首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Excised group II introns in yeast mitochondria appear as covalently closed circles under the electron microscope. We show that these circular molecules are branched and resemble the lariats arising through splicing of nuclear pre-mRNAs in yeast and higher eukaryotes. One member of this intron class (aI5c in the gene for cytochrome c oxidase subunit I) is capable of self-splicing in vitro, giving correct exon-exon ligation and resulting in the appearance of both linear and lariat forms of the excised intron. Nuclease digestion of the latter molecules reveals the presence of a complex oligonucleotide with the probable structure AGU, which thus resembles the branch point formed in the spliceosome-dependent reactions undergone by nuclear pre-mRNAs. Unlike group I introns, this group II intron is not demonstrably dependent on GTP for self-splicing and circularization of the isolated, linear intron is not observed. A model accounting for these observations is presented.  相似文献   

2.
3.
The mitochondrial gene coding for the large ribosomal RNA (21S) has been isolated from a rho- clone of Saccharomyces cerevisiae. A DNA segment of about 5500 base pairs has been sequenced which included the totality of the sequence coding for the mature ribosomal RNA and the intron. The mature RNA sequence corresponds to a length of 3273 nucleotides. Despite the very low guanine-cytosine content (20.5%), many stretches of sequence are homologous to the corresponding Escherichia coli 23S ribosomal RNA. The sequence can be folded into a secondary structure according to the general models for prokaryotic and eukaryotic large ribosomal RNAs. Like the E.coli gene, the mitochondrial gene contains the sequences that look like the eukaryotic 5.8S and the chloroplastic 4.5S ribosomal RNAs. The 5' and 3' end regions show a complementarity over fourteen nucleotides.  相似文献   

4.
Pseudouridylation of yeast ribosomal precursor RNA.   总被引:3,自引:2,他引:3       下载免费PDF全文
  相似文献   

5.
6.
Two-dimensional polyacrylamide gel electrophoresis can be used to identify structural forms of RNA such as linear RNA, circular RNA, interlocked circles and lariats. The procedure is based upon the characteristic migration behaviour of the degradation products derived from the intact structures present already before the start of the experiment or formed during or after electrophoresis in the first dimension. After autoradiography to detect the positions of the radiolabeled RNA molecules, circles broken during electrophoresis of the first dimension give rise to horizontal lines touching the diagonal formed by linear RNAs at a point corresponding to the length of the RNA circle from which it was derived. Products derived from interlocked RNA circles by breakage after completion of the first dimension appear on a vertical line underneath the intact complex and consist of free RNA circles and their linear derivatives. Broken lariats give rise to two lines depending on the location of the break. Lariats with broken tails are present on a line to a position that corresponds to the length of their tail and that runs parallel to the diagonal formed by linear products. Lariats with a broken eye form a line running from the position of the intact product to the diagonal formed by the linear RNAs.  相似文献   

7.
8.
Secondary methylation of yeast ribosomal precursor RNA.   总被引:9,自引:0,他引:9  
The timing of methylation of the ribosomal sequences of ribosomal precursor RNA (pre-rRNA) from the yeast Saccharomyces carlsbergensis was investigated by fingerprint analysis of the methylated oligonucleotides derived from the various precursors. From the total of 37 ribose and 6 base-methyl groups found in 26-S rRNA, the two copies of the base-methylated nucleoside m3U as well as the doubly methylated sequence Um-Gm psi are not yet present in 37-S RNA, the predominant common precursor of 26-S and 17-S rRNA. Introduction of these methyl groups into the ribosomal sequences appears to take place at the level of 29-S pre-rRNA, the immediate precursor to 26-S rRNA. From the total of 18 ribose-methylated and 6 base-methylated nucleosides found in 17-S rRNA, the latter group (one copy of m7G, the m62A-m62A- sequence and the hypermodified methylated nucleoside "mX") is completely missing in 37-S pre-rRNA. The methyl group of m7G is introduced into 18-S pre-rRNA, the direct precursor of 17-S rRNA, in the nucleus. The -m62A-m62A- sequence is methylated after transport of the 18-S pre-rRNA to the cytoplasm prior to the final maturation into 17-S rRNA.  相似文献   

9.
Oligonucleotide-directed mutagenesis has been used to alter highly conserved sequences within the intervening sequence (IVS) of the Tetrahymena large ribosomal RNA precursor. Mutations within either sequence element 9L or element 2 eliminate splicing activity under standard in vitro splicing conditions. A double mutant with compensatory base changes in elements 9L and 2 has accurate splicing activity restored. Thus, the targeted nucleotides of elements 9L and 2 base-pair with one another in the IVS RNA, and pairing is important for self-splicing. Mutant splicing activities are restored by increased magnesium ion concentrations, supporting the conclusion that the role of the targeted bases in splicing is primarily structural. Based on the temperature dependence, we propose that a conformational switch involving pairing and unpairing of elements 9L and 2 is required for splicing.  相似文献   

10.
11.
12.
13.
14.
We have characterized a 1.5 kb RNA species in T. thermophila macronuclei previously found in vivo and including intron sequences linked to the 3' exon. This IVS-3' exon RNA could be detected in gels as a discrete molecule only after denaturation of nuclear RNA. After addition of 32P-GTP, as splicing cofactor in a nuclear in vitro system, the IVS-3' exon RNA was labeled at its 5' terminus, as was the by-product of splicing, the excised IVS RNA. The time course of labeling indicates that the IVS-3' exon RNA acts like a reaction intermediate and specifically a kinetic precursor to IVS RNA. Partial nuclease digestions showed that the IVS-3' exon RNA and the IVS RNA have the same 5' terminal sequence. In addition the IVS-3' exon RNA can release the 15-mer oligonucleotide cleaved off during circularization of IVS RNA under conditions of high temperature. Taken together, the structural, functional, and kinetic properties of the IVS-3' exon RNA strongly suggest that it represents a previously postulated in vivo intermediate in the splicing pathway.  相似文献   

15.
16.
The DNA sequences of the intergenic region between the 17S and 5.8S rRNA genes of the ribosomal RNA operon in yeast has been determined. In this region the 37S ribosomal precursor RNA is specifically cleaved at a number of sites in the course of the maturation process. The exact position of these processing sites has been established by sequence analysis of the terminal fragments of the respective RNA species. There appears to be no significant complementarity between the sequences surrounding the two termini of the 18S secondary precursor RNA nor between those surrounding the two termini of 17S mature rRNA. This finding implies that the processing of yeast 37S ribosomal precursor RNA is not directed by a double-strand specific ribonuclease previously shown to be involved in the processing of E. coli ribosomal precursor RNA [see Refs 1,2]. The processing sites of yeast ribosomal precursor RNA described in the present paper are all flanked at one side by a very [A+T]-rich sequence. In addition, sequence repeats are found around the processing sites in this precursor RNA. Finally, sequence homologies are present at the 3'-termini [6 nucleotides] and the 5'-termini [13 nucleotides] of a number of mature rRNA products and intermediate ribosomal RNA precursors. These structural features are discussed in terms of possible recognition sites for the processing enzymes.  相似文献   

17.
18.
19.
Two linked genetic loci, rib 2 and rib 3, of yeast mitochondrial genome are the sites of mutations that confer resistance to erythromycin and/or spiramycin. We have examined two mutations at the rib 2 locus. Mutation ER354 was found at the nucleotide position 3993 of the large ribosomal RNA gene; it corresponded to a C to G transversion leading to a double resistance to erythromycin and spiramycin. Mutation SR551 was found also at the same position, but the C was replaced by a T, conferring resistance to spiramycin only. Rib 2 and rib 3 are 836 base pairs apart on the gene sequence, but are very close to each other in the secondary structure of ribosomal RNA.  相似文献   

20.
We have determined the N-termini of 26 proteins of the large ribosomal subunit from yeast mitochondria by direct amino acid micro-sequencing. The N-terminal sequences of proteins YmL33 and YmL38 showed a significant similarity to eubacterial ribosomal (r-) proteins L30 and L14, respectively. In addition, several proteins could be assigned to their corresponding yeast nuclear genes. Based on a comparison of the protein sequences deduced from the corresponding DNA regions with the N-termini of the mature proteins, the putative leader peptides responsible for mitochondrial matrix-targeting were compiled. In most leader sequences a relative abundance of aromatic amino acids, preferentially phenylalanine, was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号