首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proper folding of tubulins prior to their incorporation into microtubules requires a group of conserved proteins called cofactors A to E. In fission yeast, homologues of these cofactors (at least B, D and E) are necessary for the biogenesis of microtubules and for cell viability. Here we show that the temperature-sensitive alp11-924 mutant, which is defective in the cofactor B homologue, contains an opal nonsense mutation, which results in the production of a truncated Alp11B protein (Alp111–118). We isolated a tRNATrp gene as a multicopy suppressor of this mutation, which rescues alp11-924 by read-through of the nonsense codon. The truncated Alp111–118 protein lacks the C-terminal half of Alp11B, consisting of a central coiled-coil region and the distal CLIP-170 domain found in a number of proteins involved in microtubule functions. Both of these domains are required for the maintenance of microtubule architecture in vivo. Detailed functional analyses lead us to propose that Alp11B comprises three functional domains: the N-terminal half executes the essential function, the central coiled-coil region is necessary for satisfactory maintenance of cellular α-tubulin levels, and the C-terminal CLIP-170 domain is required for efficient binding to α-tubulin. Received: 29 November 1999 / Accepted: 18 April 2000  相似文献   

2.
Supplying the appropriate amount of correctly folded α/β-tubulin heterodimers is critical for microtubule dynamics. Formation of assembly-competent heterodimers is remarkably elaborate at the molecular level, in which the α- and β-tubulins are separately processed in a chaperone-dependent manner. This sequential step is performed by the tubulin-folding cofactor pathway, comprising a specific set of regulatory proteins: cofactors A–E. We identified the fission yeast cofactor: the orthologue of cofactor C, Tbc1. In addition to its roles in tubulin folding, Tbc1 acts as a GAP in regulating Alp41/Arl2, a highly conserved small GTPase. Of interest, the expression of GDP- or GTP-bound Alp41 showed the identical microtubule loss phenotype, suggesting that continuous cycling between these forms is important for its functions. In addition, we found that Alp41 interacts with Alp1D, the orthologue of cofactor D, specifically when in the GDP-bound form. Intriguingly, Alp1D colocalizes with microtubules when in excess, eventually leading to depolymerization, which is sequestered by co-overproducing GDP-bound Alp41. We present a model of the final stages of the tubulin cofactor pathway that includes a dual role for both Tbc1 and Alp1D in opposing regulation of the microtubule.  相似文献   

3.
We have screened for temperature-sensitive (ts) fission yeast mutants with altered polarity (alp1–15). Genetic analysis indicates that alp2 is allelic to atb2 (one of two α-tubulin genes) and alp12 to nda3 (the single β-tubulin gene). atb2+ is nonessential, and the ts atb2 mutations we have isolated are dominant as expected. We sequenced two alleles of ts atb2 and one allele of ts nda3. In the ts atb2 mutants, the mutated residues (G246D and C356Y) are found at the longitudinal interface between α/β-heterodimers, whereas in ts nda3 the mutated residue (Y422H) is situated in the domain located on the outer surface of the microtubule. The ts nda3 mutant is highly sensitive to altered gene dosage of atb2+; overexpression of atb2+ lowers the restrictive temperature, and, conversely, deletion rescues ts. Phenotypic analysis shows that contrary to undergoing mitotic arrest with high viability via the spindle assembly checkpoint as expected, ts nda3 mutants execute cytokinesis and septation and lose viability. Therefore, it appears that the ts nda3 mutant becomes temperature lethal because of irreversible progression through the cell cycle in the absence of activating the spindle assembly checkpoint pathway.  相似文献   

4.
In humans, MOZART1 plays an essential role in mitotic spindle formation as a component of the γ-tubulin ring complex. We report that the fission yeast homologue of MOZART1, Mzt1/Tam4, is located at microtubule-organizing centers (MTOCs) and coimmunoprecipitates with γ-tubulin Gtb1 from cell extracts. We show that mzt1/tam4 is an essential gene in fission yeast, encoding a 64–amino acid peptide, depletion of which leads to aberrant microtubule structure, including malformed mitotic spindles and impaired interphase microtubule array. Mzt1/Tam4 depletion also causes cytokinesis defects, suggesting a role of the γ-tubulin complex in the regulation of cytokinesis. Yeast two-hybrid analysis shows that Mzt1/Tam4 forms a complex with Alp6, a fission yeast homologue of γ-tubulin complex protein 3 (GCP3). Biophysical methods demonstrate that there is a direct interaction between recombinant Mzt1/Tam4 and the N-terminal region of GCP3Alp6. Together our results suggest that Mzt1/Tam4 contributes to the MTOC function through regulation of GCP3Alp6.  相似文献   

5.
The production of native α/β tubulin heterodimer in vitro depends on the action of cytosolic chaperonin and several protein cofactors. We previously showed that four such cofactors (termed A, C, D, and E) together with native tubulin act on β-tubulin folding intermediates generated by the chaperonin to produce polymerizable tubulin heterodimers. However, this set of cofactors generates native heterodimers only very inefficiently from α-tubulin folding intermediates produced by the same chaperonin. Here we describe the isolation, characterization, and genetic analysis of a novel tubulin folding cofactor (cofactor B) that greatly enhances the efficiency of α-tubulin folding in vitro. This enabled an integrated study of α- and β-tubulin folding: we find that the pathways leading to the formation of native α- and β-tubulin converge in that the folding of the α subunit requires the participation of cofactor complexes containing the β subunit and vice versa. We also show that sequestration of native α-or β-tubulins by complex formation with cofactors results in the destabilization and decay of the remaining free subunit. These data demonstrate that tubulin folding cofactors function by placing and/or maintaining α-and β-tubulin polypeptides in an activated conformational state required for the formation of native α/β heterodimers, and imply that each subunit provides information necessary for the proper folding of the other.  相似文献   

6.
Microtubule dynamics are modulated by regulatory proteins that bind to their plus ends (+TIPs [plus end tracking proteins]), such as cytoplasmic linker protein 170 (CLIP-170) or end-binding protein 1 (EB1). We investigated the role of +TIPs during phagocytosis in macrophages. Using RNA interference and dominant-negative approaches, we show that CLIP-170 is specifically required for efficient phagocytosis triggered by αMβ2 integrin/complement receptor activation. This property is not observed for EB1 and EB3. Accordingly, whereas CLIP-170 is dynamically enriched at the site of phagocytosis, EB1 is not. Furthermore, we observe that CLIP-170 controls the recruitment of the formin mDia1, an actin-nucleating protein, at the onset of phagocytosis and thereby controls actin polymerization events that are essential for phagocytosis. CLIP-170 directly interacts with the formin homology 2 domain of mDia1. The interaction between CLIP-170 and mDia1 is negatively regulated during αMβ2-mediated phagocytosis. Our results unravel a new microtubule/actin cooperation that involves CLIP-170 and mDia1 and that functions downstream of αMβ2 integrins.  相似文献   

7.
Congenital human cytomegalovirus (HCMV) infection causes central nervous system structural abnormalities and functional disorders, affecting both astroglia and neurons with a pathogenesis that is only marginally understood. To better understand HCMV's interactions with such clinically important cell types, we utilized neural progenitor cells (NPCs) derived from neonatal autopsy tissue, which can be differentiated down either glial or neuronal pathways. Studies were performed using two viral isolates, Towne (laboratory adapted) and TR (a clinical strain), at a multiplicity of infection of 3. NPCs were fully permissive for both strains, expressing the full range of viral antigens (Ags) and producing relatively large numbers of infectious virions. NPCs infected with TR showed delayed development of cytopathic effects (CPE) and replication centers and shed less virus. This pattern of delay for TR infections held true for all cell types tested. Differentiation of NPCs was carried out for 21 days to obtain either astroglia (>95% GFAP+) or a 1:5 mixed neuron/astroglia population (β-tubulin III+/GFAP+). We found that both of these differentiated populations were fully permissive for HCMV infection and produced substantial numbers of infectious virions. Utilizing a difference in plating efficiencies, we were able to enrich the neuron population to ~80% β-tubulin III+ cells. These β-tubulin III+-enriched populations remained fully permissive for infection but were very slow to develop CPE. These infected enriched neurons survived longer than either NPCs or astroglia, and a small proportion were alive until at least 14 days postinfection. These surviving cells were all β-tubulin III+ and showed viral Ag expression. Surprisingly, some cells still exhibited extended processes, similar to mock-infected neurons. Our findings strongly suggest neurons as reservoirs for HCMV within the developing brain.  相似文献   

8.
The gene (palI) encoding isomaltulose synthase (PalI) from a soil bacterial isolate, Klebsiella sp. strain LX3, was cloned and characterized. PalI converts sucrose into isomaltulose, trehalulose, and trace amounts of glucose and fructose. Sequence domain analysis showed that PalI contains an α-amylase domain and (β/α)8-barrel structures, suggesting that it belongs to the α-amylase family. Sequence alignment indicated that the five amino acid residues of catalytic importance in α-amylases and glucosyltransferases (Asp241, Glu295, Asp369, His145, and His368) are conserved in PalI. Purified recombinant PalI displayed high catalytic efficiency, with a Km of 54.6 ± 1.7 mM for sucrose, and maximum activity (approximately 328.0 ± 2.5 U/mg) at pH 6.0 and 35°C. PalI activity was strongly inhibited by Fe3+ and Hg2+ and was enhanced by Mn2+ and Mg2+. The half-life of PalI was 1.8 min at 50°C. Replacement of selected amino acid residues by proline significantly increased the thermostability of PalI. Simultaneous replacement of Glu498 and Arg310 with proline resulted in an 11-fold increase in the half-life of PalI at 50°C.  相似文献   

9.
The microtubule cytoskeleton is crucial for the internal organization of eukaryotic cells. Several microtubule-associated proteins link microtubules to subcellular structures. A subclass of these proteins, the plus end–binding proteins (+TIPs), selectively binds to the growing plus ends of microtubules. Here, we reconstitute a vertebrate plus end tracking system composed of the most prominent +TIPs, end-binding protein 1 (EB1) and CLIP-170, in vitro and dissect their end-tracking mechanism. We find that EB1 autonomously recognizes specific binding sites present at growing microtubule ends. In contrast, CLIP-170 does not end-track by itself but requires EB1. CLIP-170 recognizes and turns over rapidly on composite binding sites constituted by end-accumulated EB1 and tyrosinated α-tubulin. In contrast to its fission yeast orthologue Tip1, dynamic end tracking of CLIP-170 does not require the activity of a molecular motor. Our results demonstrate evolutionary diversity of the plus end recognition mechanism of CLIP-170 family members, whereas the autonomous end-tracking mechanism of EB family members is conserved.  相似文献   

10.
Corrinoid (vitamin B12-like) cofactors contain various α-axial ligands, including 5,6-dimethylbenzimidazole (DMB) or adenine. The bacterium Salmonella enterica produces the corrin ring only under anaerobic conditions, but it can form “complete” corrinoids aerobically by importing an “incomplete” corrinoid, such as cobinamide (Cbi), and adding appropriate α- and β-axial ligands. Under aerobic conditions, S. enterica performs the corrinoid-dependent degradation of ethanolamine if given vitamin B12, but it can make B12 from exogenous Cbi only if DMB is also provided. Mutants isolated for their ability to degrade ethanolamine without added DMB converted Cbi to pseudo-B12 cofactors (having adenine as an α-axial ligand). The mutations cause an increase in the level of free adenine and install adenine (instead of DMB) as an α-ligand. When DMB is provided to these mutants, synthesis of pseudo-B12 cofactors ceases and B12 cofactors are produced, suggesting that DMB regulates production or incorporation of free adenine as an α-ligand. Wild-type cells make pseudo-B12 cofactors during aerobic growth on propanediol plus Cbi and can use pseudo-vitamin B12 for all of their corrinoid-dependent enzymes. Synthesis of coenzyme pseudo-B12 cofactors requires the same enzymes (CobT, CobU, CobS, and CobC) that install DMB in the formation of coenzyme B12. Models are described for the mechanism and control of α-axial ligand installation.  相似文献   

11.
Yersinia enterocolitica (Ye) evades the immune system of the host by injection of Yersinia outer proteins (Yops) via a type three secretion system into host cells. In this study, a reporter system comprising a YopE-β-lactamase hybrid protein and a fluorescent staining sensitive to β-lactamase cleavage was used to track Yop injection in cell culture and in an experimental Ye mouse infection model. Experiments with GD25, GD25-β1A, and HeLa cells demonstrated that β1-integrins and RhoGTPases play a role for Yop injection. As demonstrated by infection of splenocyte suspensions in vitro, injection of Yops appears to occur randomly into all types of leukocytes. In contrast, upon infection of mice, Yop injection was detected in 13% of F4/80+, 11% of CD11c+, 7% of CD49b+, 5% of Gr1+ cells, 2.3% of CD19+, and 2.6% of CD3+ cells. Taking the different abundance of these cell types in the spleen into account, the highest total number of Yop-injected cells represents B cells, particularly CD19+CD21+CD23+ follicular B cells, followed by neutrophils, dendritic cells, and macrophages, suggesting a distinct cellular tropism of Ye. Yop-injected B cells displayed a significantly increased expression of CD69 compared to non-Yop-injected B cells, indicating activation of these cells by Ye. Infection of IFN-γR (receptor)- and TNFRp55-deficient mice resulted in increased numbers of Yop-injected spleen cells for yet unknown reasons. The YopE-β-lactamase hybrid protein reporter system provides new insights into the modulation of host cell and immune responses by Ye Yops.  相似文献   

12.
Acetylation of α-tubulin on lysine 40 marks long-lived microtubules in structures such as axons and cilia, and yet the physiological role of α-tubulin K40 acetylation is elusive. Although genetic ablation of the α-tubulin K40 acetyltransferase αTat1 in mice did not lead to detectable phenotypes in the developing animals, contact inhibition of proliferation and cell–substrate adhesion were significantly compromised in cultured αTat1−/− fibroblasts. First, αTat1−/− fibroblasts kept proliferating beyond the confluent monolayer stage. Congruently, αTat1−/− cells failed to activate Hippo signaling in response to increased cell density, and the microtubule association of the Hippo regulator Merlin was disrupted. Second, αTat1−/− cells contained very few focal adhesions, and their ability to adhere to growth surfaces was greatly impaired. Whereas the catalytic activity of αTAT1 was dispensable for monolayer formation, it was necessary for cell adhesion and restrained cell proliferation and activation of the Hippo pathway at elevated cell density. Because α-tubulin K40 acetylation is largely eliminated by deletion of αTAT1, we propose that acetylated microtubules regulate contact inhibition of proliferation through the Hippo pathway.  相似文献   

13.
D Hirata  H Masuda  M Eddison    T Toda 《The EMBO journal》1998,17(3):658-666
The main structural components of microtubules are alpha- and beta-tubulins. A group of proteins called cofactors are crucial in the formation of assembly-competent tubulin molecules in vitro. Whilst an in vitro role is emerging for these cofactors, their biological functions in vivo remain to be established. In order to understand the fundamental mechanisms that determine cell polarity, we have screened for fission yeast mutants with altered polarity. Here we show that alp1+ encodes a homologue of cofactor D and executes a function essential for cell viability. A temperature-sensitive alp1 mutant shows a variety of defects including abnormal mitoses, loss of microtubule structures, displacement of the nucleus, altered growth polarity and asymmetrical cell division. Overexpression of Alp1 is lethal in wild-type cells, resulting in altered cell shape, but is rescued by co-overexpression of beta-tubulin. Alp1 co-localizes with microtubules, both interphase arrays and mitotic spindles. Furthermore, Alp1 binds to and co-sediments with taxol (paclitaxel)-stabilized porcine microtubules. Our results suggest that, in addition to a function in the folding of beta-tubulin, cofactor D may play a vital role in microtubule-dependent processes as a microtubule-associated protein.  相似文献   

14.
The endoplasmic reticulum (ER) is not only a home for folding and posttranslational modifications of secretory proteins but also a reservoir for intracellular Ca2+. Perturbation of ER homeostasis contributes to the pathogenesis of various neurodegenerative diseases, such as Alzheimer''s and Parkinson diseases. One key regulator that underlies cell survival and Ca2+ homeostasis during ER stress responses is inositol-requiring enzyme 1α (IRE1α). Despite extensive studies on this ER membrane-associated protein, little is known about the molecular mechanisms by which excessive ER stress triggers cell death and Ca2+ dysregulation via the IRE1α-dependent signaling pathway. In this study, we show that inactivation of IRE1α by RNA interference increases cytosolic Ca2+ concentration in SH-SY5Y cells, leading to cell death. This dysregulation is caused by an accelerated ER-to-cytosolic efflux of Ca2+ through the InsP3 receptor (InsP3R). The Ca2+ efflux in IRE1α-deficient cells correlates with dissociation of the Ca2+-binding InsP3R inhibitor CIB1 and increased complex formation of CIB1 with the pro-apoptotic kinase ASK1, which otherwise remains inactivated in the IRE1α–TRAF2–ASK1 complex. The increased cytosolic concentration of Ca2+ induces mitochondrial production of reactive oxygen species (ROS), in particular superoxide, resulting in severe mitochondrial abnormalities, such as fragmentation and depolarization of membrane potential. These Ca2+ dysregulation-induced mitochondrial abnormalities and cell death in IRE1α-deficient cells can be blocked by depleting ROS or inhibiting Ca2+ influx into the mitochondria. These results demonstrate the importance of IRE1α in Ca2+ homeostasis and cell survival during ER stress and reveal a previously unknown Ca2+-mediated cell death signaling between the IRE1α–InsP3R pathway in the ER and the redox-dependent apoptotic pathway in the mitochondrion.  相似文献   

15.
Genetic evidence for interaction between eta- and beta-tubulins   总被引:1,自引:0,他引:1  
The thermosensitive allelic mutations sm19-1 and sm19-2 of Paramecium tetraurelia cause defective basal body duplication: growth at the nonpermissive temperature yields smaller and smaller cells with fewer and fewer basal bodies. Complementation cloning of the SM19 gene identified a new tubulin, eta-tubulin, showing low homology with each of the other five tubulins, α to , characterized in P. tetraurelia. In order to analyze η-tubulin functions, we used a genetic approach to identify interacting molecules. Among a series of extragenic suppressors of the sm19-1 mutation, the su3-1 mutation was characterized as an E288K substitution in the β-PT2 gene coding for a β-tubulin, while the mutation nocr1 conferring nocodazole resistance and localized in another β-tubulin gene, β-PT3, was shown to enhance the mutant phenotype. The interaction between η-tubulin and microtubules, revealed by genetic data, is supported by two further types of evidence: first, the mutant phenotype is rescued by taxol, which stabilizes microtubules; second, molecular modeling suggests that η-tubulin, like γ- and δ-tubulins, might be a microtubule minus-end capping molecule. The likely function of η-tubulin as part of a complex specifically involved in basal body biogenesis is discussed.  相似文献   

16.
The β-subunit of the dihydropyridine receptor (DHPR) enhances the Ca2+ channel and voltage-sensing functions of the DHPR. In skeletal myotubes, there is additional modulation of DHPR functions imposed by the presence of ryanodine receptor type-1 (RyR1). Here, we examined the participation of the β-subunit in the expression of L-type Ca2+ current and charge movements in RyR1 knock-out (KO), β1 KO, and double β1/RyR1 KO myotubes generated by mating heterozygous β1 KO and RyR1 KO mice. Primary myotube cultures of each genotype were transfected with various β-isoforms and then whole-cell voltage-clamped for measurements of Ca2+ and gating currents. Overexpression of the endogenous skeletal β1a isoform resulted in a low-density Ca2+ current either in RyR1 KO (36 ± 9 pS/pF) or in β1/RyR1 KO (34 ± 7 pS/pF) myotubes. However, the heterologous β2a variant with a double cysteine motif in the N-terminus (C3, C4), recovered a Ca2+ current that was entirely wild-type in density in RyR1 KO (195 ± 16 pS/pF) and was significantly enhanced in double β1/RyR1 KO (115 ± 18 pS/pF) myotubes. Other variants tested from the four β gene families (β1a, β1b, β1c, β3, and β4) were unable to enhance Ca2+ current expression in RyR1 KO myotubes. In contrast, intramembrane charge movements in β2a-expressing β1a/RyR1 KO myotubes were significantly lower than in β1a-expressing β1a/RyR1 KO myotubes, and the same tendency was observed in the RyR1 KO myotube. Thus, β2a had a preferential ability to recover Ca2+ current, whereas β1a had a preferential ability to rescue charge movements. Elimination of the double cysteine motif (β2a C3,4S) eliminated the RyR1-independent Ca2+ current expression. Furthermore, Ca2+ current enhancement was observed with a β2a variant lacking the double cysteine motif and fused to the surface membrane glycoprotein CD8. Thus, tethering the β2a variant to the myotube surface activated the DHPR Ca2+ current and bypassed the requirement for RyR1. The data suggest that the Ca2+ current expressed by the native skeletal DHPR complex has an inherently low density due to inhibitory interactions within the DHPR and that the β1a-subunit is critically involved in process.  相似文献   

17.
To enhance the therapeutic effects and decrease the adverse effects of arsenic on the treatment of acute promyelocytic leukemia, we investigated the co-effects of selenite (Se4+) and arsenite (As3+) on the apoptosis and differentiation of NB4 cells and primary APL cells. A 1.0-μM concentration of Se4+ prevented the cells from undergoing As3+-induced apoptosis by inhibiting As3+ uptake, eliminating As3+-generated reactive oxygen species, and repressing the mitochondria-mediated intrinsic apoptosis pathway. However, 4.0 μM Se4+ exerted synergistic effects with As3+ on cell apoptosis by promoting As3+ uptake, downregulating nuclear factor-кB, and activating caspase-3. In addition to apoptosis, 1.0 and 3.2 μM Se4+ showed contrasting effects on As3+-induced differentiation in NB4 cells and primary APL cells. The 3.2 μM Se4+ enhanced As3+-induced differentiation by promoting the degradation of promyelocytic leukemia protein–retinoic acid receptor-α (PML–RARα) oncoprotein, but 1.0 μM Se4+ did not have this effect. Based on mechanistic studies, Se4+, which is similar to As3+, might bind directly to Zn2+-binding sites of the PML RING domain, thus controlling the fate of PML–RARα oncoprotein.Acute promyelocytic leukemia (APL) is a subtype of human acute myeloid leukemia.1 The promyelocytic leukemia protein–retinoic acid receptor-α (PML–RARα) fusion protein, which is generated from a specific chromosome translocation t(15;17)(q22;q21), is the key driver of APL leukemogenesis.2 Arsenic trioxide (ATO), which has been successfully used in the treatment of APL, induces the catabolism of PML–RARα oncoprotein.3 ATO is one of the primary therapeutic agents for APL, but organ toxicity, especially for the liver and kidney, causes excessive pain for patients.4, 5 Studies on the toxicity of arsenic suggest that ATO metabolism increases its toxicity because of oxidative damage and generation of more toxic metabolites, including monomethylarsonous acid and dimethylarsinous acid.6, 7, 8, 9 Thus, identifying new therapeutics to decrease the adverse effects of ATO is necessary.ATO induces both apoptosis and differentiation in human APL cells.10 Apoptosis is an ordered cascade of enzymatic events.11 Studies on the mechanism of ATO-induced apoptosis in APL cells suggest that ATO promotes apoptosis through the mitochondria-mediated intrinsic pathway that is induced by oxidative stress and regulated by Bcl-2 family members.10, 12, 13 ATO can also induce apoptosis by inhibiting the nuclear factor-кB (NF-кB) pathway that regulates the expression of various survival proteins.14, 15 In addition to apoptosis, ATO can induce the differentiation of APL cells by degrading the PML–RARα fusion protein and activating the retinoic acid signaling pathway.10, 16 Zhang et al.16 reported that ATO induced the degradations of PML and PML–RARα oncoprotein by directly binding to PML. PML is a zinc-finger protein with a Cys-rich motif that contains a RING domain. The PML RING domain (PML-R) contains two Zn2+-binding sites (ZFs) and requires Zn2+ for autonomous folding.17 The conserved Cys12, Cys29, and Cys32 residues in PML-R-ZF1, and Cys24, Cys40, and Cys43 residues in PML-R-ZF2 are the binding sites for trivalent arsenic.16Selenium is an essential nutrient element that shows chemopreventive effect and anticancer potential.18 Li et al.19 suggested that high dose (5.0–20 μM) of selenite (Se4+) could induce the accumulation of reactive oxygen species (ROS) and the apoptosis of NB4 cells. Subsequently, Zuo et al.20 and Guan et al.21 confirmed that high concentrations of Se4+ induced the apoptosis of NB4 cells through an ROS-mediated pathway. However, the accumulation of ROS could induce adverse effects to noncancer tissues by causing oxidative damages.22 For cancer treatment, we attempt to increase the anticancer efficacy while decreasing the adverse effects. Thus far, few studies have investigated the effects of 2.0–4.0 μM Se4+ on the apoptosis and differentiation of human APL cells. Selenium exerts its biological functions dose-dependently.22 In addition, selenium has chemical properties and metabolic fates similar to those of arsenic. In consideration of the typical characteristics of ATO in the treatment of APL, we hypothesized that 2.0–4.0 μM Se4+ might induce some interesting changes in APL cells, such as differentiation and the degradation of PML–RARα.Combination therapy is widely used in cancer treatment. The relationship between selenium and arsenic is complex. Selenium and arsenic act as metabolic and toxic antagonists.23 Combining a low concentration of Se4+ with ATO might decrease the toxicity and increase the curative potency of ATO in the treatment of APL. Thus, it is of great significance to evaluate the effects of combining selenium with arsenic on the apoptosis and differentiation of human APL cells.In this study, we found dose-dependent contrasting effects of Se4+ on arsenite (As3+)-induced apoptosis and differentiation in NB4 cells and primary APL cells. A 4.0-μM concentration of Se4+ enhanced As3+-induced apoptosis through downregulation of NFB and activation of caspase-3, but 1.0 μM Se4+ failed to elicit these effects. At 2.0–4.0 μM, Se4+ induced cell differentiation and synergistically promoted As3+-induced cell differentiation. Mechanistic studies suggested that Se4+ might bind directly to PML-R in the form of divalent selenium (Se2+) to promote the degradation of PML–RARα oncoprotein.  相似文献   

18.
Induction of a functional subset of HIV-specific CD4+ T cells that is resistant to HIV infection could enhance immune protection and decrease the rate of HIV disease progression. CMV-specific CD4+ T cells, which are less frequently infected than HIV-specific CD4+ T cells, are a model for such an effect. To determine the mechanism of this protection, we compared the functional response of HIV gag-specific and CMV pp65-specific CD4+ T cells in individuals co-infected with CMV and HIV. We found that CMV-specific CD4+ T cells rapidly up-regulated production of MIP-1α and MIP-1β mRNA, resulting in a rapid increase in production of MIP-1α and MIP-1β after cognate antigen stimulation. Production of β-chemokines was associated with maturational phenotype and was rarely seen in HIV-specific CD4+ T cells. To test whether production of β-chemokines by CD4+ T cells lowers their susceptibility to HIV infection, we measured cell-associated Gag DNA to assess the in vivo infection history of CMV-specific CD4+ T cells. We found that CMV-specific CD4+ T cells which produced MIP-1β contained 10 times less Gag DNA than did those which failed to produce MIP-1β. These data suggest that CD4+ T cells which produce MIP-1α and MIP-1β bind these chemokines in an autocrine fashion which decreases the risk of in vivo HIV infection.  相似文献   

19.
The centrosome is the primary microtubule organizing centre of the cell. γ-tubulin is a core component of the centrosome and is required for microtubule nucleation and centrosome function. The recruitment of γ-tubulin to centrosomes is mediated by its interaction with NEDD1, a WD40-repeat containing protein. Here we demonstrate that NEDD1 is likely to be oligomeric in vivo and binds directly to γ-tubulin through a small region of just 62 residues at the carboxyl-terminus of the protein. This carboxyl-terminal domain that binds γ-tubulin has a helical structure and is a stable tetramer in solution. Mutation of residues in NEDD1 that disrupt binding to γ-tubulin result in a mis-localization of γ-tubulin away from the centrosome. Hence, this study defines the binding site on NEDD1 that is required for its interaction with γ-tubulin, and shows that this interaction is required for the correct localization of γ-tubulin.  相似文献   

20.
p-Cresol methylhydroxylases (PCMH) from aerobic and facultatively anaerobic bacteria are soluble, periplasmic flavocytochromes that catalyze the first step in biological p-cresol degradation, the hydroxylation of the substrate with water. Recent results suggested that p-cresol degradation in the strictly anaerobic Geobacter metallireducens involves a tightly membrane-bound PCMH complex. In this work, the soluble components of this complex were purified and characterized. The data obtained suggest a molecular mass of 124 ± 15 kDa and a unique αα′β2 subunit composition, with α and α′ representing isoforms of the flavin adenine dinucleotide (FAD)-containing subunit and β representing a c-type cytochrome. Fluorescence and mass spectrometric analysis suggested that one FAD was covalently linked to Tyr394 of the α subunit. In contrast, the α′ subunit did not contain any FAD cofactor and is therefore considered to be catalytically inactive. The UV/visible spectrum was typical for a flavocytochrome with two heme c cofactors and one FAD cofactor. p-Cresol reduced the FAD but only one of the two heme cofactors. PCMH catalyzed both the hydroxylation of p-cresol to p-hydroxybenzyl alcohol and the subsequent oxidation of the latter to p-hydroxybenzaldehyde in the presence of artificial electron acceptors. The very low Km values (1.7 and 2.7 μM, respectively) suggest that the in vivo function of PCMH is to oxidize both p-cresol and p-hydroxybenzyl alcohol. The latter was a mixed inhibitor of p-cresol oxidation, with inhibition constants of a Kic (competitive inhibition) value of 18 ± 9 μM and a Kiu (uncompetitive inhibition) value of 235 ± 20 μM. A putative functional model for an unusual PCMH enzyme is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号