共查询到20条相似文献,搜索用时 15 毫秒
1.
Structure of fumarate reductase on the cytoplasmic membrane of Escherichia coli. 总被引:5,自引:2,他引:5
下载免费PDF全文

B D Lemire J J Robinson R D Bradley D G Scraba J H Weiner 《Journal of bacteriology》1983,155(1):391-397
The terminal electron transfer enzyme fumarate reductase has been shown to be composed of a membrane-extrinsic catalytic dimer of 69- and 27-kilodalton (kd) subunits and a membrane-intrinsic anchor portion of 15- and 13-kd subunits. We prepared inverted membrane vesicles from a strain carrying the frd operon on a multicopy plasmid. When grown anaerobically on fumarate-containing medium, the membranes of this strain are highly enriched in fumarate reductase. When negatively stained preparations of these vesicles were examined with an electron microscope, they appeared to be covered with knob-like structures about 4 nm in diameter attached to the membrane by short stalks. Treatment of the membranes with chymotrypsin destroyed the 69-kd subunit, leaving the 27-, 15-, and 13-kd subunits bound to the membrane; these membranes appeared to retain remnants of the structure. Treatment of the membranes with 6 M urea removed the 69- and 27-kd subunits, leaving the anchor polypeptides intact. These vesicles appeared smooth and structureless. A functional four-subunit enzyme and the knob-like structure could be reconstituted by the addition of soluble catalytic subunits to the urea-stripped membranes. In addition to the vesicular structures, we observed unusual tubular structures which were covered with a helical array of fumarate reductase knobs. 相似文献
2.
J H Weiner B D Lemire R W Jones W F Anderson D G Scraba 《Journal of cellular biochemistry》1984,24(3):205-214
By a recombinant DNA approach we have prepared Escherichia coli cytoplasmic membranes that are highly enriched in the terminal electron transfer enzyme fumarate reductase. This enzyme is composed of four nonidentical subunits in equal molar ratio. A 69,000-dalton covalent flavin-containing subunit and a 27,000-dalton nonheme iron-containing subunit make up a membrane extrinsic catalytic domain. Two very hydrophobic subunits of 15,000 and 13,000 daltons make up the hydrophobic membrane anchor domain. Electron microscopy of negatively stained membranes shows a characteristic knob-and-stalk-type structure composed of the catalytic domain. The anchor polypeptides have been analyzed for hydrophobic segments and alpha-helical content and a model for their organization within the lipid bilayer is presented. The results reviewed in this paper suggest a model for the fumarate reductase complex in the cytoplasmic membrane. 相似文献
3.
Gary Cecchini Imke Schr?der Robert P Gunsalus Elena Maklashina 《Biochimica et biophysica acta》2002,1553(1-2):140-157
Succinate-ubiquinone oxidoreductase (SQR) as part of the trichloroacetic acid cycle and menaquinol-fumarate oxidoreductase (QFR) used for anaerobic respiration by Escherichia coli are structurally and functionally related membrane-bound enzyme complexes. Each enzyme complex is composed of four distinct subunits. The recent solution of the X-ray structure of QFR has provided new insights into the function of these enzymes. Both enzyme complexes contain a catalytic domain composed of a subunit with a covalently bound flavin cofactor, the dicarboxylate binding site, and an iron-sulfur subunit which contains three distinct iron-sulfur clusters. The catalytic domain is bound to the cytoplasmic membrane by two hydrophobic membrane anchor subunits that also form the site(s) for interaction with quinones. The membrane domain of E. coli SQR is also the site where the heme b556 is located. The structure and function of SQR and QFR are briefly summarized in this communication and the similarities and differences in the membrane domain of the two enzymes are discussed. 相似文献
4.
《BBA》2002,1553(1-2):140-157
Succinate-ubiquinone oxidoreductase (SQR) as part of the trichloroacetic acid cycle and menaquinol-fumarate oxidoreductase (QFR) used for anaerobic respiration by Escherichia coli are structurally and functionally related membrane-bound enzyme complexes. Each enzyme complex is composed of four distinct subunits. The recent solution of the X-ray structure of QFR has provided new insights into the function of these enzymes. Both enzyme complexes contain a catalytic domain composed of a subunit with a covalently bound flavin cofactor, the dicarboxylate binding site, and an iron–sulfur subunit which contains three distinct iron–sulfur clusters. The catalytic domain is bound to the cytoplasmic membrane by two hydrophobic membrane anchor subunits that also form the site(s) for interaction with quinones. The membrane domain of E. coli SQR is also the site where the heme b556 is located. The structure and function of SQR and QFR are briefly summarized in this communication and the similarities and differences in the membrane domain of the two enzymes are discussed. 相似文献
5.
Assembly of Escherichia coli fumarate reductase holoenzyme 总被引:1,自引:0,他引:1
The production and assembly of the four fumarate reductase polypeptides into holoenzyme was studied in vivo in a T7-promoter-conditional expression system. No posttranslational modification of any of the subunits was detected, although the ratio of polypeptides produced varied with the temperature at which expression occurred. FrdC and FrdD, the membrane anchor polypeptides, assembled rapidly into the membrane and then were capped with FrdA and FrdB in separate events. Truncation of the C-terminal domain of FrdD by insertion of transposon Tn5 into the frdD cistron interfered with membrane insertion of the anchor polypeptides and assembly of the holoenzyme. Proteolytic degradation of truncated FrdD was implicated in the production of a soluble FrdABC trimer. 相似文献
6.
Fumarate reductase of Escherichia coli is converted to a deactivated state when tightly bound by oxaloacetate (OAA). Incubation of the inhibited enzyme with anions or reduction of the enzyme by substrate restores both the activity of the enzyme and its sensitivity to thiol reagents. In these respects the enzyme behaves like cardiac succinate dehydrogenase. Close to an order of magnitude difference was found to exist between the affinities of OAA for the oxidized (KD approximately 0.12 microM) and reduced (KD approximately 0.9 microM) forms of fumarate reductase. Redox titrations of deactivated fumarate reductase preparations have confirmed that reductive activation, as in cardiac succinate dehydrogenase (B. A. C. Ackrell, E. B. Kearney, and D. Edmondson (1975) J. Biol. Chem. 250, 7114-7119), is the result of reduction of the covalently bound FAD moiety and not the non-heme iron clusters of the enzyme. However, the processes differed for the two enzymes; activation of fumarate reductase involved 2e- and 1H+, consistent with reduction of the flavin to the anionic hydroquinone form, whereas the process requires 2e- and 2H+ in cardiac succinate dehydrogenase. The reason for the difference is not known. The redox potential of the FAD/FADH2 couple in FRD (Em approximately -55 mV) was also slightly more positive than that in cardiac succinate dehydrogenase (-90 mV). 相似文献
7.
Purification and characterization of membrane-bound fumarate reductase from anaerobically grown Escherichia coli. 总被引:19,自引:0,他引:19
Fumarate reductase has been purified 100-fold to 95% homogeneity from the cytoplasmic membrane of Escherichia coli, grown anaerobically on a defined medium containing glycerol plus fumarate. Optimal solubilization of total membrane protein and fumarate reductase activity occurred with nonionic detergents having a hydrophobic-lipophilic balance (HLB) number near 13 and we routinely solubilized the enzyme with Triton X-100 (HLB number = 13.5). Membrane enzyme extracts were fractionated by hydrophobic-exchange chromatography on phenyl Sepharose CL-4B to yield purified enzyme. The enzyme whether membrane bound, in Triton extracts, or purified, had an apparent Km near 0.42 mM. Two peptides with molecular weights of 70 000 and 24 000, predent in 1:1 molar ratios, were identified by sodium dodecyl sulfate polyacrylamide slab-gel electrophoresis to coincide with enzyme activity. A minimal native molecular weight of 100 000 was calculated for fumarate reductase by Stephacryl S-200 gel filtration in the presence of sodium cholate. This would indicate that the enzyme is a dimer. The purified enzyme has low, but measurable, succinate dehydrogenase activity. 相似文献
8.
9.
10.
C Fronticelli E Bucci A Zachary B P Rosen 《Archives of biochemistry and biophysics》1986,249(2):579-587
Anaerobically grown cells of Escherichia coli harboring the plasmid pFRD63 over-produce fumarate reductase, a membrane-bound complex localized in the inner membrane of the cell, where this enzyme represents at least 90% of the total membrane proteins (B. D. Lemire, J. J. Robinson, and J. H. Weiner (1982) J. Bacteriol. 152, 1126-1131). Preparations of inner membrane fractions suspended in 40% sucrose are optically clear, allowing optical spectroscopic measurements. Circular dichroism spectra showed that between pH 6 and 11 the secondary structure of the enzyme is at least 55% in alpha helix and that above pH 11 the structure abruptly changes to a beta-like conformation. The same phenomenon is observed in samples solubilized in the nonionic detergent C12E9. Absorption spectra of the enzyme either membrane bound or solubilized in detergents or exposed to alkaline pH showed that the accessibility of the active site to solvent components is modulated by the interaction of the protein with the membrane. Solubilization of the membrane-bound enzyme with 1% Triton X-100 or C12E9 produced a decrease in ellipticity and in enzymatic activity. 相似文献
11.
R Cammack A Chapman J McCracken J B Cornelius J Peisach J H Weiner 《Biochimica et biophysica acta》1988,956(3):307-312
Electron spin-echo envelope modulation (ESEEM) spectroscopy was applied to the study of reduced Centre 1 of Escherichia coli fumarate reductase (succinate:(acceptor) oxidoreductase, EC 1.3.99.1). The ESEEM spectrum derived from stimulated (3-pulse) echo envelopes obtained at 8.8 GHz contained lines at 0.9, 2.1, 3.0 and 4.2 MHz in the g = 1.94 region. When studied at 11.4 GHz, these low-frequency components scale with magnetic field in a manner indicating interaction between the unpaired electron spin of the Fe-S cluster and a weakly coupled 14N nucleus. Spectral simulations of these ESEEM data yield nuclear quadrupole interaction parameters indicative of peptide nitrogen. For oxidized protein, the magnetic-field dependence of the linear electric-field effect (LEFE) for Centre 3 was measured, and the results confirm the presence of a [3Fe-4S] cluster in the protein. 相似文献
12.
Improved conversion of fumarate to succinate by Escherichia coli strains amplified for fumarate reductase. 总被引:2,自引:1,他引:2
下载免费PDF全文

Two recombinant plasmid Escherichia coli strains containing amplified fumarate reductase activity converted fumarate to succinate at significantly higher rates and yields than a wild-type E. coli strain. Glucose was required for the conversion of fumarate to succinate, and in the absence of glucose or in cultures with a low cell density, malate accumulated. Two-dimensional gel electrophoretic analysis of proteins from the recombinant DNA and wild-type strains showed that increased quantities of both large and small fumarate reductase subunits were expressed in the recombinant DNA strains. 相似文献
13.
Molybdenum effector of fumarate reductase repression and nitrate reductase induction in Escherichia coli. 总被引:3,自引:19,他引:3
下载免费PDF全文

In Escherichia coli the presence of nitrate prevents the utilization of fumarate as an anaerobic electron acceptor. The induction of the narC operon encoding the nitrate reductase is coupled to the repression of the frd operon encoding the fumarate reductase. This coupling is mediated by nitrate as an effector and the narL product as the regulatory protein (S. Iuchi and E. C. C. Lin, Proc. Natl. Acad. Sci. USA 84:3901-3905, 1987). The protein-ligand complex appears to control narC positively but frd negatively. In the present study we found that a molybdenum coeffector acted synergistically with nitrate in the regulation of frd and narC. In chlD mutants believed to be impaired in molybdate transport (or processing), full repression of phi(frd-lac) and full induction of phi(narC-lac) by nitrate did not occur unless the growth medium was directly supplemented with molybdate (1 microM). This requirement was not clearly manifested in wild-type cells, apparently because it was met by the trace quantities of molybdate present as a contaminant in the mineral medium. In chlB mutants, which are known to accumulate the Mo cofactor because of its failure to be inserted as a prosthetic group into proteins such as nitrate reductase, nitrate repression of frd and induction of narC were also intensified by molybdate supplementation. In this case a deficiency of the molybdenum coeffector might have resulted from enhanced feedback inhibition of molybdate transport (or processing) by the elevated level of the unutilized Mo cofactor. In addition, mutations in chlE, which are known to block the synthesis of the organic moiety of the Mo cofactor, lowered the threshold concentration of nitrate (< 1 micromole) necessary for frd repression and narC induction. These changes could be explained simply by the higher intracellular nitrate attainable in cells lacking the ability to destroy the effector. 相似文献
14.
Electron transfer from menaquinol to fumarate. Fumarate reductase anchor polypeptide mutants of Escherichia coli 总被引:3,自引:0,他引:3
D J Westenberg R P Gunsalus B A Ackrell G Cecchini 《The Journal of biological chemistry》1990,265(32):19560-19567
Fumarate reductase (FRD) of Escherichia coli is a four-subunit membrane-bound complex that is synthesized during anaerobic growth when fumarate is available as a terminal oxidant. The two subunits that comprise the catalytic domain, FrdA and FrdB, are anchored to the cytoplasmic membrane surface by two small hydrophobic polypeptides, FrdC and FrdD, which are also required for the enzyme to interact with quinone. To better define the individual roles of the FrdC and FrdD polypeptides in FRD complex formation and quinone binding, we selectively mutagenized the frdCD genes. Frd- strains were identified by their inability to grow on restrictive media, and the resulting mutant FRD complexes were isolated and biochemically characterized. The majority of the frdC and frdD mutations were identified as single base deletions that caused premature termination in either FrdC or FrdD and resulted in the loss of one or more of the predicted transmembrane helices. Two additional frdC mutants were characterized that contained single base changes resulting in single amino acid substitutions. All mutant enzyme complexes were incapable of oxidizing the physiological electron donor, menaquinol-6, in the presence of fumarate. Additionally, the ability of the mutant complexes to oxidize reduced benzyl viologen or reduce the ubiquinone analogue 2,3-dimethoxy-5-methyl-6-pentyl-1,4-benzoquinone and phenazine methosulfate with succinate as electron donor were also affected but to varying degrees. The separation of oxidative and reductive activities with quinones suggests there are two quinone binding sites in the fumarate reductase complex and that electron transfer occurs in two le- steps carried out at these separate sites. 相似文献
15.
The organization of hydrogenase in the cytoplasmic membrane of Escherichia coli. 总被引:4,自引:0,他引:4
下载免费PDF全文

A Graham 《The Biochemical journal》1981,197(2):283-291
The organization of the membrane-bound hydrogenase from Escherichia coli was studied by using two membrane-impermeant probes, diazotized [125I]di-iodosulphanilic acid and lactoperoxidase-catalysed radioiodination. The labelling pattern of the enzyme obtained from labelled spheroplasts was compared with that from predominantly inside-out membrane vesicles, after recovery of hydrogenase by immunoprecipitation. The labelling pattern of F1-ATPase was used as a control for labelling at the cytoplasmic surface throughout these experiments. Hydrogenase (mol.wt. approx. 63 000) is transmembranous. Crossed immunoelectrophoresis with anti-(membrane vesicle) immunoglobulins, coupled with successive immunoadsorption of the antiserum with spheroplasts, confirmed the location of hydrogenase at the periplasmic surface. Immunoadsorption with sonicated spheroplasts suggests that the enzyme is also exposed at the cytoplasmic surface. Inside-out vesicles were prepared by agglutination of sonicated spheroplasts, and the results of immunoadsorption using these vesicles confirms the location of hydrogenase at the cytoplasmic surface. 相似文献
16.
17.
Quinol-fumarate reductase (QFR) from Escherichia coli is a membrane-bound four-subunit respiratory protein that shares many physical and catalytic properties with succinate-quinone oxidoreductase (EC 1.3.99.1) commonly referred to as Complex II. The E. coli QFR has been overexpressed using plasmid vectors so that more than 50% of the cytoplasmic membrane fraction is composed of the four-subunit enzyme complex. The growth characteristics required for optimal levels of expression with minimal degradation by host cell proteases and oxidation factors were determined for the strains harboring the recombinant plasmid. The enzyme is extracted from the enriched membrane fraction using the nonionic detergent Thesit (polyoxyethylene(9)dodecyl ether) in a monodisperse form and then purified by a combination of anion-exchange, perfusion, and gel filtration chromatography. The purified enzyme is highly active and contains all types of redox cofactors expected to be associated with the enzyme. Crystallization screening of the purified QFR by vapor diffusion resulted in the formation of crystals within 24 h using a sodium citrate buffer and polyethylene glycol precipitant. The crystals contain the complete four-subunit QFR complex, diffract to 3.3 A resolution, and were found to be in space group P2(1)2(1)2(1) with unit cell dimensions a = 96.6 A, b = 138.1 A, and c = 275.3 A. The purification and crystallization procedures are highly reproducible and the general procedure may prove useful for Complex IIs from other sources. 相似文献
18.
Differences in protonation of ubiquinone and menaquinone in fumarate reductase from Escherichia coli
Maklashina E Hellwig P Rothery RA Kotlyar V Sher Y Weiner JH Cecchini G 《The Journal of biological chemistry》2006,281(36):26655-26664
Escherichia coli quinol-fumarate reductase operates with both natural quinones, ubiquinone (UQ) and menaquinone (MQ), at a single quinone binding site. We have utilized a combination of mutagenesis, kinetic, EPR, and Fourier transform infrared methods to study the role of two residues, Lys-B228 and Glu-C29, at the quinol-fumarate reductase quinone binding site in reactions with MQ and UQ. The data demonstrate that Lys-B228 provides a strong hydrogen bond to MQ and is essential for reactions with both quinone types. Substitution of Glu-C29 with Leu and Phe caused a dramatic decrease in enzymatic reactions with MQ in agreement with previous studies, however, the succinate-UQ reductase reaction remains unaffected. Elimination of a negative charge in Glu-C29 mutant enzymes resulted in significantly increased stabilization of both UQ-* and MQ-* semiquinones. The data presented here suggest similar hydrogen bonding of the C1 carbonyl of both MQ and UQ, whereas there is different hydrogen bonding for their C4 carbonyls. The differences are shown by a single point mutation of Glu-C29, which transforms the enzyme from one that is predominantly a menaquinol-fumarate reductase to one that is essentially only functional as a succinate-ubiquinone reductase. These findings represent an example of how enzymes that are designed to accommodate either UQ or MQ at a single Q binding site may nevertheless develop sufficient plasticity at the binding pocket to react differently with MQ and UQ. 相似文献
19.
The organization of formate dehydrogenase in the cytoplasmic membrane of Escherichia coli. 总被引:10,自引:0,他引:10
下载免费PDF全文

The arrangement of the proton-translocating formate dehydrogenase of the anaerobic respiratory chain of Escherichia coli within the cytoplasmic membrane was examined by direct covalent modification with non-membrane-permeant reagents. Three methods were employed, lactoperoxidase-catalysed radioiodination, labelling with diazotized [125I] di-iodosulphanilic acid and labelling with diazobenzene [35S] sulphonate. All three procedures yield consistent with the view that the two larger subunits of the enzyme, Mr 110000 and 32000, both occupy transmembranous locations within the membrane. In each case the modification of the Ca2+ or Mg2+-activated F1-ATPase was monitored, and all reagents employed correctly located this enzyme at the cytoplasmic face of the membrane. A procedure involving agglutination with specific antibodies is described which appears to fractionate membrane vesicles of mixed orientation into two populations, one with the same membrane orientation as that of spheroplasts and the other opposite orientation. 相似文献
20.
The location of the catalytic site of the membrane-bound respiratory fumarate reductase of Escherichia coli was investigated using mutants and inhibitors of dicarboxylic acid transport. Comparison of apparent Km and Vmax values for fumarate in intact cells and in inverted membrane vesicles showed that externally added fumarate was required to be transported across the cytoplasmic membrane prior to reduction. The catalytic site of fumarate reductase must therefore be located on the cytoplasmic face of the membrane. 相似文献