首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The hemocytes of Scutigera coleoptrata were investigated by light and electron microscopy. Four types of hemocytes were identified: prohemocytes, plasmatocytes, granulocytes, and spherulocytes. Only granulocytes could be distinguished from the three other types by May-Grünwald staining, as this is the only hemocyte type demonstrating an eosinophilic reaction. Shape and size give further indications for distinguishing the cell types. In addition, differentiation is possible on the basis of their ultrastructure. However, only a combination of all three methods (staining and light and electron microscopy) allows clear separation of the cell types. As transitional stages between the cell types occur in S. coleoptrata, it is likely that prohemocytes, plasmatocytes, and granulocytes are ontogenetic stages of a single cell lineage. Special cell components and their possible functions are described. Plasmatocytes exocytose tubular structures that probably play a role in coagulation processes. These tubular structures develop in the grana of plasmatocytes. Also, a special arrangement of microtubules and microfilaments was demonstrated. For the first time interactions between hemocytes and tracheae are documented within the Chilopoda. It is assumed that the hemocytes meet their oxygen requirements directly from the tracheae. Phylogenetic implications of the results are discussed.  相似文献   

2.
In the notostigmophoran centipedes, two pairs of vesicular glands have evolved. These paired glands are situated in the first and second trunk segment and open via cuticular ducts in the upper part of the particular pleura. The vesicular glands of Scutigera coleoptrata were investigated using light and, for the first time, electron microscopical methods. The glands consist of wide sac‐like cavities that often appear vesicular. The epithelia of both glands are identically structured and consist of numerous glandular units. Each of these units consists of four different cells: a single secretory cell, a small intermediary cell, and one proximal and one distal canal cell. The intermediary cell forms a conducting canal and connects the secretory cell with the canal cells. Proximally, the intermediary cell bears microvilli, whereas the distal part is covered with a distinct cuticle. The cuticle is a continuation of the cuticle of the canal cells. This investigation shows that the ultrastructure of glandular units of the vesicular glands is comparable to that of the glandular units of other epidermal glands in Chilopoda and Diplopoda, although the glands look completely different in the light microscope. Thus, it is likely that the vesicular glands and epidermal glands share the same ground pattern. With regard to specific differences in the cuticular lining of the intermediary cells, a common origin of epidermal glands in Myriapoda and Hexapoda is not supported. J. Morphol. 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
The maxilla I-gland of Scutigera coleoptrata was investigated using light and electron microscopy methods. This is the first ultrastructural investigation of a salivary gland in Chilopoda. The paired gland opens via the hypopharynx into the foregut and extends up to the third trunk segment. The gland is of irregular shape and consists of numerous acini consisting of several gland units. The secretion is released into an arborescent duct system. Each acinus consists of multiple of glandular units. The units are composed of three cell types: secretory cells, a single intermediary cell, and canal cells. The pear-shaped secretory cell is invaginated distally, forming an extracellular reservoir lined with microvilli, into which the secretion is released. The intermediary cell forms a conducting canal and connects the secretory cell with the canal cell. Proximally, the intermediary cell bears microvilli, whereas the distal part is covered with a distinct cuticle. The cuticle is a continuation of the cuticle of the canal cells. This investigation shows that the structure of the glandular units of the salivary maxilla I-gland is comparable to that of the glandular units of epidermal glands. Thus, it is likely that in Chilopoda salivary glands and epidermal glands share the same ground pattern. It is likely that in compound acinar glands a multiplication of secretory and duct cells has taken place, whereas the number of intermediary cells remains constant. The increase in the number of salivary acini leads to a shifting of the secretory elements away from the epidermis, deep into the head. Comparative investigations of the different head glands provide important characters for the reconstruction of myriapod phylogeny and the relationships of Myriapoda and Hexapoda.  相似文献   

4.
The epidermal maxilla II-gland of Scutigera coleoptrata was investigated using light and electron microscopy. The glandular epithelium surrounds a spacious integumental cavity at the base of the maxilla II. The gland is formed as a compound gland organ that is composed of thousands of epidermal gland units. Each of them consists of four different cell types: a secretory cell, an accessory or intermediary cell, and a proximal and distal canal cell. The intermediary and the two canal cells form a conducting canal. Only in the most distal part of the intermediary cell is the canal lined by a cuticle. In the area of the two canal cells, the conducting canal is completely covered by a cuticle. The canal passes through the cuticle and opens into the spacious integumental cavity, which serves as a secretion reservoir. The structural organization of the epidermal maxilla II-gland was compared to that of other compound epidermal gland organs in Chilopoda and Diplopoda. All these glandular organs in Myriapoda share the same ground pattern.  相似文献   

5.
The maxillary organ of Scutigera coleoptrata was investigated using light microscopy, electron microscopy, and maceration techniques. Additionally, we compared the maxillary organ of S. coleoptrata with those of two other notostigmophoran centipedes, Parascutigera festiva and Allothereua maculata, using SEM. The maxillary organ is located inside the posterior coxal lobes of the first maxillae and extends posteriorly as sac-like pouches. The narrow epidermis of the maxillae is differentiated to form the epithelium of the maxillary organ. Two types of epithelia are distinguishable: a simple cuboidal epithelium of different height and differentiation (types I, II, IV) and a pseudostratified columnar epithelium (type III). These epithelia are covered by a highly specialized cuticle. The pseudostratified epithelium is the most prominent feature of the maxillary organ. It is covered with hundreds of setae, protruding deep into the maxillary organ. Two different types of setae can be distinguished, filiform and fusiform. The maxillary organ communicates with the oral cavity, the maxillary organ gland, the maxillary nephridium, and with a large number of epidermal glands that secrete into the maxillary organ. Epithelium III allows the extension of the maxillary organ when its pouches are filled with secretion. The maxillary organ is a complex multifunctional organ. The organ probably stores excretion from the maxillary nephridia and secretory fluid from the maxillary organ gland and other epidermal glands. The fluid is primarily required as preening fluid. The ammonia of the excretory fluid is thought to evaporate via the setae and the wide opening of the maxillary organ. It is likely that parts of the fluid can be reabsorbed by the animal via the oral cavity.  相似文献   

6.
7.
Summary In Lithobius forficatus each of the coxae of the four posterior trunk segments bear a pore field with several coxal pores. The surrounding single-layered epithelium is composed of four different cell types: the main epithelial cells having a fine-structural organization of transport cells with deep apical and basal folds of the cell surfaces and plasmalemma-mitochondrial complexes, junctional cells, exocrine glands, and the wall cells of the pore channel. The entire epithelium is separated from the hemolymph by an inner cellular sheath. It is assumed that the coxal organs participate in fluid uptake.  相似文献   

8.
Hemocyanins are large oligomeric copper-containing proteins that serve for the transport of oxygen in many arthropod species. While studied in detail in the Chelicerata and Crustacea, hemocyanins had long been considered unnecessary in the Myriapoda. Here we report the complete molecular structure of the hemocyanin from the common house centipede Scutigera coleoptrata (Myriapoda: Chilopoda), as deduced from 2D-gel electrophoresis, MALDI-TOF mass spectrometry, protein and cDNA sequencing, and homology modeling. This is the first myriapod hemocyanin to be fully sequenced, and allows the investigation of hemocyanin structure-function relationship and evolution. S. coleoptrata hemocyanin is a 6 x 6-mer composed of four distinct subunit types that occur in an approximate 2 : 2 : 1 : 1 ratio and are 49.5-55.5% identical. The cDNA of a fifth, highly diverged, putative hemocyanin was identified that is not included in the native 6 x 6-mer hemocyanin. Phylogenetic analyses show that myriapod hemocyanins are monophyletic, but at least three distinct subunit types evolved before the separation of the Chilopoda and Diplopoda more than 420 million years ago. In contrast to the situation in the Crustacea and Chelicerata, the substitution rates among the myriapod hemocyanin subunits are highly variable. Phylogenetic analyses do not support a common clade of Myriapoda and Hexapoda, whereas there is evidence in favor of monophyletic Mandibulata.  相似文献   

9.
The venom apparatus of Ethmostigmus rubripes, a generalized predator, consists of the telopodites of the postcephalic segment, the basal article of w which contains the venom gland. Within the gland, venom granules are concentrated in intracellular secretory granules, from which they are discharged into vacuoles in the cytoplasm of the secretory cells and thereafter by exocytosis into the lumen of the gland. A venom duct carries venom to the venom claw, which introduces it into prey via a subterminal pore on the outer curvature of the claw. Pits containing pegs, presumed to be sensory, are concentrated near grooves leading to a cutting ridge proximal to the point of the claw. The venom is toxic both to mammals and insects.  相似文献   

10.
The little known geophilomorph centipede Chilenophilus corralinus (Attems, 1903) (Myriapoda: Chilopoda, Geophilidae), a large geophilid species from South America is herein redescribed and illustrated based on new specimens collected in the Andes of Southern Chile. New morphological features of specific value are also given for the taxon. Chilenophilus corralinus is reported for the first time from the following Chilean localities: Region XIV (de Los Ríos region): Valdivia province: Pirihueico; camping “La Herradura”; Mafil. Region X (de Los Lagos region): Chiloé province: Chiloé Island. Llanquihue province: Parque Nacional Alerce Andino. Palena province: Hualaihué; Chaitén; Palena; Futaleufú.  相似文献   

11.
The lateral compound eye of Scutigera coleoptrata was examined by electron microscopy. Each ommatidium consists of a dioptric apparatus, formed by a cornea and a multipartite eucone crystalline cone, a bilayered retinula and a surrounding sheath of primary pigment and interommatidial pigment cells. With reference to the median eye region, each cone is made up of eight cone segments belonging to four cone cells. The nuclei of the cone cells are located proximally outside the cone near the transition area between distal and proximal retinula cells. The connection between nuclear region and cone segment is via a narrow cytoplasmic strand, which splits into two distal cytoplasmic processes. Additionally, from the nuclear region of each cone cell a single cytoplasmic process runs in a proximal direction to the basement membrane. The bilayered rhabdom is usually made up of the rhabdomeres of 9–12 distal retinula cells and four proximal retinula cell. The pigment shield is composed of primary pigment cells (which most likely secrete the corneal lens) and interommatidial pigment cells. The primary pigment cells underlie the cornea and surround, more or less, the upper third of the crystalline cone. By giving rise to the cornea and by functioning as part of the pigment shield these pigment cells serve a double function. Interommatidial pigment cells extend from the cornea to the basement membrane and stabilise the ommatidium. In particular, the presence of cone cells, primary pigment cells as well as interommatidial pigment cells in the compound eye of S. coleoptrata is seen as an important morphological support for the Mandibulata concept. Furthermore, the phylogenetic significance of these cell types is discussed with respect to the Tetraconata.  相似文献   

12.
A comparative survey of the epipharynx and hypopharynx of lithobiomorph centipedes by light and scanning electron microscopy examines 18 species that sample the major groups of both families, the Lithobiidae and Henicopidae. Cladistic analysis of 11 characters of the peristomatic structures together with 29 additional morphological characters serves as a basis for interpreting the evolution of the lithobiomorph peristomatic structures. Scutigeromorpha is used for outgroup comparison in the framework of a homology scheme for the basic components of the epi- and hypopharynx. Compared to other chilopods, the monophyly of Lithobiomorpha is supported by a row of distinctive bottle-shaped gland openings at the border between the labral and clypeal parts of the epipharynx, as well as by a distinctive shape of the hypopharynx. Paired rows of elongate spines on the clypeal part of the epipharynx are an apomorphic character of Lithobiidae. The transformation of these spine rows into a few groups of branching spines is characteristic for the Monotarsobius group sensu Verhoeff. Similar groups of branching clypeal spines characterize the Anopsobiinae within Henicopidae, whereas Henicopinae possess a dense cluster of short, simple spines instead. The recently described genus Dzhungaria is resolved closer to Henicopinae than to Anopsobiinae, a hypothesis supported by a field of grooves on the medial labral part of the epipharynx. Monophyly of Henicopidae does not receive unique support from the peristomatic structures although two homoplastic characters contribute to this node; among these, the reduction of a median spine field between clypeal and labral parts of the epipharynx to a narrow transverse band also supports a close relationship between the Ezembius group and Hessebius within Lithobiidae. An Ezembius+Hessebius clade is additionally supported by the absence of a transverse bulge between the clypeal and labral parts of the epipharynx, a character otherwise present in all lithobiomorph species studied so far. Lithobius is resolved as polyphyletic, with different species being most closely related to such genera as Australobius, Hessebius and Pleurolithobius.  相似文献   

13.
Petr Dolej? 《ZooKeys》2015,(510):5-14
The centipede collection in the National Museum in Prague contains type material of 16 taxa (14 species and two subspecies), of which 15 were described by Luděk J. Dobroruka and one by Karl W. Verhoeff: Allothereua wilsonae Dobroruka, 1979; Chinobius alenae Dobroruka, 1980; Lithobius corrigendus Dobroruka, 1988; Lithobius creticus Dobroruka, 1977; Lithobius erythrocephalus mohelensis Dobroruka, 1959; Lithobius evae Dobroruka, 1958; Lithobius magurensis Dobroruka, 1971; Lithobius purkynei Dobroruka, 1957; Lithobius tatricus Dobroruka, 1958; Lithobius tatricus monounguis Dobroruka, 1958; Monotarsobius homolaci Dobroruka, 1971; Monotarsobius krali Dobroruka, 1979; Pachymerium dilottiae Dobroruka, 1976; Pachymerium hanzaki Dobroruka, 1976; Scolopendra aztecorum Verhoeff, 1934 and Strigamia olympica Dobroruka, 1977. Of these 16 taxa, five were described from the Czech Republic, three from Slovakia and eight from other countries (Greece, Iraq, Kyrgyzstan, Mexico, Nepal, Russia and Uzbekistan). The eight taxa described from the Czech and Slovak Republics are now considered as junior synonyms but the eight taxa described from the other countries are still valid.  相似文献   

14.
Scolopendra laeta Haase, 1887, which is widespread in the western and southern parts of Australia, is redescribed from the large number of available specimens. Five intraspecific forms are distinguished by their colour patterns, and their distributions are mapped.  相似文献   

15.
16.
The investigation of the antennae of Scutigera coleoptrata (Linnaeus, 1758) by scanning electron microscopy (SEM) revealed the presence of five types of sensilla: sensilla trichodea, beak‐like sensilla, cone‐shaped sensilla brachyconica on the terminal article, sensory cones at the antennal nodes, and the shaft organ. Alongside the presence and absence of antennal sensillar types, three unique characters were found in the Scutigeromorpha: the presence of long antennae with nodes bearing sensory cones, the presence of a bipartite shaft including the shaft organ, and the presence of beak‐like sensilla. Neuroanatomical data showed that the animals' brains are equipped with well‐developed primary olfactory and mechanosensory centers, suggesting that the antennae must be equipped with specialized sensilla to perceive chemosensory and mechanosensory cues. With the evidence provided in this article for the Scutigeromorpha, SEM data are available at last on the antennal sensilla for all five chilopod taxa, allowing a comparative discussion of antennal morphology in Chilopoda. J. Morphol., 2011. © 2011Wiley‐Liss, Inc.  相似文献   

17.
18.
The heart ultrastructure of 4 instars of Strigamia maritima (Myriapoda, Chilopoda, Geophilomorpha) (from 2 weeks to 5 years after hatching) is described and compared morphometrically. The single-layered, circular myofibers extend from middorsal to midventral regions, and are interconnected by short, interdigitating intercalated discs. The cardiac sarcomeres show distinct Z-, I-, and A- bands, but myofilaments do not form a well-ordered array. T-tubules originate from any part of the sarcolemma, forming a network of transverse and longitudinal tubules. The transverse tubules ramify in the heart of the foetus instar. The sarcoplasmic reticulum forms a loose sheath at Z-level, and participates in the formation of dyadic and triadic interior couplings. SR-tubules form peripheral couplings on both sides of the myocardium.Volume and length of the myofibers increase constantly during embryonic instars and the first 4 of 5 adult instars, accompanied with an increase in the volume fraction of contractile elements and mitochondria. New sarcomeres are formed abluminally and distally in the fibers, and sarcomeres increase in diameter. Myofibrils become better aligned, longitudinally in the fiber. The growth rate is reduced in the 4th adult instar, and the rough sarcoplasmic reticulum disappears in the 5th instar.  相似文献   

19.
20.
Henk  Littlewood 《Journal of Zoology》1991,223(4):653-665
The water relations of the common brown centipede, Lithobius forficatus (L.), are examined with regard to the possible involvement of the coxal organs in water uptake. Centipedes with blocked and open coxal pores are subjected to a variety of dehydration and rehydration regimes and weight change over time measured. Weight loss and regain is related to body surface area and is not influenced by the coxal organs.
The conclusion of the paper is that the coxal organs of L. forficatus do not contribute significantly to the ability of these animals to recover water lost through cuticular transpiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号