首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The aim of this research was to examine nutrient limitation of phytoplankton in solar salt ponds of varying salinity at Useless Inlet in Western Australia. These ponds use solar energy to evaporate seawater for the purpose of commercial salt production. A combination of techniques involving water column nutrient ratios, comparisons of nutrient concentrations to concentration of magnesium ions and bioassays were used in the investigation. Comparisons of changes in dissolved inorganic nitrogen to phosphorus ratios and concentrations of dissolved inorganic nutrients against changes in concentrations of the conservative cation Mg2+ indicated that phytoplankton biomass was potentially nitrogen limited along the entire pond salinity gradient. Nutrient addition bioassays indicated that in low salinity ponds, phytoplankton was nitrogen limited but in high salinity ponds, phosphorus limited. This may be due to isolation of phytoplankton in bioassay bottles from in situ conditions as well as to changes in phytoplankton species composition between ponds, and the variable availability of inorganic and organic nutrient sources. The differences in limiting nutrient between methods indicate that phytoplankton cells may be proximally limited by nutrients that are not theoretically limiting at the pond scale. Dissolved organic nutrients constituted a large proportion of total nutrients, with concentrations increasing through the pond sequence of increasing salinity. From the change in nutrient concentrations in bioassay bottles, sufficient dissolved organic nitrogen may be available for phytoplankton uptake in low salinity ponds, potentially alleviating the dissolved inorganic nitrogen limitation of phytoplankton biomass. Guest Editors: J. John & B. Timms Salt Lake Research: Biodiversity and Conservation—Selected Papers from the 9th Conference of the International Society for Salt Lake Research  相似文献   

2.
王春忠  陈晓  郑建峰 《生态科学》2011,30(6):581-585
根据2007年3月至12月福建省兴化湾海域的水质监测结果,重点分析了该海域溶解无机氮(DIN)、溶解无机磷(DIP)的分布特征及其影响因素,并采用有机污染指数和富营养化指数对兴化湾海域的富营化水平进行了评价。结果表明:兴化湾海域富营养化主要污染物是DIN、DIP,其含量主要受径流排放和海洋浮游植物生长等因素的影响。春夏季节浮游植物生长繁殖旺盛,但雨水增多,最终导致了DIP、DIN含量的升高。秋季水温下降,浮游植物生长繁殖逐渐减弱,DIP、DIN的含量也逐渐升高。兴化湾富营养化水平加重,2007年的富营养化指数是2000年的5.7倍,主要体现在DIN、DIP等指标的升高。  相似文献   

3.
Phosphorus (P) is an essential nutrient for marine phytoplankton and indeed all life forms. Current data show that P availability is growth‐limiting in certain marine systems and can impact algal species composition. Available P occurs in marine waters as dissolved inorganic phosphate (primarily orthophosphate [Pi]) or as a myriad of dissolved organic phosphorus (DOP) compounds. Despite numerous studies on P physiology and ecology and increasing research on genomics in marine phytoplankton, there have been few attempts to synthesize information from these different disciplines. This paper is aimed to integrate the physiological and molecular information on the acquisition, utilization, and storage of P in marine phytoplankton and the strategies used by these organisms to acclimate and adapt to variations in P availability. Where applicable, we attempt to identify gaps in our current knowledge that warrant further research and examine possible metabolic pathways that might occur in phytoplankton from well‐studied bacterial models. Physical and chemical limitations governing cellular P uptake are explored along with physiological and molecular mechanisms to adapt and acclimate to temporally and spatially varying P nutrient regimes. Topics covered include cellular Pi uptake and feedback regulation of uptake systems, enzymatic utilization of DOP, P acquisition by phagotrophy, P‐limitation of phytoplankton growth in oceanic and coastal waters, and the role of P‐limitation in regulating cell size and toxin levels in phytoplankton. Finally, we examine the role of P and other nutrients in the transition of phytoplankton communities from early succession species (diatoms) to late succession ones (e.g., dinoflagellates and haptophytes).  相似文献   

4.
Increases in population and agriculture in coastal areas can result in increased nutrient inputs and alterations in the ratios of organic to inorganic nutrients in coastal waters. Such changes in coastal nutrient regimes can affect phytoplankton community structure by creating conditions favorable for growth and dominance of algae that were not dominant before. The effect that changes in ratios and concentrations of nutrients have on toxicity of harmful algal species is not well known. There seems to be a relationship; however, between nutrient stress and toxin production among harmful phytoplankton producing low-N toxins, e.g. Diarrhetic Shellfish Poisoning (DSP) toxins. Even less is known about the relationship between organic nutrient uptake and toxin production. Benthic species and species in coastal areas are probably exposed to greater fluxes of dissolved organic nitrogen (DON). In this study, benthic and planktonic species of Prorocentrum were grown on L1 media with the sole N-source varying among treatments as nitrate, ammonium, urea, L-glutamic acid, and high molecular weight natural DON. An ELISA specific to the DSP toxins, okadaic acid and 35-methylokadaic acid, was used to determine toxin production by each species when grown on the different N sources. Preliminary results indicate that some organic forms of N support growth as well as inorganic forms for Prorocentrum minimum , P. mexicanum , and P. hoffmannianum.  相似文献   

5.
We measured porewater profiles of inorganic (NH4 +, NO3 (+NO2 ), PO4 3– (hereafter referred to as DIP)) and organic (DON, DOP) nutrients in seagrass-vegetated sediments at two sites in a shallow bay in Bermuda within close proximity (200 m) but subject to different nutrient loading. At both sites, total dissolved and inorganic nutrient concentrations were usually 1–2 orders of magnitude higher in the sediments than in the water column, with the exception of NO3 . Organic N and P were significant components of the total dissolved nutrient pools both in the sediment porewater and in the overlying water column (up to 75% for DON and 40% for DOP), and may be important in meeting plant nutrient demands. We used two approaches to examine how well porewater nutrient concentrations reflected the relative availabilities of N and P for seagrasses: (1) a simple stoichiometric nutrient regeneration model based on the N:P ratio of decomposing organic matter and porewater NH4 + concentrations to predict porewater DIP, and (2) fitting of the porewater profiles to estimate rates of net nutrient production (or consumption), which reflects the balance between nutrient sources and sinks in the rhizosphere. The stoichiometric model indicated that sediment porewaters were depleted in P relative to N in the low-nutrient outer bay site, and enriched in P relative to N in the higher-nutrient inner bay site. These results are consistent with the mechanism of carbonate sediments in oligotrophic tropical environments being a strong sink for dissolved inorganic P and our previous work suggesting that nutrient enrichment causes P to become disproportionately more available than N. Net nutrient production rates of porewater P at both sites and N at the inner bay site were low (typically < 2%) relative to the nutrient demands of the seagrasses. The implications of the profile interpretation are two-fold: (1) the low rates of net nutrient production indicate diffusive losses from the root zone were insignificant and that nutrient turnover rates were high, except in the P-limited outer bay where N accumulated in sediment porewaters; and (2) because standing stock nutrient concentrations often represent a small fraction of the total nutrients cycled in the sediments, they are in many cases a poor indicator of nutrient availability. Based on our estimates of losses from the root zone, decomposition, and plant uptake we have constructed a rough budget for the cycling of P and N at our two sites.  相似文献   

6.
7.
Phosphorus (P) is an essential nutrient for marine phytoplankton as for other living organisms, and the preferred form, dissolved inorganic phosphate (DIP), is often quickly depleted in the sunlit layer of the ocean. Phytoplankton have developed mechanisms to utilize organic forms of P (DOP). Hydrolysis of DOP to release DIP by alkaline phosphatase is believed to be the most common mechanism of DOP utilization. Little effort has been made, however, to understand other potential molecular mechanisms of utilizing different types of DOP. This study investigated the bioavailability of glucose-6-phosphate (G6P) and its underlying molecular mechanism in the dinoflagellate Karenia mikimotoi. Suppression Subtraction Hybridization (SSH) was used to identify genes up- and down-regulated during G6P utilization compared to DIP condition. The results showed that G6P supported the growth and yield of K. mikimotoi as efficiently as DIP. Neither DIP release nor AP activity was detected in the cultures grown in G6P medium, however, suggesting direct uptake of G6P. SSH analysis and RT-qPCR results showed evidence of metabolic modifications, particularly that mitochondrial ATP synthase f1 gamma subunit and thioredoxin reductase were up-regulated while diphosphatase and pyrophosphatase were down-regulated in the G6P cultures. All the results indicate that K. mikimotoi has developed a mechanism other than alkaline phosphatase to utilize G6P.  相似文献   

8.
Increases in population and agriculture in coastal areas can result in increased nutrient inputs and alterations in the ratios of organic to inorganic nutrients in coastal waters. Such changes in coastal nutrient regimes can affect phytoplankton community structure by creating conditions favorable for growth and dominance of algae that were not dominant before. The effect that changes in ratios and concentrations of nutrients have on toxicity of harmful algal species is not well known. There seems to be a relationship; however, between nutrient stress and toxin production among harmful phytoplankton producing low‐N toxins, e.g. Diarrhetic Shellfish Poisoning (DSP) toxins. Even less is known about the relationship between organic nutrient uptake and toxin production. Benthic species and species in coastal areas are probably exposed to greater fluxes of dissolved organic nitrogen (DON). In this study, benthic and planktonic species of Prorocentrum were grown on L1 media with the sole N‐source varying among treatments as nitrate, ammonium, urea, L‐glutamic acid, and high molecular weight natural DON. An ELISA specific to the DSP toxins, okadaic acid and 35‐methylokadaic acid, was used to determine toxin production by each species when grown on the different N sources. Preliminary results indicate that some organic forms of N support growth as well as inorganic forms for Prorocentrum minimum, P. mexicanum, and P. hoffmannianum.  相似文献   

9.
Plant nutrients, with the exception of nitrogen, are ultimately derived from weathering of primary minerals. Traditional theories about the role of ectomycorrhizal fungi in plant nutrition have emphasized quantitative effects on uptake and transport of dissolved nutrients. Qualitative effects of the symbiosis on the ability of plants to access organic nitrogen and phosphorus sources have also become increasingly apparent. Recent research suggests that ectomycorrhizal fungi mobilize other essential plant nutrients directly from minerals through excretion of organic acids. This enables ectomycorrhizal plants to utilize essential nutrients from insoluble mineral sources and affects nutrient cycling in forest systems.  相似文献   

10.
Nearly two decades of seasonal dissolved inorganic nutrient-salinity distributions in northern San Francisco Bay estuary (1960–1980) illustrate interannual variations in effects of river flow (a nutrient source) and phytoplankton productivity (a nutrient sink). During winter, nutrient sources dominate the nutrient-salinity distribution patterns (nutrients are at or exceed conservative mixing concentrations). During summer, however, the sources and sinks are in close competition. In summers of wet years, the effects of increased river flow often dominate the nutrient distributions (nutrients are at or less than conservative mixing concentrations), whereas in summers of dry years, phytoplankton productivity dominates (the very dry years 1976–1977 were an exception for reasons not yet clearly known). Such source/sink effects also vary with chemical species. During summer the control of phytoplankton on nutrient distributions is apparently strongest for ammonium, less so for nitrate and silica, and is the least for phosphate. Furthermore, the strength of the silica sink (diatom productivity) is at a maximum at intermediate river flows. This relation, which is in agreement with other studies based on phytoplankton abundance and enumeration, is significant to the extent that diatoms are an important food source for herbivores.The balance or lack of balance between nutrient sources and sinks varies from one estuary to another just as it can from one year to another within the same estuary. At one extreme, in some estuaries river flow dominates the estuarine dissolved inorganic nutrient distributions throughout most of the year. At the other extreme, phytoplankton productivity dominates. In northern San Francisco Bay, for example, the phytoplankton nutrient sink is not as strong as in less turbid estuaries. In this estuary, however, river effects, which produce or are associated with near-conservative nutrient distributions, are strong even at flows less than mean-annual flow. Thus, northern San Francisco Bay appears to be an estuary in between the two extremes and is shifted closer to one extreme or the other depending on interannual variations in river flow.  相似文献   

11.
The New River Estuary, NC, is a nutrient-sensitive, eutrophic water body that is prone to harmful algal blooms. High annual loading from the watershed of varying nutrient forms, including inorganic phosphorus and inorganic and organic nitrogen, may be linked to the persistence of algal blooms in the estuary. In order to evaluate phytoplankton response to nutrient inputs, a series of in situ nutrient addition experiments were carried out during June 2010 to July 2011 on water from an estuarine site known to support algal blooms. Estuarine water was enriched with nutrients consisting of individual and combined sources of dissolved inorganic nitrogen, orthophosphate, urea, and a natural dissolved organic nitrogen (DON) addition derived from upstream New River water. The combined inorganic N and P addition most frequently stimulated phytoplankton biomass production as total chlorophyll a. The responses of diagnostic (of major algal groups) photopigments were also evaluated. Significant increases in peridinin (dinoflagellates), chlorophyll b (chlorophytes), and myxoxanthophyll (cyanobacteria) were most frequently promoted by additions containing riverine DON. Significant increases in zeaxanthin (cyanobacteria) were more frequently promoted by inorganic nitrogen additions, while increases in fucoxanthin (diatoms) and alloxanthin (cryptophytes) were not promoted consistently by any one nutrient treatment. Evaluating the impact of varying nutrient forms on phytoplankton community dynamics is necessary in order to develop strategies to avoid long-term changes in community structure and larger-scale changes in ecosystem condition.  相似文献   

12.
The uptake of inorganic nutrients by heterotrophic bacteria   总被引:25,自引:3,他引:22  
It is now well known that heterotrophic bacteria account for a large portion of total uptake of both phosphate (60% median) and ammonium (30% median) in freshwaters and marine environments. Less clear are the factors controlling relative uptake by bacteria, and the consequences of this uptake on the plankton community and biogeochemical processes, e.g., new production. Some of the variation in reported inorganic nutrient uptake by bacteria is undoubtedly due to methodological problems, but even so, uptake would be expected to vary because of variation in several parameters, perhaps the most interesting being dissolved organic matter. Uptake of ammonium by bacteria is very low whereas uptake of dissolved free amino acids (DFAA) is high in eutrophic estuaries (the Delaware Bay and Chesapeake Bay). The concentrations and turnover of DFAA are insufficient, however, in oligotrophic oceans where bacteria turn to ammonium and nitrate, although the latter only as a last resort. I argue here that high uptake of dissolved organic carbon, which has been questioned, is necessary to balance the measured uptake of dissolved inorganic nitrogen (DIN) in seawater culture experiments. What is problematic is that this DIN uptake exceeds bacterial biomass production. One possibility is that bacteria excrete dissolved organic nitrogen (DON). A recent study offers some support for this hypothesis. Lysis by viruses would also release DON.While ammonium uptake by heterotrophic bacteria has been hypothesized to affect phytoplankton community structure, other impacts on the phytoplankton and biomass production (both total and new) are less clear and need further work. Also, even though bacteria account for a very large fraction of phosphate uptake, how this helps to structure the plankton community has not been examined. What is clear is that the interactions between bacterial and phytoplankton uptake of inorganic nutrients are more complicated than simple competition.  相似文献   

13.
We aim to define the best nutrient limitation indicator predicting phytoplankton biomass increase as a result of nutrient enrichment (N, P, or both). We compare the abilities of different indicators, based on chemical measurements of nitrogen (N) and phosphorus (P) fractions in the initial plankton community, to predict the limiting factor for phytoplankton growth as inferred independently from short-term laboratory experiments on the same natural communities in a data set from NE Baltic Sea (Tamminen and Andersen, Mar Ecol Prog Ser 340:121–138, 2007). The best indicators had a true positive rate of about 80% for predicting both N and P limitation, but with a higher false positive rate for N than for P limitation (25 vs. 5%). Estimated threshold ratios for total nutrients (TN:TP) were substantially higher than the Redfield ratio, reflecting the relatively high amounts of biologically less available dissolved organic N in the study area. The best overall performing indicator, DIN:TP, had chlorophyll-response based threshold ratios far below Redfield, with N limitation below 2:1 and P limitation above 5:1 (by atoms). On the contrary, particulate N:P ratio was the overall worst predictor for N or P limitation, with values clustering around the Redfield N:P ratio (16:1, by atoms) independent of the limiting factor. Estimated threshold ratios based on inorganic nutrients (DIN:DIP) and so-called biologically available nutrients (BAN:BAP = (PON + DIN):(POP + DIP)) were also generally clearly above 16:1, indicating that the Redfield ratio rather reflects the transition from N limitation to combined N + P limitation, than to single limitation by P. Coastal systems are complex systems with regard to nutrient dynamics, historically considered to represent the transition from P-limited freshwater to N-limited marine systems. Our analysis shows that rather simple ratios reflect phytoplankton requirement for nutrients. Based on the high prediction performance, analytical considerations, and general data availability, the DIN:TP ratio appears to be the best indicator for inferring in situ N vs. P limitation of phytoplankton from chemical monitoring data.  相似文献   

14.
Although prokaryotes are small in size, they are a significant biomass component in aquatic planktonic ecosystems and play a major role in biogeochemical processes. A review of the recent literature shows that the relative importance of prokaryotes to material and energy fluxes is maximized in low-productivity (oligotrophic) ecosystems and decreases in high-productivity (eutrophic) ecosystems. We conclude that competition with eukaryotic autotrophs for dissolved nutrients and competition with phagotrophic heterotrophs and physical processes (sinking, photooxidation) for organic carbon (C) play important roles in determining the relative abundance and impact of prokaryotes in aquatic systems. Oligotrophic systems have low nutrient concentrations, with high proportions of dissolved nutrients in organic form, which favors prokaryotic heterotrophs over phytoplankton. Furthermore, a high proportion of the available organic C is dissolved rather than particulate, which favors prokaryotic heterotrophs over phagotrophic heterotrophs. In eutrophic systems, increased relative concentrations and loading of inorganic nutrients and increased relative concentrations of particulate organic C select for phytoplankton and phagotrophic heterotrophs over prokaryotic heterotrophs. Increased particle sinking fluxes and/or decreased excretion of organic carbon (EOC) may also decrease the relative importance of prokaryotic heterotrophs in eutrophic systems. In oligotrophic systems, interactions between autotrophs and heterotrophs are tightly coupled because the dominant heterotrophs are similar in size and growth rates, as well as having similar nutrient composition to the dominant autotrophs, small phytoplankton. In eutrophic systems, increased productivity passes through zooplankton that are larger and have slower growth rates than the autotrophs, leading to a greater potential for decoupled auto- and heterotrophic production and increased export production. Received 18 July 2000; Accepted 13 September 2001.  相似文献   

15.
The development of a filamentous, nitrogen-fixing cyanobacterial bloom was followed during July–August 1990 in a stratified basin in the central Gulf of Finland, Baltic Sea. Hydrography, dissolved inorganic, particulate and total nutrients, chlorophyll a, alkaline phosphatase activity, 32PO4-uptake and phytoplankton species were measured. The study period was characterized by wind-induced mixing events, followed by marked nutrient pulses and plankton community responses. Phosphate uptake was highest throughout the study period in the size fraction dominated by bacteria and picocyanobacteria (< 2 µm) and the proportion of uptake in the size fraction 2–10 µm remained low (2–6%). Higher phosphate turnover times were observed in a community showing signs of enhanced heterotrophic activity. The bloom of filamentous, nitrogen-fixing cyanobacteria Aphanizomenon flos-aquae was promoted by a nutrient pulse with an inorganic nutrient ratio (DIN:DIP) of 15. The results show that the quality, frequency and magnitude of the physically forced nutrient pulses have an important role in determining the relative share of the different modes of phosphorus utilization and hence in determining the cyanobacterial bloom intensity and species composition in the Baltic Sea.  相似文献   

16.
Phytoplankton and nutrients in the Helgoland region   总被引:3,自引:0,他引:3  
During recent decades, phytoplankton stock on the one hand and inorganic nutrients (P and bound N) on the other have increased considerably in the southern North Sea, as demonstrated at a permanent station (since 1962) near the island Helgoland. This correlation between phytoplankton and inorganic P and N need not have anything to do with causality; exceptional algal blooms have been observed and reported in the literature since in the 19th century. Furthermore, these increases (four-fold for phytoplankton and two-fold for nutrients) are in the same range as the fluctuations from year to year under different hydrographical conditions. A detailed investigation carried out in 1981 demonstrated the presence of a slowly growing phytoplankton population. Starting with a considerable stock of flagellates in spring, it reached a peak in cell numbers over a long reproduction period which contrasted with the normal duration of a spring bloom of diatoms. These processes were not related to a limited production by P or N. A considerable concentration of these nutrients was permanently available in the form of inorganic compounds. The total amount of nutrients surpassed by far the portion incorporated in the phytoplankton. This is a consequence of the fact that small organisms have a high metabolic rate. Therefore, the relation between stock and production (daily production ≈stock) is completely different from that known e.g. in agriculture. The nutrients exist during the vegetation period mainly in the form of dissolved organic matter that is accessible to plankton. The great dynamics of this system, including a phase shifting during the year between inorganic P, N, Si, and production, indicates the significance of permanent and fast remineralization. Calculations demonstrate that the natural nutrient content of seawater normally satisfies the demands of phytoplankton present in the North Sea area under study. Only in the more productive coastal region (salinity<30 associated with fresh water run-offs of low nutrient content — an unrealistic assumption in the German Bight) might some limitation be observed. For diatoms, silicate may represent a critical component, but a high dynamic force exists in the presence of small Si concentrations. Therefore, a lack of silicon must not represent any limitation; however, knowledge on the silicon system is insufficient up to now. Dedicated to Dr. Dr. h. c. Peter Kornmann on the occasion of his eightieth birthday.  相似文献   

17.
Lombardo  Paola  Cooke  G. Dennis 《Hydrobiologia》2003,497(1-3):79-90
High macrophyte density in shallow lakes is often associated with clear water, especially when the non-rooted, submerged angiosperm Ceratophyllum demersum is dominant. Lack of true roots and high surface area:volume ratio suggest that nutrient uptake from the water column by C. demersum may be high. Therefore, possible competition for nutrients, including phosphorus (P), could contribute to phytoplankton inhibition. C. demersum ability to absorb and store P at four nutrient levels (unenriched + three enrichment treatments) was investigated in a 34-day laboratory experiment using agar-based nutrient diffusing substrates (NDSs). P uptake rates and abatement potential by C. demersum were assessed from total phosphorus concentration (TP) patterns in the water column. Changes in C. demersum biomass (wet weight) also were determined. C. demersum took up P quickly. Some P release occurred during the experiment, especially under high nutrient conditions. Initial net P uptake by C. demersum was high, but medium-term (five weeks) average uptake was relatively low. Projected long-term net P uptake approached zero. Plant biomass loss and production of macrodetritus (plant fragments >1 mm) were highest in unenriched aquaria. Biomass loss in the lower enriched treatments was equally divided between loss as macrodetritus and as dissolved organic matter (DOM), but loss as DOM was four times higher than loss as macrodetritus in the highest nutrient treatment. The results suggest that medium- and long-term low phytoplankton biomass in C. demersum-rich lakes is achieved via mechanisms other than direct competition for nutrients from the water column.  相似文献   

18.
Three phytoplankton assemblages, with different C:N:P ratios of 314:55:1, 103:17:1, and 57:5.5:1 (by weight), were prepared by growing lake phytoplankton in artificial media with different N:P supply ratios and then decomposed under aerobic conditions for three months.There was no net release of dissolved inorganic phosphorus (DIP) from the phytoplankton assemblage with the highest C:N:P ratio, in contrast with an abundant liberation of DIP from that with the lowest C:N:P ratio. On the other hand, there was an abundant release of dissolved inorganic nitrogen (DIN) from the phytoplankton assemblage with the highest C:N:P ratio, in contrast with little or virtually no release of DIN from those with lower C:N:P ratios. Thus, it was concluded that the C:N:P ratio of phytoplankton is an important parameter to determine the relative amounts of DIP and DIN released, when they are decomposed under aerobic conditions.Contribution from Otsu Hydrobiological Station, Kyoto University, No. 316 (Foreign Language Series).Contribution from Otsu Hydrobiological Station, Kyoto University, No. 316 (Foreign Language Series).  相似文献   

19.
Prins  T. C.  Smaal  A. C. 《Hydrobiologia》1994,282(1):413-429
The fluxes of particulate and dissolved material between bivalve beds and the water column in the Oosterschelde estuary have been measured in situ with a Benthic Ecosystem Tunnel. On mussel beds uptake of POC, PON and POP was observed. POC and PON fluxes showed a significant positive correlation, and the average C:N ratio of the fluxes was 9.4. There was a high release of phosphate, nitrate, ammonium and silicate from the mussel bed into the water column. The effluxes of dissolved inorganic nitrogen and phosphate showed a significant correlation, with an average N:P ratio of 16.5. A comparison of the in situ measurements with individual nutrient excretion rates showed that excretion by the mussels contributed 31–85% to the total phosphate flux from the mussel bed. Ammonium excretion by the mussels accounted for 17–94% of the ammonium flux from the mussel bed. The mussels did not excrete silicate or nitrate. Mineralization of biodeposition on the mussel bed was probably the main source of the regenerated nutrients.From the in situ observations net budgets of N, P and Si for the mussel bed were calculated. A comparison between the uptake of particulate organic N and the release of dissolved inorganic N (ammonium + nitrate) showed that little N is retained by the mussel bed, and suggested that denitrification is a minor process in the mussel bed sediment. On average, only 2/3 of the particulate organic P, taken up by the mussel bed, was recycled as phosphate. A net Si uptake was observed during phytoplankton blooms, and a net release dominated during autumn. It is concluded that mussel beds increase the mineralization rate of phytoplankton and affect nutrient ratios in the water column. A comparison of N regeneration by mussels in the central part of the Oosterschelde estuary with model estimates of total N remineralization showed that mussels play a major role in the recycling of nitrogen.  相似文献   

20.
Mixotrophic organisms combine light, mineral nutrients, and prey as supplementary resources. Based on theoretical assumptions and field observations, we tested experimentally the hypothesis that mixotrophs may invade established plankton communities depending on the trophic status of the system, and investigated possible effects on food web structure, species diversity, and nutrient dynamics. To test our hypothesis, we inoculated the mixotrophic nanoflagellate Ochromonas tuberculata into established planktonic food webs, consisting of specialist phototrophs, specialist phagotrophs, and bacteria at different supplies of soluble inorganic nutrients and dissolved organic carbon. Oligotrophic systems facilitated the invasion of O. tuberculata in two different ways. First, the combination of photosynthesis and phagotrophy gave mixotrophs a competitive advantage over specialist phototrophs and specialist phagotrophs. Second, low nutrient supplies supported the growth of small plankton organisms that fell into the food size spectrum of mixotrophs. Conversely, high nutrient supplies prevented O. tuberculata from successfully invading the food webs. Two important conclusions were derived from our experiments. First, in contrast to a paradigm of ecology, specialization may not necessarily be the most successful strategy for survival under stable conditions. Indeed, the use of several resources with lower efficiency can be an equally, or even more, successful strategy in nature. Second, when limiting nutrients promote the growth of bacterio- and picophytoplankton, invading mixotrophs may have a habitat-ameliorating effect for higher trophic levels, gauged in terms of food quantity and quality. Using given resources more efficiently, O. tuberculata generated higher biomasses and expressed an increased nutritional value for potential planktivores, due to decreased cellular carbon to phosphorus (C:P) ratios compared to specialized plankton taxa. Our findings may help to explain why energy transfer efficiency between phytoplankton and higher trophic levels is generally higher in oligotrophic systems than in nutrient rich environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号