首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extent of binding of various RNA species to the three forms of avian sarcoma virus B77 RNA-dependent DNA polymerase was determined using a sensitive nitrocellulose filter binding technique which was capable of detecting binding reactions with association constants as low as 3 X 10(6) liters X mole-1. All three enzyme forms, alphabeta, beta2, and alpha, bound to all single-stranded RNA species that were tested, including nonviral RNAs. 70 S viral RNA exhibited the highest association constant (about 10(11) liters X mole-1), and a population of virus-derived tRNA molecules from which tRNATrp had been removed, the lowest (about 3000 times lower). The affinity for other RNAs was roughly proportional to their size. The affinity of RNAs for the alphabeta enzyme form always exceeded that for the two others by a factor that depended on the particular RNA, never exceeded 6 and was sometimes as low as 1.2. The association constant of the alphabeta enzyme form with viral 70 S RNA was about 15-fold higher than that with viral 35 S RNA. 35 S RNA annealed to tRNATrp had an association constant that was only 2.5 times higher than that of 35 S RNA alone. This finding suggests that the tertiary structure of 70 S RNA plays a significant role in its affinity for B77 DNA polymerase.  相似文献   

2.
Three forms of the RNA-dependent DNA polymerase were isolated from highly purified avian sarcoma virus B77 grown in duck embryo fibroblasts, using sequential chromatography on DEAE-cellulose, phosphocellulose, and poly(U)-cellulose. One form, which sedimented with about 5.2 S, contained only one species of polypeptide, with a molecular weight of 63,000; a second sedimented with about 7.8 S and contained only one species of polypeptide with a molecular weight of 81,000; and a third form, which sedimented with about 7.3 S, contained two species of polypeptides with molecular weights of 63,000 and 81,000. The molecular constitution of the three enzyme forms were therefore alpha, beta2, and alphabeta. All three possessed almost the same specific activity with poly(rA)-oligo(dT) as the primer-template. Forms alpha and alphabeta of avian sarcoma virus DNA polymerase have already been described in the literature; form beta2 is a new form. All three forms possessed ribonuclease H activity, the relative specific activities of the alpha, beta2, and alphabeta forms being about 1:4:5. All three enzyme forms were inhibited by antiserum to the alphabeta form, but whereas the alpha and alphabeta forms could be inhibited about 95%, the maximum degree of inhibition of the beta2 form was about 80%. The three enzyme forms also differed with respect to heat stability at 46 degrees, the monomeric alpha form of the enzyme being only about one-half as stable as the two dimeric forms.  相似文献   

3.
4.
A new method for the analysis and purification of the RNA-directed DNA polymerase of RNA tumor viruses has been developed. This nucleic acid affinity chromatography system utilizes an immobilized oligo (dT) moiety annealed with poly (A). The alpha and alphabeta DNA polymerases of avain myeloblastosis virus bound effectively to poly (A) oligo (dT)-cellulose. Alpha DNA polymerase did not bind effectively to poly (A) oligo (dT)-cellulose, poly (A)-cellulose, or to cellulose. Alphabeta bound to oligo (dT)-cellulose and cellulose at the same extent (approximately 30%), indicating that this enzyme did not bind specifically to the oligo (DT) moiety only. However, alphabeta bound to poly (A)-cellulose two to three times better than to cellulose itself, showing that alphabeta could bind to poly (A) without a primer. Alphabeta DNA polymerase also bound to poly (C)-cellulose, whereas alpha did not. These data show that the alpha DNA polymerase is defective in binding to nucleic acids if the beta subunit is not present. Data is presented which demonstrates that the alphabeta DNA polymerase bound tighter to poly (A). oligo (DT)-cellulose and to calf thymus DNA-cellulose than the alpha DNA polymerase, suggesting that the beta subunit or, at least part of it is responsible for this tighter binding. In addition, alphabeta DNA polymerase is able to reversibly transcribe avian myeloblastosis virus 70S RNA approximately fivefold faster than alpha DNA polymerase in the presence of Mg2+ and equally efficient in the presence of Mn2+. alpha DNA polymerase transcribed 9S globin m RNA slightly better than alphabeta with either metal ion.  相似文献   

5.
6.
The visna viral RNA-dependent DNA polymerase has been resolved into two forms by affinity chromatography. Glycerine gradient centrifugation of the two forms showed that one form sedimented at 6.9 S corresponding to an apparent molecular weight of 135 000 and the other at 6.3 S corresponding to 118 000. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of the two forms indicated that the 6.9 S enzyme is composed of 2 molecules of 68 000 mol. wt. chain and the 6.3 S is a single chain enzyme. The latter form has been identified as a glycoprotein. The 6.9 S form can be completely inactivated in 20 min at 45 degrees C, prefers poly(rC) over poly(rA) as template and has high efficiency in utilizing visna 70 S RNA as template. The 6.3 S form is stable at 45 degrees C, active with 70 S viral RNA as template, prefers poly(rA) over poly(rC), and requires higher concentration of Mn2+ (0.4 mM) for maximum activity than the 6.9 S form does (0.1 mM) with synthetic homopolymers as templates. However, both 6.9 S and 6.3 S forms prefer Mg2+ over Mn2+ regardless of the nature of the templates.  相似文献   

7.
8.
9.
10.
A proteolytic activity is associated with structural protein p15 in avian RNA tumor viruses. Its effect on the known intracellular viral polyprotein precursors obtained by immunoprecipitation was investigated. Cleavage of Pr76gag resulted in the sequential appearance of p15, p27, and p19. The intracellular precursor Pr180gag-pol was also cleaved by p15, whereas the intracellular glycoprotein precursors of avian RNA tumor viruses, Pr92env, remained unaffected by p15 under all conditions tested. The specificities of the antibodies used to precipitate the precursors influenced the pattern of intermediates and cleavage products obtained by p15 treatment. If virus harvested from the the Prague strain of Rous sarcoma virus, subgroup C-transformed cells at 15-min intervals was incubated at 37 degrees C for further maturation, RNA-dependent DNA polymerase activity showed an optimum of DNA synthesis with 70S viral RNA or synthetic template-primers after short incubation periods. The presence of additional p15 during incubation resulted in a shift of the enzyme activity peak toward earlier time points. Virus harvested at 3-h intervals contained significant amounts of Pr180gag-pol and Pr76gag. The addition of p15 resulted in the cleavage of Pr180gag-pol and Pr76gag, but only a few distinct low-molecular-weight polypeptides appeared. Treatment of purified RNA-dependent DNA polymerase with p15 in vitro resulted in a disappearance of the beta subunit and an enrichment of the alpha subunit. In addition, a polypeptide of 32 x 10(3) molecular weight was generated. The cleavage pattern observed differed from the one obtained by trypsin treatment.  相似文献   

11.
12.
Caffeine was found to inhibit RNA-dependent DNA polymerase activity of Rauscher leukemia virus when endogenous viral RNA and poly(rA)·(dT)12–18 were used as templates. Similar results were also obtained with purified RNA-dependent DNA polymerase (deoxynucleoside triphosphate; DNA nucleotidyl transferase; EC 2.7.7.7) from avian myeloblastosis virus (AMV) utilizing 70S and 35S RNA of AMV, poly(rA)·(dT)12–18, globin mRNA and activated calf thymus DNA as templates. The “caffeine effect” was evident only when it was present during the initiation of polymerization reaction. Increasing the template concentration in the reaction mixture partly reversed the effect of caffeine. Of the analogs of caffeine tested, only theophylline inhibited AMV DNA polymerase, whereas aminophylline showed no effect.  相似文献   

13.
Ravasio S  Curti B  Vanoni MA 《Biochemistry》2001,40(18):5533-5541
Glutamate synthase is a complex iron-sulfur flavoprotein that catalyzes the reductive transfer of the L-glutamine amide group to C(2) of 2-oxoglutarate, forming two molecules of L-glutamate. The bacterial enzyme is an alphabeta protomer, which contains one FAD (on the beta subunit, approximately 50 kDa), one FMN (on the alpha subunit, approximately 150 kDa), and three different Fe-S clusters (one 3Fe-4S center on the alpha subunit and two 4Fe-4S clusters at an unknown location). To address the problem of the intramolecular electron pathway, we have measured the midpoint potential values of the flavin cofactors and of the 3Fe-4S cluster of glutamate synthase in the isolated alpha and beta subunits and in the alphabeta holoenzyme. No detectable amounts of flavin semiquinones were observed during reductive titrations of the enzyme, indicating that the midpoint potential value of each flavin(ox)/flavin(sq) couple is, in all cases, significantly more negative than that of the corresponding flavin(sq)/flavin(hq) couple. Association of the two subunits to form the alphabeta protomer does not alter significantly the midpoint potential value of the FMN cofactor and of the 3Fe-4S cluster (approximately -240 and -270 mV, respectively), but it makes that of FAD some 40 mV less negative (approximately -340 mV for the beta subunit and -300 mV for FAD bound to the holoenzyme). Binding of the nonreducible NADP(+) analogue, 3-aminopyridine adenine dinucleotide phosphate, made the measured midpoint potential value of the FAD cofactor approximately 30-40 mV less negative in the isolated beta subunit, but had no effect on the redox properties of the alphabeta holoenzyme. This result correlates with the formation of a stable charge-transfer complex between the reduced flavin and the oxidized pyridine nucleotide in the isolated beta subunit, but not in the alphabeta holoenzyme. Binding of L-methionine sulfone, a glutamine analogue, had no significant effect on the redox properties of the enzyme cofactors. On the contrary, 2-oxoglutarate made the measured midpoint potential value of the 3Fe-4S cluster approximately 20 mV more negative in the isolated alpha subunit, but up to 100 mV less negative in the alphabeta holoenzyme as compared to the values of the corresponding free enzyme forms. These findings are consistent with electron transfer from the entry site (FAD) to the exit site (FMN) through the 3Fe-4S center of the enzyme and the involvement of at least one of the two low-potential 4Fe-4S centers, which are present in the glutamate synthase holoenzyme, but not in the isolated subunits. Furthermore, the data demonstrate a specific role of 2-oxoglutarate in promoting electron transfer from FAD to the 3Fe-4S cluster of the glutamate synthase holoenzyme. The modulatory role of 2-oxoglutarate is indeed consistent with the recently determined three-dimensional structure of the glutamate synthase alpha subunit, in which several polypeptide stretches are suitably positioned to mediate communication between substrate binding sites and the enzyme redox centers (FMN and the 3Fe-4S cluster) to tightly control and coordinate the individual reaction steps [Binda, C., et al. (2000) Structure 8, 1299-1308].  相似文献   

14.
The three-dimensional structure of the hexameric (alphabeta)(6) 1.2-MDa complex formed by glutamate synthase has been determined at subnanometric resolution by combining cryoelectron microscopy, small angle x-ray scattering, and molecular modeling, providing for the first time a molecular model of this complex iron-sulfur flavoprotein. In the hexameric species, interprotomeric alpha-alpha and alpha-beta contacts are mediated by the C-terminal domain of the alpha subunit, which is based on a beta helical fold so far unique to glutamate synthases. The alphabeta protomer extracted from the hexameric model is fully consistent with it being the minimal catalytically active form of the enzyme. The structure clarifies the electron transfer pathway from the FAD cofactor on the beta subunit, to the FMN on the alpha subunit, through the low potential [4Fe-4S](1+/2+) centers on the beta subunit and the [3Fe-4S](0/1+) cluster on the alpha subunit. The (alphabeta)(6) hexamer exhibits a concentration-dependent equilibrium with alphabeta monomers and (alphabeta)(2) dimers, in solution, the hexamer being destabilized by high ionic strength and, to a lower extent, by the reaction product NADP(+). Hexamerization seems to decrease the catalytic efficiency of the alphabeta protomer only 3-fold by increasing the K(m) values measured for l-Gln and 2-OG. However, it cannot be ruled out that the (alphabeta)(6) hexamer acts as a scaffold for the assembly of multienzymatic complexes of nitrogen metabolism or that it provides a means to regulate the activity of the enzyme through an as yet unknown ligand.  相似文献   

15.
Intracisternal A particles from the FLOPC-1 line of BALB/c myeloma have been shown to contain high-molecular-weight RNA (60 to 70S) that is sensitive to RNase, alkali degradation, and heat but resistant to Pronase treatment. The intracisternal A-particle RNA contains tract of poly (A) approximately 180 nucleotides long. As shown in a reconstitution experiment, by antigenic analysis of A-particle preparation and the SC cytopathogenicity assay, the 70S RNA was not due to contamination by type C virus particles. The FLOPC-1 intracisternal A particles also possess an endogenous RNA-dependent DNA polymerase. The enzyme required Mn2+ or Mg2+, dithiothreitol, detergent, and four deoxyribonucleoside triphosphates for maximum activity. Enzymatic activity was maximally stimuated by poly (rC)-oligo (dG)12-18 and less with poly (rG)-oligo (dC)10 or poly (rA)-oligo (dT)12-18 as compare with synthetic DNA/DNA duplex templates such as poly (dA)-oligo (dT)12-18. The enzyme can utilize the A-particle endogenous RNA as template as shown by analysis of the early and late DNA products of the endogenous reaction by CsSO4 isopycnic gradient centrifuation and hybridization of purified 70S or 35S A-particle RNA with the purified complementary DNA product. Approximately 50% of the A-particle complementary DNA also hybridized with oncornavirus RNA.  相似文献   

16.
A Hizi  A Gazit  D Guthmann    A Yaniv 《Journal of virology》1982,41(3):974-981
The RNA-dependent DNA polymerase purified from B77 avian sarcoma virus exhibited two distinct DNA-processing activities. The alpha and beta 2 isoenzymes possessed an endodeoxyribonuclease activity capable of nicking simian virus 40 superhelical DNA, whereas the alpha beta isoenzyme performed as an untwisting topoisomerase. Both activities associated with the three molecular forms of the retroviral DNA polymerase were dependent on the presence of either Mn2+ or Mg2+ ions. From analysis of the denaturated DNA products, it is apparent that the alpha and beta 2 isoenzymes introduced two nicks, one per each strand in the superhelical simian virus 40 DNA molecules, whereas the alpha beta polymerase converted these supercoiled molecules to the relaxed covalently closed circular form. The notion that the DNA-processing activities are located on the DNA polymerase molecules was supported by the following: (i) the three isoenzymes were of a high purity; (ii) the activities cosedimented in glycerol gradients with the DNA polymerase activities of the alpha, beta 2, and alpha beta molecular forms; and (iii) immunoglobulin directed against the purified polymerase immunoprecipitated the DNA-processing activities. Chemical treatments of the DNA polymerase molecules (with pyridoxalphosphate, iodoacetamide, and sulfhydryl reagents), which inhibited the polymerase activity, also suppressed the endonucleolytic and topoisomerase activities, suggesting that cystein and amino groups play an important role in the active sites of the DNA-processing activities as well.  相似文献   

17.
18.
DNA polymerases purified by the same procedure from four mammalian RNA viruses, simian sarcoma virus type 1, gibbon ape lymphoma virus, Mason-Pfizer monkey virus, and Rauscher murine leukemia virus are capable of transcribing heteropolymeric regions of viral 70S RNA without any other primer. In this reconstituted system the enzymes from simian sarcoma virus type 1, Mason-Pfizer monkey virus, and Rauscher murine leukemia virus transcribe viral 70S RNA almost as efficiently as the DNA polymerase from the avian myeloblastosis virus, but gibbon ape lymphoma virus DNA polymerase is approximately three-to fivefold less efficient. Although there is a substantial difference among the sizes of these DNA polymerases (160,000 daltons for the avian myeloblastosis virus enzyme, 110,000 daltons for the Mason-Pfizer monkey virus enzyme, and 70,000 daltons for the mammalian type C viral polymerases), the ability to transcribe viral 70S RNA is a characteristic common to these enzymes.  相似文献   

19.
Our studies, which are aimed at understanding the catalytic mechanism of the beta subunit of tryptophan synthase from Salmonella typhimurium, use site-directed mutagenesis to clarify the functional roles of several putative active site residues. Although previous chemical modification studies have suggested that histidine 86, arginine 148, and cysteine 230 are essential residues in the beta subunit, our present findings that beta subunits with single amino acid replacements at these positions have partial activity show that these 3 residues are not essential for catalysis or substrate binding. These conclusions are consistent with the recently determined three-dimensional structure of the tryptophan synthase alpha 2 beta 2 complex. Amino acid substitution of lysine 87, which forms a Schiff base with pyridoxal phosphate in the wild type beta subunit, yields an inactive form of the beta subunit which binds alpha subunit, pyridoxal phosphate, and L-serine. We also report a rapid and efficient method for purifying wild type and mutant forms of the alpha 2 beta 2 complex from S. typhimurium from an improved enzyme source. The enzyme, which is produced by a multicopy plasmid encoding the trpA and trpB genes of S. typhimurium expressed in Escherichia coli, is crystallized from crude extracts by the addition of 6% poly(ethylene glycol) 8000 and 5 mM spermine. This new method is also used in the accompanying paper to purify nine alpha 2 beta 2 complexes containing mutant forms of the alpha subunit.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号