首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strains of three anaerobic rumen bacteria, Bacteroides ruminicola, Anaerovibrio lipolytica and Selenomonas ruminantium, were able to use extracellular H2 to reduce fumarate to succinate. Each bacterium possessed membrane-bound hydrogenase and fumarate reductase activity. Membrane-bound cytochrome b was reducible by H2 and oxidizable by fumarate in each bacterium. The apparent Km values for hydrogen of the hydrogenases were 4 . 5 x 10(-6) M, 1 . 4 x 10(-5) M and 4 . 4 x 10(-5) M for B. ruminicola, A. lipolytica and S. ruminantium, respectively. The apparent Km values for fumarate of the fumarate reductases were approximately 1 . 0 x 10(-4) M for each bacterium.  相似文献   

2.
Neutral red (NR) functioned as an electronophore or electron channel enabling either cells or membranes purified from Actinobacillus succinogenes to drive electron transfer and proton translocation by coupling fumarate reduction to succinate production. Electrically reduced NR, unlike methyl or benzyl viologen, bound to cell membranes, was not toxic, and chemically reduced NAD. The cell membrane of A. succinogenes contained high levels of benzyl viologen-linked hydrogenase (12.2 U), fumarate reductase (13.1 U), and diaphorase (109.7 U) activities. Fumarate reductase (24.5 U) displayed the highest activity with NR as the electron carrier, whereas hydrogenase (1.1 U) and diaphorase (0.8 U) did not. Proton translocation by whole cells was dependent on either electrically reduced NR or H2 as the electron donor and on the fumarate concentration. During the growth of Actinobacillus on glucose plus electrically reduced NR in an electrochemical bioreactor system versus on glucose alone, electrically reduced NR enhanced glucose consumption, growth, and succinate production by about 20% while it decreased acetate production by about 50%. The rate of fumarate reduction to succinate by purified membranes was twofold higher with electrically reduced NR than with hydrogen as the electron donor. The addition of 2-(n-heptyl)-4-hydroxyquinoline N-oxide to whole cells or purified membranes inhibited succinate production from H2 plus fumarate but not from electrically reduced NR plus fumarate. Thus, NR appears to replace the function of menaquinone in the fumarate reductase complex, and it enables A. succinogenes to utilize electricity as a significant source of metabolic reducing power.  相似文献   

3.
Fumarate reductase has been purified 100-fold to 95% homogeneity from the cytoplasmic membrane of Escherichia coli, grown anaerobically on a defined medium containing glycerol plus fumarate. Optimal solubilization of total membrane protein and fumarate reductase activity occurred with nonionic detergents having a hydrophobic-lipophilic balance (HLB) number near 13 and we routinely solubilized the enzyme with Triton X-100 (HLB number = 13.5). Membrane enzyme extracts were fractionated by hydrophobic-exchange chromatography on phenyl Sepharose CL-4B to yield purified enzyme. The enzyme whether membrane bound, in Triton extracts, or purified, had an apparent Km near 0.42 mM. Two peptides with molecular weights of 70 000 and 24 000, predent in 1:1 molar ratios, were identified by sodium dodecyl sulfate polyacrylamide slab-gel electrophoresis to coincide with enzyme activity. A minimal native molecular weight of 100 000 was calculated for fumarate reductase by Stephacryl S-200 gel filtration in the presence of sodium cholate. This would indicate that the enzyme is a dimer. The purified enzyme has low, but measurable, succinate dehydrogenase activity.  相似文献   

4.
Fumarate reductase of Escherichia coli has been shown to be a membrane-bound enzyme composed of a 69,000-dalton catalytic-flavin-containing subunit and a 27,000-dalton nonheme-iron-containing subunit. Using gene cloning and amplification techniques, we have observed two additional polypeptides encoded by the frd operon, with apparent molecular weights of 15,000 and 14,000, which are expressed when E. coli is grown anaerobically on glycerol plus fumarate. Expression of these two small polypeptides is necessary for the two large subunits to associate with the membrane. The four subunits remain associated in Triton X-100 extracts of the membrane, and a holoenzyme form of fumarate reductase containing one copy of each of the four polypeptides has been isolated. Unlike the well-characterized two-subunit form, the holoenzyme is not dependent on anions for activity and is not labile at alkaline pH. In these respects, it more closely resembles the membrane-bound activity.  相似文献   

5.
Crossed immunoelectrophoresis was used to analyze the components of membrane vesicles of anaerobically grown Escherichia coli. The number of precipitation lines in the crossed immunoelectrophoresis patterns of membrane vesicles isolated from E. coli grown anaerobically on glucose plus nitrate and on glycerol plus fumarate were 83 and 70, respectively. Zymogram staining techniques were used to identify immunoprecipitates corresponding to nitrate reductase, formate dehydrogenase, fumarate reductase, and glycerol-3-phosphate dehydrogenase in crossed immunoelectrophoresis reference patterns. The identification of fumarate reductase by its succinate oxidizing activity was confirmed with purified enzyme and with mutants lacking or overproducing this enzyme. In addition, precipitation lines were found for hydrogenase, cytochrome oxidase, the membrane-bound ATPase, and the dehydrogenases for succinate, malate, dihydroorotate, D-lactate, 6-phosphogluconate, and NADH. Adsorption experiments with intact and solubilized membrane vesicles showed that fumarate reductase, hydrogenase, glycerol-3-phosphate dehydrogenase, nitrate reductase, and ATPase are located at the inner surface of the cytoplasmic membrane; on the other hand, the results suggest that formate dehydrogenase is a transmembrane protein.  相似文献   

6.
An unusual fumarate reductase was purified from cell extracts of Methanobacterium thermoautotrophicum and partially characterized. Two coenzymes previously isolated from cell extracts, 2-mercaptoethane-sulfonic acid (HS-CoM) and N-(7-mercaptoheptanoyl)threonine-O3-phosphate (HS-HTP), were established as direct electron donors for fumarate reductase. By measuring the consumption of free thiol, we determined that fumarate reductase catalyzed the oxidation of HS-CoM and HS-HTP; by the direct measurement of succinate and the heterodisulfide of HS-CoM and HS-HTP (CoM-S-S-HTP), we established that these compounds were products of the fumarate reductase reaction. A number of thiol-containing compounds did not function as substrates for fumarate reductase, but this enzyme had high specific activity when HS-CoM and HS-HTP were used as electron donors. HS-CoM and HS-HTP were quantitatively oxidized by the fumarate reductase reaction, and results indicated that this reaction was irreversible. Additionally, by measuring formylmethanofuran, we demonstrated that the addition of fumarate to cell extracts activated CO2 fixation for the formation of formylmethanofuran. Results indicated that this activation resulted from the production of CoM-S-S-HTP (a compound known to be involved in the activation of formylmethanofuran synthesis) by the fumarate reductase reaction.  相似文献   

7.
Resolution of the fumarate reductase complex (ABCD) of Escherichia coli into reconstitutively active enzyme (AB) and a detergent preparation containing peptides C and D resulted in loss of quinone reductase activity, but the phenazine methosulfate or fumarate reductase activity of the enzyme was unaffected. An essential role for peptides C and D in quinone reduction was confirmed by restoration of this activity on recombination of the respective preparations. Neither peptide C nor peptide D by itself proved capable of permitting quinone reduction and membrane binding by the enzyme when E. coli cells were transformed with plasmids coding for the enzyme and the particular peptides. Transformation of a plasmid coding for all subunits resulted in a 30-fold increase in membrane-bound complex, which exhibited, however, turnover numbers for succinate oxidation and fumarate reduction that were intermediate between the high values characteristic of chromosomally produced complex and the relatively low values found for the isolated complex. It is also shown that preparations of the isolated complex and membrane-bound form of the enzyme, as obtained from anaerobically grown cells, are in the deactivated state owing to the presence of tightly bound oxalacetate and thus must be activated prior to assay.  相似文献   

8.
In the cattle filarial parasite Setaria digitata the mitochondria like particles have been shown to possess NADH dependent fumarate reduction coupled with site I electron transport associated phosphorylation. This reduction is catalysed by the fumarate reductase system. The Km for fumarate is 1.47 mM and that for NADH is 0.33 mM. This activity is sensitive to rotenone, antimycin A and o-Hydroxy diphenyl. One ATP is produced for each pair of electrons transferred to fumarate. The fumarate reductase system consisting of NADH-coenzyme Q reductase, cytochrome b like component(s) and succinate dehydrogenase/fumarate reductase is thus very important and hence specific inhibitors of the system may prove useful in the effective control of filariasis.  相似文献   

9.
Menaquinol-fumarate oxidoreductase of Escherichia coli is a four-subunit membrane-bound complex that catalyzes the final step in anaerobic respiration when fumarate is the terminal electron acceptor. The enzyme is structurally and catalytically similar to succinate dehydrogenase (succinate-ubiquinone oxidoreductase) from both procaryotes and eucaryotes. Both enzymes have been proposed to contain an essential cysteine residue at the active site based on studies with thiol-specific reagents. Chemical modification studies have also suggested roles for essential histidine and arginine residues in catalysis by succinate dehydrogenase. In the present study, a combination of site-directed mutagenesis and chemical modification techniques have been used to investigate the role(s) of the conserved histidine 232, cysteine 247, and arginine 248 residues of the flavorprotein subunit (FrdA) in active site function. A role for His-232 and Arg-248 of FrdA is shown by loss of both fumarate reductase and succino-oxidase activities following site-directed substitution of these particular amino acids. Evidence is also presented that suggests a second arginine residue may form part of the active site. Potential catalytic and substrate-binding roles for arginine are discussed. The effects of removing histidine-232 of FrdA are consistent with its proposed role as a general acid-base catalyst. The fact that succinate oxidation but not fumarate reduction was completely lost, however, might suggest that alternate proton donors substitute for His-232. The data confirm that cysteine 247 of FrdA is responsible for the N-ethylmaleimide sensitivity shown by fumarate reductase but is not required for catalytic activity or the tight-binding of oxalacetate, as previously thought.  相似文献   

10.
The membrane fraction of Bacillus subtilis catalyzes the reduction of fumarate to succinate by NADH. The activity is inhibited by low concentrations of 2-(heptyl)-4-hydroxyquinoline-N-oxide (HOQNO), an inhibitor of succinate: quinone reductase. In sdh or aro mutant strains, which lack succinate dehydrogenase or menaquinone, respectively, the activity of fumarate reduction by NADH was missing. In resting cells fumarate reduction required glycerol or glucose as the electron donor, which presumably supply NADH for fumarate reduction. Thus in the bacteria, fumarate reduction by NADH is catalyzed by an electron transport chain consisting of NADH dehydrogenase (NADH:menaquinone reductase), menaquinone, and succinate dehydrogenase operating in the reverse direction (menaquinol:fumarate reductase). Poor anaerobic growth of B. subtilis was observed when fumarate was present. The fumarate reduction catalyzed by the bacteria in the presence of glycerol or glucose was not inhibited by the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) or by membrane disruption, in contrast to succinate oxidation by O2. Fumarate reduction caused the uptake by the bacteria of the tetraphenyphosphonium cation (TPP+) which was released after fumarate had been consumed. TPP+ uptake was prevented by the presence of CCCP or HOQNO, but not by N,N'-dicyclohexylcarbodiimide, an inhibitor of ATP synthase. From the TPP+ uptake the electrochemical potential generated by fumarate reduction was calculated (Deltapsi = -132 mV) which was comparable to that generated by glucose oxidation with O2 (Deltapsi = -120 mV). The Deltapsi generated by fumarate reduction is suggested to stem from menaquinol:fumarate reductase functioning in a redox half-loop.  相似文献   

11.
Fumarate reductase activity of Streptococcus faecalis   总被引:1,自引:0,他引:1       下载免费PDF全文
Some characteristics of a fumarate reductase from Streptococcus faecalis are described. The enzyme had a pH optimum of 7.4; optimal activity was observed when the ionic strength of the phosphate buffer was adjusted to 0.088. The K(m) value of the enzyme for reduced flavin mononucleotide was 2 x 10(-4)m as determined with a 26-fold preparation. In addition to fumarate, the enzyme reduced maleate and mesaconate. No succinate dehydrogenase activity was detected, but succinate did act as an inhibitor of the fumarate reductase activity. Other inhibitors were malonate, citraconate, and trans-, trans-muconate. Metal-chelating agents did not inhibit the enzyme. A limited inhibition by sulfhydryl-binding agents was observed, and the preparations were sensitive to air oxidation and storage. Glycine, alanine, histidine, and possibly lysine stimulated fumarate reductase activity in the cell-free extracts. However, growth in media supplemented with glycine did not enhance fumarate reductase activity. The enzymatic activity appears to be constitutive.  相似文献   

12.
Interactions of oxaloacetate with Escherichia coli fumarate reductase   总被引:1,自引:0,他引:1  
Fumarate reductase of Escherichia coli is converted to a deactivated state when tightly bound by oxaloacetate (OAA). Incubation of the inhibited enzyme with anions or reduction of the enzyme by substrate restores both the activity of the enzyme and its sensitivity to thiol reagents. In these respects the enzyme behaves like cardiac succinate dehydrogenase. Close to an order of magnitude difference was found to exist between the affinities of OAA for the oxidized (KD approximately 0.12 microM) and reduced (KD approximately 0.9 microM) forms of fumarate reductase. Redox titrations of deactivated fumarate reductase preparations have confirmed that reductive activation, as in cardiac succinate dehydrogenase (B. A. C. Ackrell, E. B. Kearney, and D. Edmondson (1975) J. Biol. Chem. 250, 7114-7119), is the result of reduction of the covalently bound FAD moiety and not the non-heme iron clusters of the enzyme. However, the processes differed for the two enzymes; activation of fumarate reductase involved 2e- and 1H+, consistent with reduction of the flavin to the anionic hydroquinone form, whereas the process requires 2e- and 2H+ in cardiac succinate dehydrogenase. The reason for the difference is not known. The redox potential of the FAD/FADH2 couple in FRD (Em approximately -55 mV) was also slightly more positive than that in cardiac succinate dehydrogenase (-90 mV).  相似文献   

13.
Fumarate reductase from Escherichia coli functions both as an anaerobic fumarate reductase and as an aerobic succinate dehydrogenase. A site-directed mutation of E. coli fumarate reductase in which FrdB Pro-159 was replaced with a glutamine or histidine residue was constructed and overexpressed in a strain of E. coli lacking a functional copy of the fumarate reductase or succinate dehydrogenase complex. The consequences of these mutations on bacterial growth, assembly of the enzyme complex, and enzymatic activity were investigated. Both mutations were found to have no effect on anaerobic bacterial growth or on the ability of the enzyme to reduce fumarate compared with the wild-type enzyme. The FrdB Pro-159-to-histidine substitution was normal in its ability to oxidize succinate. In contrast, however, the FrdB Pro-159-to-Gln substitution was found to inhibit aerobic growth of E. coli under conditions requiring a functional succinate dehydrogenase, and furthermore, the aerobic activity of the enzyme was severely inhibited upon incubation in the presence of its substrate, succinate. This inactivation could be prevented by incubating the mutant enzyme complex in an anaerobic environment, separating the catalytic subunits of the fumarate reductase complex from their membrane anchors, or blocking the transfer of electrons from the enzyme to quinones. The results of these studies suggest that the succinate-induced inactivation occurs by the production of hydroxyl radicals generated by a Fenton-type reaction following introduction of this mutation into the [3Fe-4S] binding domain. Additional evidence shows that the substrate-induced inactivation requires quinones, which are the membrane-bound electron acceptors and donors for the succinate dehydrogenase and fumarate reductase activities. These data suggest that the [3Fe-4S] cluster is intimately associated with one of the quinone binding sites found n fumarate reductase and succinate dehydrogenase.  相似文献   

14.
The enzyme NADH-fumarate reductase is not found in mammalian cells but it is present in several parasitic protozoa including Trypanosoma cruzi, the parasite that causes Chagas' disease. This study shows that the drug 2-mercaptopyridine-N-oxide (MPNO) inhibits NADH-fumarate reductase purified from T. cruzi (ID50 = 35 microM). When added to intact cells, MPNO inhibited the growth of T. cruzi epimastigotes in culture (ID50 = 0.08 microM) as well as the infection of mammalian myoblasts by T. cruzi trypomastigotes (ID50 = 20 microM). At a concentration of 2.4 microM, MPNO also inhibited the growth of amastigotes (intracellular dividing forms) in cultured mammalian myoblasts. Supplementation of culture media with 5 mM succinate, the product of fumarate reductase, partially protected against the inhibition of the growth of epimastigotes by MPNO. Moreover, MPNO inhibited the accumulation of succinate in cultures of epimastigotes, as measured by high performance liquid chromatography. Although MPNO may have other intracellular targets in addition to fumarate reductase, these results support the hypothesis that compounds which inhibit the enzyme fumarate reductase may be potential chemotherapeutic agents against Chagas' disease.  相似文献   

15.
Escherichia coli produces two enzymes which interconvert succinate and fumarate: succinate dehydrogenase, which is adapted to an oxidative role in the tricarboxylic acid cycle, and fumarate reductase, which catalyzes the reductive reaction more effectively and allows fumarate to function as an electron acceptor in anaerobic growth. A glycerol plus fumarate medium was devised for the selection of mutants (frd) lacking a functional fumarate reductase by virtue of their inability to use fumarate as an anaerobic electron acceptor. Most of the mutants isolated contained less than 1% of the parental fumarate reduction activity. Measurements of the fumarate reduction and succinate oxidation activities of parental strains and frd mutants after aerobic and anaerobic growth indicated that succinate dehydrogenase was completely repressed under anaerobic conditions, the assayable succinate oxidation activity being due to fumarate reductase acting reversibly. Fumarate reductase was almost completely repressed under aerobic conditions, although glucose relieved this repression to some extent. The mutations, presumably in the structural gene (frd) for fumarate reductase, were located at approximately 82 min on the E. coli chromosome by conjugation and transduction with phage P1. frd is very close to the ampA locus, and the order of markers in this region was established as ampA-frd-purA.  相似文献   

16.
The mechanism of fumarate reduction in Geobacter sulfurreducens was investigated. The genome contained genes encoding a heterotrimeric fumarate reductase, FrdCAB, with homology to the fumarate reductase of Wolinella succinogenes and the succinate dehydrogenase of Bacillus subtilis. Mutation of the putative catalytic subunit of the enzyme resulted in a strain that lacked fumarate reductase activity and was unable to grow with fumarate as the terminal electron acceptor. The mutant strain also lacked succinate dehydrogenase activity and did not grow with acetate as the electron donor and Fe(III) as the electron acceptor. The mutant strain could grow with acetate as the electron donor and Fe(III) as the electron acceptor if fumarate was provided to alleviate the need for succinate dehydrogenase activity in the tricarboxylic acid cycle. The growth rate of the mutant strain under these conditions was faster and the cell yields were higher than for wild type grown under conditions requiring succinate dehydrogenase activity, suggesting that the succinate dehydrogenase reaction consumes energy. An orthologous frdCAB operon was present in Geobacter metallireducens, which cannot grow with fumarate as the terminal electron acceptor. When a putative dicarboxylic acid transporter from G. sulfurreducens was expressed in G. metallireducens, growth with fumarate as the sole electron acceptor was possible. These results demonstrate that, unlike previously described organisms, G. sulfurreducens and possibly G. metallireducens use the same enzyme for both fumarate reduction and succinate oxidation in vivo.  相似文献   

17.
An NADPH-dependent aldehyde reductase was purified from rat brain microsomes to electrophoretic homogeneity. The purified enzyme had a molecular weight of 75,000 and reduced long chain fatty aldehydes such as octanal and hexadecanal with higher affinity (Km values of 0.21 mM and 0.03 mM, respectively) than for various artificial carbonyl compounds such as p-nitrobenzaldehyde and p-nitroacetophenone (Km values of 0.31 mM and 1.4 mM, respectively). The purified microsomal aldehyde reductase also showed NADPH-cytochrome c reductase activity, and it could not be distinguished from NADPH-cytochrome c reductase in molecular weight (75,000), chromatographic behavior, electrophoretic mobility, or immunological properties. The solubilized microsomal fraction treated with steapsin lost the reductase activity for hexadecanal but not that for cytochrome c. These results suggest that the aldehyde reductase in brain microsomes is identical to NADPH-cytochrome c reductase and that a hydrophobic portion of the NADPH-cytochrome c reductase is required for the reduction of hexadecanal.  相似文献   

18.
The growth of the syntrophic propionate-oxidizing bacterium strain MPOB in pure culture by fumarate disproportionation into carbon dioxide and succinate and by fumarate reduction with propionate, formate or hydrogen as electron donor was studied. The highest growth yield, 12.2 g dry cells/mol fumarate, was observed for growth by fumarate disproportionation. In the presence of hydrogen, formate or propionate, the growth yield was more than twice as low: 4.8, 4.6, and 5.2 g dry cells/mol fumarate, respectively. The location of enzymes that are involved in the electron transport chain during fumarate reduction in strain MPOB was analyzed. Fumarate reductase, succinate dehydrogenase, and ATPase were membrane-bound, while formate dehydrogenase and hydrogenase were loosely attached to the periplasmic side of the membrane. The cells contained cytochrome c, cytochrome b, menaquinone-6 and menaquinone-7 as possible electron carriers. Fumarate reduction with hydrogen in membranes of strain MPOB was inhibited by 2-(heptyl)-4-hydroxyquinoline-N-oxide (HOQNO). This inhibition, together with the activity of fumarate reductase with reduced 2,3-dimethyl-1,4-naphtoquinone (DMNH2) and the observation that cytochrome b of strain MPOB was oxidized by fumarate, suggested that menequinone and cytochrome b are involved in the electron transport during fumarate reduction in strain MPOB. The growth yields of fumarate reduction with hydrogen or formate as electron donor were similar to the growth yield of Wolinella succinogenes. Therefore, it can be assumed that strain MPOB gains the same amount of ATP from fumarate reduction as W. succinogenes, i.e. 0.7 mol ATP/mol fumarate. This value supports the hypothesis that syntrophic propionate-oxidizing bacteria have to invest two-thirds of an ATP via reversed electron transport in the succinate oxidation step during the oxidation of propionate. The same electron transport chain that is involved in fumarate reduction may operate in the reversed direction to drive the energetically unfavourable oxidation of succinate during syntrophic propionate oxidation since (1) cytochrome b was reduced by succinate and (2) succinate oxidation was similarly inhibited by HOQNO as fumarate reduction. Received: 18 March 1997 / Accepted: 10 November 1997  相似文献   

19.
The rates of the oxidized (Eox) and reduced (Ered) (by NAD . H through the ubiquinone pool) succinate dehydrogenase inhibition by N-ethyl-maleimide are equal and obey pseudo-first order kinetics. The protection of the enzyme against irreversible alkylation was used to quantitate the dissociation constants for Eox and Ered complexes with fumarate, succinate and malonate under conditions when no intramolecular redox reactions might occur. the membrane-bound succinate dehydrogenase catalyzes the succinate : phenazine-methosulphate reductase reaction in the presence of thenoyltrifluoroacetone by a Slater-Bonner mechanism. A comparison of the constants measured by the protection with those derived from the steady-state kinetics shows that succinate affinity for Eox is about 10 times higher than that for Ered; the reverse relations were found for fumarate, whereas the affinity for malonate only slightly depends on the redox state of the enzyme. The data obtained suggest that the dicarboxylate binding at the active site induces changes in the enzyme redox potential. The surface charge does not contribute significantly to the energy of the dicarboxylate binding to the active site of the membrane-bound enzyme.  相似文献   

20.
Abstract The expression and distribution of fumarate reductase activity was examined in Shewanella putrefaciens MR-1. Fumarate reductase was expressed at very low levels in aerobically grown cell and was markedly induced by growth under anaerobic conditions. Cells were fractionated into soluble and purified membrane components by four different methods. For all four methods used, and in marked contrast to the membrane-bound fumarate reductases of other bacteria, ≧ 98% of the fumarate reductase activity was localized in the soluble fraction. In cells subjected to osmotic shock or treated with lysozyme and EDTA to form spheroplasts, the specific activity of fumarate reductase was highest in the periplasmic fraction, while the majority of total fumarate reductase activity was in the cytoplasmic fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号