discovery that an electron-deficient 2,6-disubstituted benzyl group is required for optimal receptor binding. The best compound from the series had binding affinity of 0.7 nM (K(i) for the human GnRH receptor, which was 8-fold better than the 2,6-difluorobenzyl analog.  相似文献   

15.
 The nicotine-derived N-nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is one of the most abundant and potent carcinogens found in tobacco smoke. NNK induces lung tumors in rodents and is most likely involved in lung carcinogenesis in humans. Studies on the metabolism and carcinogenicity of NNK have been extensive. However, its effects on the immune system have not been investigated thoroughly. Considering that tobacco smoking partially suppresses the immune response in humans, and that immune surveillance plays a critical role in cancer development, we examined the effects of NNK on the production of selected cytokines. In a previous study, we observed an inhibition of NK cell activity and IgM secretory cell number in NNK-treated A/J mice [Rioux and Castonguay (1997) J Natl Cancer Inst 89: 874]. In this study, we demonstrate that U937 human macrophages activate NNK to alkylating intermediates by α-carbon hydroxylation and detoxify NNK by N-oxidation. We observed that NNK, following activation, induces the release of soluble tumor necrosis factor (TNF), but inhibits interleukin(IL)-10 synthesis. We also report that 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone, and nitroso(acetoxymethyl)methylamine, which generate the same alkylating intermediates as NNK, have similar effects on TNF and IL-10. This suggests that pyridyloxobutylating and methylating intermediates generated from NNK are potent modulators of the immune response. The levels of IL-6, granulocyte/macrophage-colony-stimulating factor and macrophage chemotactic protein 1 were also decreased in supernatants of NNK-treated U937 macrophages. In contrast, IL-2 synthesis in Jurkat cells was inhibited by NNK treatment. This is the first study demonstrating that NNK, via its alkylating intermediates, alters the cytokine synthesis profile in human cells. Modulation of cytokine synthesis by NNK might partially explain the immunosuppresion observed in smokers. Inhibition of immune functions, resulting from NNK activation to alkylating agents, may facilitate lung tumor development. Received: 3 February 2000 / Accepted: 15 September 2000  相似文献   

16.
Previous studies showed that angiotensin-(1-7) [Ang-(1-7)] attenuates cardiac remodeling by reducing both interstitial and perivascular fibrosis. Although a high affinity binding site for Ang-(1-7) was identified on cardiac fibroblasts, the molecular mechanisms activated by the heptapeptide hormone were not identified. We isolated cardiac fibroblasts from neonatal rat hearts to investigate signaling pathways activated by Ang-(1-7) that participate in fibroblast proliferation. Ang-(1-7) reduced (3)H-thymidine, -leucine and -proline incorporation into cardiac fibroblasts stimulated with serum or the mitogen endothelin-1 (ET-1), demonstrating that the heptapeptide hormone decreases DNA, protein and collagen synthesis. The reduction in DNA synthesis by Ang-(1-7) was blocked by the AT((1-7)) receptor antagonist [d-Ala(7)]-Ang-(1-7), showing specificity of the response. Treatment of cardiac fibroblasts with Ang-(1-7) reduced the Ang II- or ET-1-stimulated increase in phospho-ERK1 and -ERK2. In contrast, Ang-(1-7) increased dual-specificity phosphatase DUSP1 immunoreactivity and mRNA, suggesting that the heptapeptide hormone increases DUSP1 to reduce MAP kinase phosphorylation and activity. Incubation of cardiac fibroblasts with ET-1 increased cyclooxygenase 2 (COX-2) and prostaglandin synthase (PGES) mRNAs, while Ang-(1-7) blocked the increase in both enzymes, suggesting that the heptapeptide hormone alters the concentration and the balance between the proliferative and anti-proliferative prostaglandins. Collectively, these results indicate that Ang-(1-7) participates in maintaining cardiac homeostasis by reducing proliferation and collagen production by cardiac fibroblasts in association with up-regulation of DUSP1 to reduce MAP kinase activities and attenuation of the synthesis of mitogenic prostaglandins. Increased Ang-(1-7) or agents that enhance production of the heptapeptide hormone may prevent abnormal fibrosis that occurs during cardiac pathologies.  相似文献   

17.
The longevity assurance gene (LAG1) and its homolog (LAC1) are required for acyl-CoA-dependent synthesis of ceramides containing very long acyl chain (e.g. C26) fatty acids in yeast, and a homolog of LAG1, ASC1, confers resistance in plants to fumonisin B(1), an inhibitor of ceramide synthesis. To understand further the mechanism of regulation of ceramide synthesis, we now characterize a mammalian homolog of LAG1, upstream of growth and differentiation factor-1 (uog1). cDNA clones of uog1 were obtained from expression sequence-tagged clones and sub-cloned into a mammalian expression vector. Transient transfection of human embryonic kidney 293T cells with uog1 followed by metabolic labeling with [4,5-(3)H]sphinganine or L-3-[(3)H]serine demonstrated that uog1 conferred fumonisin B(1) resistance with respect to the ability of the cells to continue to produce ceramide. Surprisingly, this ceramide was channeled into neutral glycosphingolipids but not into gangliosides. Electrospray tandem mass spectrometry confirmed the elevation in sphingolipids and revealed that the ceramides and neutral glycosphingolipids of uog1-transfected cells contain primarily stearic acid (C18), that this enrichment was further increased by FB(1), and that the amount of stearic acid in sphingomyelin was also increased. UOG1 was localized to the endoplasmic reticulum, demonstrating that the fatty acid selectivity and the fumonisin B(1) resistance are not due to a subcellular localization different from that found previously for ceramide synthase activity. Furthermore, in vitro assays of uog1-transfected cells demonstrated elevated ceramide synthase activity when stearoyl-CoA but not palmitoyl-CoA was used as substrate. We propose a role for UOG1 in regulating C18-ceramide (N-stearoyl-sphinganine) synthesis, and we note that not only is this the first case of ceramide formation in mammalian cells with such a high degree of fatty acid specificity, but also that the N-stearoyl-sphinganine produced by UOG1 most significantly impacts neutral glycosphingolipid synthesis.  相似文献   

18.
The biochemical toxicology of 1,3-difluoroacetone, a known metabolite of the major ingredient of the pesticide Gliftor (1,3-difluoro-2-propanol), was investigated in vivo and in vitro. Rat kidney homogenates supplemented with coenzyme A, ATP, oxaloacetate, and Mg2+ converted 1,3-difluoroacetone to (-)-erythro-fluorocitrate in vitro. Administration of 1,3-difluoroacetone (100 mg kg(-1) body weight) to rats in vivo resulted in (-)-erythro-fluorocitrate synthesis in the kidney, which was preceded by an elevation in fluoride levels and followed by citrate accumulation. Animals dosed with 1,3-difluoroacetone did not display the 2-3 hour lag phase in either (-)-erythro-fluorocitrate synthesis or in citrate and fluoride accumulation characteristic of animals dosed with 1,3-difluoro-2-propanol. We demonstrate that the conversion of 1,3-difluoro-2-propanol to 1,3-difluoroacetone by an NAD+-dependent oxidation is the rate-limiting step in the synthesis of the toxic product, (-)-erythro-fluorocitrate from 1,3-difluoro-2-propanol. Prior administration of 4-methylpyrazole (90 mg kg(-1) body weight) was shown to prevent the conversion of 1,3-difluoro-2-propanol (100 mg kg(-1) body weight) to (-)-erythro-fluorocitrate in vivo and to eliminate the fluoride and citrate elevations seen in 1,3-difluoro-2-propanol-intoxicated animals. However, administration of 4-methylpyrazole (90 mg kg(-1) body weight) to rats 2 hours prior to 1,3-difluoroacetone (100 mg kg(-1) body weight) was ineffective in preventing (-)-erythro-fluorocitrate synthesis and did not diminish fluoride or citrate accumulation in vivo. We conclude that the prophylactic and antidotal properties of 4-methylpyrazole seen in animals treated with 1,3-difluoro-2-propanol derive from its capacity to inhibit the NAD+-dependent oxidation responsible for converting 1,3-difluoro-2-propanol to 1,3-difluoroacetone in the committed step of the toxic pathway.  相似文献   

19.
The main biodegradation product of (+/-)-alpha-isomethylionone (2) with standard activated sludge was characterized as (+/-)-1-(2,6,6-trimethyl-2-cyclohexen-1-yl)propan-2-one (1) by its analysis and synthesis. Both enantiomers (1a and 1b) of 1 were synthesized by starting from (R)- and (S)-2,4,4-trimethyl-2-cyclohexen-1-ol (3a and 3b), respectively.  相似文献   

20.
Fructan synthesis was induced in excised primary leaf blades of Hordeum vulgare L. cv Gerbel by illumination in 30 millimolar fructose. This treatment induced a 26-fold increase of sucrose-sucrose-fructosyltransferase (SST, EC 2.4.1.99) activity within 24 hours. Acid invertase (EC 3.2.1.26) activity remained about constant. By preparing protoplasts from induced leaves, approximately 80% of the invertase activity was removed with the cell walls while SST was retained. The protoplast homogenate was used to partially purify and characterize SST. Acid precipitation (pH 4.75) and anion exchange chromatography (fast protein liquid chromatography on Mono `Q') resulted in a recovery of about 80% of total SST activity. The principal activity (SST 1), accounting for 85% of the activity recovered, was purified about 200-fold. It was essentially free of invertase activity and catalyzed the synthesis of a trisaccharide which co-chromatographed with isokestose (1F-β-fructosylsucrose). The remaining 15% of SST activity (SST 2) was purified about 35-fold. It retained substantial invertase activity and catalyzed the synthesis of only one trisaccharide which co-chromatographed with kestose (6F-β-fructosylsucrose). It is concluded that barley leaves which store mainly fructan of the phlein type (β-2-6 polyfructosylsucrose), nevertheless contain sucrose-sucrose 1F-β-d-fructosyltransferase as the key enzyme of fructan synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号