首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recent studies from this laboratory have shown that an antigen recognized by a monoclonal antibody (MAb 1223) displays a bimodal distribution of expression in development of the embryo of Strongylocentrotus purpuratus. This molecule is specifically localized to the primary mesenchyme cells of the embryo, but is also found within the egg. In the current study, immunoelectron microscopy was used to determine the subcellular distribution of the antigen and to determine its fate during early stages of development of the embryo. In eggs, the epitope recognized by MAb 1223 was localized to the cortical vesicles. Immunoblot analysis of an isolated cell surface complex (CSC) that contained the cortical vesicles revealed the presence of a 130-kDa protein, as well as immunoreactive components of higher molecular weight. Upon fertilization, the antigen was exocytosed from the cortical vesicles and became associated with the hyaline layer, the fertilization envelope, and the plasma membrane. Subsequently, the epitope could be detected within small vesicles and yolk platelets. By 60 min postfertilization, the amount of epitope detected intracellularly or in the perivitelline compartment was greatly reduced. At later stages of development, when formation of the embryonic skeleton occurred, the 1223 antigen was principally localized to the Golgi complex and to the syncytial cell surface of the primary mesenchyme cells. Thus, the results of this study suggest that in S. purpuratus the 1223 antigen is stored and secreted from the cortical vesicles of the egg, degraded after fertilization, and then later expressed on the surface of the primary mesenchyme cells.  相似文献   

3.
The fertilization-induced exocytosis of egg cortical granules (CGs) is responsible for a block to polyspermy, crucial to the viability of many species. The contents of mammalian CGs have been an elusive target for analysis because of picogram quantities of CG proteins. By using media enriched in secreted CG contents from calcium ionophore-induced eggs as an immunogen, a monoclonal antibody was raised that immunolocalized to structures in the mouse egg cortex with all the hallmarks of CGs. These structures were the correct size, absent from the region over the metaphase II spindle, and greatly reduced after fertilization. Double-labeling experiments confirmed that the antibody recognized the same population of CGs as those recognized by Lens culinaris agglutinin. On Western blots, the antibody primarily recognized a 32-kDa protein (and secondarily one at approximately 25 kDa) in mouse eggs. Analysis of biotin-labeled secreted proteins from activated eggs confirmed that CGs release only a small number of major proteins (45, 34, 32, 28, and approximately 20 kDa by SDS-PAGE). We therefore propose that the 32-kDa protein identified by this antibody is likely to correspond to the 32-kDa protein released from activated eggs and that it may be involved in the block to polyspermy. These methods should make it possible to generate additional antibodies to study the structure of CG components as well as their roles in the polyspermy block and CG biogenesis.  相似文献   

4.
Trypsin-like protease in sea urchin eggs is thought to reside in cortical granules since it is secreted at fertilization and has been isolated with cortical granule fractions from unfertilized eggs. A 35-kDa serine protease has been purified from Strongylocentrotus purpuratus eggs by soybean trypsin inhibitor-affinity chromatography. For this report the protease was localized by immunocytochemistry before and after fertilization, and its potential biological activity was examined by application of the isolated enzyme to the unfertilized egg surface. The protease was localized on sections by immunofluorescence and immunoelectron microscopy, and was found to reside in the spiral lamellae of S. purpuratus cortical granules and in the electron-dense stellate core of Arbacia punctulata granules. At fertilization the enzyme is secreted into the perivitelline space and accumulates only very briefly between the hyaline layer and the nascent fertilization envelope. Shortly thereafter the enzyme is lost from the perivitelline space and immunological reactivity is no longer associated with the egg surface. The 35-kDa cortical granule protease has vitelline delaminase activity but does not appear to destroy vitelline envelope sperm receptors as judged by the fertility of protease-treated eggs.  相似文献   

5.
《Developmental biology》1986,117(1):277-285
The enzyme β-1,3-glucanase is contained in the unfertilized eggs of most species of sea urchin. In some species, including Lytechinus variegatus, there is also substantial activity following gastrulation, and during remaining larval development. To determine if the same form of β-1,3-glucanase is present in both unfertilized eggs and after gut differentiation, an affinity purification procedure was utilized to isolate enzyme from unfertilized Lytechinus eggs. β-1,3-Glucanase is a 70,000-Da protein in this species, similar to the molecular weight of enzyme isolated from Strongylocentrotus purpuratus. Purified enzyme was used to generate an antibody that specifically recognized a 70,000-Da protein in unfertilized eggs by Western blot analysis, and stained the cortical granules of unfertilized eggs by immunofluorescence. The antibody also specifically immunoprecipitated β-1,3-glucanase activity from egg sonicates. The antibody was used to demonstrate that the form of β-1,3-glucanase present following gastrulation is antigenically distinct from the egg form. The 70,000-Da protein recognized by the antibody was no longer present by 24 hr, but embryos of this and later stages contained substantial amounts of activity, indicating the enzyme at these stages differs from the egg-specific form. In addition, the antibody was not capable of immunoprecipitating enzyme activity from pluteus sonicates. β-1,3-Glucanase has been partially purified from pluteus stage embryos, and appears to be a complex of approximately 200,000 Da. The enzyme is specific to endoderm and appears following differentiation of the gut, suggesting that it may function in larval digestion.  相似文献   

6.
At fertilization, the sea urchin egg undergoes an internal pH (pHi) increase mediated by a Na+ -H+ exchanger. We used antibodies against the mammalian antiporters NHE1 and NHE3 to characterize this exchanger. In unfertilized eggs, only anti-NHE3 cross-reacted specifically with a protein of 81-kDa, which localized to the plasma membrane and cortical granules. Cytochalasin D, C3 exotoxin (blocker of RhoGTPase function), and Y-27632 (inhibitor of Rho-kinase) prevented the pHi change in fertilized eggs. These inhibitors blocked the first cleavage division of the embryo, but not the cortical granule exocytosis. Thus, the sea urchin egg has an epithelial NHE3-like Na+ -H+ exchanger which can be responsible for the pHi change at fertilization. Determinants of this pHi change can be: (i) the increase of exchangers in the plasma membrane (via cortical granule exocytosis) and (ii) Rho, Rho-kinase, and optimal organization of the actin cytoskeleton as regulators, among others, of the intrinsic activity of the exchanger.  相似文献   

7.
A new substance (ES-1) which localizes on the ectodermal and espophageal epithelia of sea urchin embryos was identified by a monoclonal antibody, McA ES-1. McA ES-1 recognized a 175 KDa protein of fertilized and 200 KDa in proteins of unfertilized egg-cortices. By indirect fluorescent antibody staining, ES-1 was found on the plasma membrane of fertilized eggs and in the cortical region of unfertilized eggs. ES-1 was not contained in the cortical granules and remained fixed in the cortex after centrifugation of unfertilized eggs for 30 min at 20,000 g. The polarized localization of ES-1 on the apical surface of ectodermal epithelial cells continued to the metamorphosis. It disappeared from mesenchyme cells and other migrating cells of the gastrula, while ES-1 was reexpressed in the presumptive esophagus to be connected with ectodermal epithelium. This may suggest a functional significance of ES-1 in establishment of cell polarity in the epithelium of larvae. In metamorphosing larvae and adults, the apical localization of ES-1 could no longer be found, and it was found in coelomocytes. From these findings, it is concluded that ES-1 was a novel surface substance of embryos and is probably phagocytosed at metamorphosis.  相似文献   

8.
Scanning microscopy and transmission electron microscopy of sectioned specimens and freeze-fracture replicas revealed the presence of slightly elevated regions, approximately one-fourth to one-half the diameter of microvilli, which were situated along the surface of unfertilized Arbacia eggs. These modifications of the surface of the egg were observed in areas occupied by cortical granules and were greatly reduced in number following the cortical granule reaction. Few such modifications were present in immature and urethane-treated ova, in which cortical granules were located in regions of the egg other than the cortex. Freeze-fracture replicas of unfertilized eggs revealed a significantly higher density of intramembranous particles within the plasmalemma when compared to replicas of the membrane surrounding cortical granules. Areas characteristic of the cortical granule membrane, i.e., sparsely laden with particles, were not observed within the plasmalemma of the fertilized egg. Hence, following its fusion with the egg plasma membrane there is a dramatic reorganization in particle distribution of the membrane derived from cortical granules.  相似文献   

9.
Changes in the distribution and organizational state of actin in the cortex of echinoderm eggs are believed to be important events following fertilization. To examine the initial distribution and form of actin in unfertilized eggs, we have adapted immunogold-labeling procedures for use with eggs of Strongylocentrotus purpuratus. Using these procedures, as well as fluorescence microscopy, we have revealed a discrete 1-micron-thick concentrated shell of actin in the unfertilized egg cortex. This actin is located in the short surface projections of unfertilized eggs and around the cortical granules in a manner that suggests it is associated with the cortical granule surface. The actin in the short surface projections appears to be organized into filaments. However, most if not all of the actin surrounding the cortical granules is organized in a form that does not bind phalloidin, even though it is accessible to actin antibody. The lack of phalloidin binding is consistent with either the presence of nonfilamentous actin associated with the cortical granules or the masking of actin-filament phalloidin-binding sites by some cellular actin-binding component. In addition to the concentrated shell of actin found in the cortex, actin was also found to be concentrated in the nuclei of unfertilized eggs.  相似文献   

10.
The fertilized sea urchin egg is invested by the hyaline layer, a thick extracellular coat which is necessary for normal development. On the basis of ultrastructural studies and the fact that hyalin is released during the time of the cortical reaction, it has been generally accepted that hyalin is derived from the cortical granules. However, this has never been proven definitely, and recently, it has been reported that hyalin is a membrane and/or cell surface protein. To determine where hyalin is stored, we carried out an ultrastructural immunocytochemical localization of hyalin in the unfertilized egg. Hyalin purified from isolated hyaline layers was used to immunize rabbits. Antisera so obtained were shown to be hyalin specific following absorption with a combination of sea urchin proteins. Immunocytochemical localizations were carried out on sections of Epon-embedded material using protein A-coated gold particles as an antibody marker. Our results demonstrate that, prior to fertilization, hyalin is stored in the homogeneous component of the cortical granule in Strongylocentrotus droebachiensis and Strongylocentrotus purpuratus. Labeling of small cortical vesicles in both unfertilized and fertilized eggs, suggests that these vesicles may contain a secondary reservoir of hyalin.  相似文献   

11.
Echinonectin (EN) is a galactose-binding lectin present in eggs and embryos of the sea urchin Lytechinus variegatus . Recent studies have suggested that EN is a hyaline layer protein that may function as a substrate adhesion molecule (SAM) during development. We have used monoclonal and affinity-purified polyclonal antibodies that specifically recognize this protein to determine its spatial and temporal expression during embryogenesis. EN is stored in granules or vesicles in the unfertilized egg. After fertilization, these granules are rapidly redistributed to the apical cytoplasm of the zygote. Our results show that at subsequent stages of development the lectin is expressed by cells of all three germ layers, including cells of the developing gut, coelomic pouches, and ectoderm, and by both primary and secondary mesenchyme cells. In contrast to previous observations based solely upon light level immunofluorescent staining, immunoelectron microscopy demonstrates that EN is localized in intracellular, membrane-bounded vesicles. In epithelial cell types these vesicles have a highly polarized distribution and are found in the apical cortical cytoplasm. In mesenchyme cells the distribution of EN-containing vesicles is not obviously polarized. Steady-state levels of EN protein in the embryo remain almost constant from fertilization to the pluteus larva stage, Metabolic labeling studies show that synthesis of EN in L. variegatus begins immediately after fertilization and continues throughout embryogenesis. Monospecific antibodies raised against L. variegatus EN have also been used to determine whether this lectin is expressed in other echinoid species.  相似文献   

12.
In this report, we use a monoclonal antibody (B2C2) and antibodies against a fusion protein (Leaf et al. 1987) to characterize msp130, a cell surface protein specific to the primary mesenchyme cells of the sea urchin embryo. This protein first appears on the surface of these cells upon ingression into the blastocoel. Immunoelectronmicroscopy shows that msp130 is present in the trans side of the Golgi apparatus and on the extracellular surface of primary mesenchyme cells. Four precursor proteins to msp130 are identified and we show that B2C2 recognizes only the mature form of msp130. We demonstrate that msp130 contains N-linked carbohydrate groups and that the B2C2 epitope is sensitive to endoglycosidase F digestion. Evidence that msp130 is apparently a sulphated glycoprotein is presented. The recognition of the B2C2 epitope of msp130 is disrupted when embryos are cultured in sulphate-free sea water. In addition, two-dimensional immunoblots show that msp130 is an acidic protein that becomes substantially less acidic in the absence of sulphate. We also show that two other independently derived monoclonal antibodies, IG8 (McClay et al. 1983; McClay, Matranga & Wessel, 1985) and 1223 (Carson et al. 1985), recognize msp130, and suggest this protein to be a major cell surface antigen of primary mesenchyme cells.  相似文献   

13.
A monoclonal antibody, Sp12, binds to cortical granules, the hyaline layer, and skeletogenic, chromogenic, and blastocoelar mesenchyme of sea urchin eggs and embryos. Adult urchins also express Sp12 antigens in the dermal layer of the test and spines. Antigen is expressed on the surface of primary mesenchyme cells after they have entered the blastocoel, and by two secondary mesenchyme derivatives--the blastocoelar cells after they have been released from the tip of the archenteron, and the pigment cells in prism stage embryos. Immunogold localizations show antigen on the surfaces of mesenchyme, within membrane bounded vesicles, and associated with the Golgi apparatus. Western blots of antigens immunoprecipitated from seven developmental stages reveal twelve antigens ranging in Mr from 35 k to 240 k. Most of these antigens appear, disappear or change Mr over the first five days of development. Characterizations of this complex array of antigens show that the epitope recognized by Sp12 is eliminated by proteolytic enzymes and endoglycosidase F, while immunoreactivity is only reduced by periodate oxidation. As well, calcium magnesium free seawater extracts a subset of antigens different from that retained by crude membrane preparations. It is proposed that the mesenchyme of sea urchin embryos produces a family of developmentally regulated cell surface and extracellular matrix glycoproteins which all exhibit a carbohydrate epitope recognized by Sp12.  相似文献   

14.
Integrins are expressed on the surface of some vertebrate eggs where they are thought to have a role in fertilization. The objective of this study is to determine if integrins are expressed on sea urchin eggs. The alphaB and betaC subunits were cloned using the homology polymerase chain reaction. Monoclonal and polyclonal antibodies were developed against bacterially expressed fragments of the extracellular domains of the betaC subunit and the alphaB subunit. As well, a monoclonal antibody was developed against a synthesized peptide corresponding to part of the cytoplasmic domain of betaC. Analysis of biotinylated egg cortex extracts immunoprecipitated with either anti-betaC or anti-alphaB yields bands of 130 and 225 kDa. Immunoblots confirm that betaC is part of the complex immunoprecipitated with anti-alphaB. Confocal immunofluorescence and immunogold electron microscopy show that betaC is present on the surface of the unfertilized egg at the tips of microvilli and in cortical granules. During the cortical reaction, immunoreactivity with antibodies to the extracellular domains of betaC and alphaB disappears from the egg surface, and microvillar casts on the fertilization envelope become immunoreactive. With antibodies to the cytoplasmic domain of betaC, immunoreactivity is lost from the surface of the egg, but the fertilization envelope does not immediately become immunoreactive. In immunoblots of egg cortex there are immunoreactive bands of the predicted sizes for alphaB and betaC. However, in fertilization envelopes, a second band that is slightly lower in molecular weight is also present. Eggs fertilized in the presence of soybean trypsin inhibitor have elongated microvilli that remain bound to the elevating fertilization envelope and immunoreactive to anti-betaC antibodies. Eggs fertilized in the presence of an ovoperoxidase inhibitor, 3-amino-1,2,4-triazole, have a patchy distribution of betaC immunoreactivity in fertilization envelopes. Together, these data suggest that alphaBbetaC integrins are expressed on the surface of unfertilized eggs and, during the cortical reaction, the extracellular domains are cleaved by proteases and cross-linked into the fertilization envelope by ovoperoxidase. The alphaBbetaC integrin receptors may have several potential functions prior to their removal at fertilization, including attachment of the vitelline envelope to the egg surface and anchoring the cortical cytoskeleton.  相似文献   

15.
When proteins isolated from spicules of Strongylocentrotus purpuratus embryos were examined by western blot analysis, a major protein of approximately 43 kDa was observed to react with the monoclonal antibody, mAb 1223. Previous studies have established that this antibody recognizes an asparagine-linked, anionic carbohydrate epitope on the cell surface glycoprotein, msp130. This protein has been shown to be specifically associated with the primary mesenchyme cells involved in assembly of the spicule. Moreover, several lines of evidence have implicated the carbohydrate epitope in Ca2+ deposition into the growing spicule. The 43 kDa, spicule matrix protein detected with mAb 1223 also reacted with a polyclonal antibody to a known spicule matrix protein, SM30. Further characterization experiments, including deglycosylation using PNGaseF, two-dimensional electrophoresis, and immunoprecipitation, verified that the 43 kDa spicule matrix protein had a pl of approximately 4.0, contained the carbohydrate epitope recognized by monoclonal antibody mAb 1223 and reacted with anti-SM30. Electron microscopy confirmed the presence of proteins within the demineralized spicule that reacted with mAb 1223 and anti-SM30. We conclude that the spicule matrix protein, SM30, is a glycoprotein containing carbohydrate chains similar or identical to those on the primary mesenchyme cell membrane glycoprotein, msp130.  相似文献   

16.
Sea urchin (Arbacia punctulata) eggs and zygotes were treated with filipin in an effort to examine changes in membrane sterols at fertilization. The plasma membrane of treated unfertilized eggs possessed numerous filipin/sterol complexes, while fewer complexes were associated with membranes delimiting cortical granules, demonstrating that the plasmalemma is relatively rich in β-hydroxysterols in comparison to cortical granule membrane. Following fusion with the plasmalemma, membrane formerly delimiting cortical granules underwent a dramatic alteration in sterol composition, as indicated by a rapid increase in the number of filipin/sterol complexes. In contrast, portions of the zygote plasma membrane, derived from the plasmalemma of the unfertilized egg, displayed little or no change in filipin/sterol composition. Other than regions of the plasma membrane engaged in endocytosis, the plasmalemma of the zygote possessed a homogeneous distribution of filipin/sterol complexes and appeared similar to that of the unfertilized egg. These results demonstrate that following its fusion with the egg plasmalemma, membranes, formerly delimiting cortical granules, undergo a dramatic alteration in sterol composition. Changes in the localization of filipin/sterol complexes are discussed in reference to alterations in egg plasmalemmal function at fertilization.  相似文献   

17.
We have examined the subequatorial accumulation of pigment granules (the so-called 'pigment band') in the egg of the sea urchin Paracentrotus lividus, which constitutes an unambiguous marker of animal-vegetal polarity. Most of the reddish pigment granules are situated at the periphery of the egg. They exhibit occasional saltatory movements and can aggregate into large patches. Pigment granules are retained as a band in the isolated cortex when the egg surface complex is isolated by shearing eggs attached to polylysine-coated surfaces with calcium-free isotonic solutions. Pigment granules remain as the main vesicular component of fertilized egg cortices or of unfertilized egg cortices perfused with calcium to provoke cortical granule exocytosis. They may be anchored to the isolated cortex through associations with the plasma membrane and with an extensive subsurface network of rough endoplasmic reticulum (rough ER). Pigment granules contain antimonate-precipitable calcium and, in this respect and many others, resemble acidic vesicles recently identified in the cortex of unpigmented sea urchin eggs. We discuss the similarities observed between granules and acidic vesicles in various urchin egg species and their possible functions.  相似文献   

18.
Earlier work has demonstrated that hamster eggs that do not release a second polar body after fertilization in vitro lack a block to polyspermy (Stewart-Savage and Bavister, 1987: Gamete Res 18:333–338). Since polar body release requires microfilaments, the involvement of microfilaments in cortical granule exocytosis was examined. When hamster eggs were treated with cytochalsin B (CB) for 1 hr and then coincubated with sperm for 90 min, there was a dose-dependent increase in both the percentage of eggs with more than one sperm penetrating the zona pellucida and the mean number of sperm that penetrated the zona, with a maximum effect at 20 μg CB/ml (100% polypenetration, 3.0 ± 0.3 sperm/egg). Cytochalasin-treated eggs retained 85% of their cortical granules 55 min after insemination, as compared to unfertilized eggs. Longer time periods did not result in any further reduction. As seen with the scanning confocal microscope, an extensive microfilament network was present in the cortex of untreated eggs, with the cortical granules located within this cortical network. The cortical microfilament network was highly reduced in CB-treated eggs. When viewed with the electron microscope, the same number of cortical granules were located next to the plasma membrane in both cytochalasin-treated and untreated, unfertilized eggs. These data indicate that intact microfilaments are required for normal cortical granule exocytosis in the hamster egg, but the role of the microfilaments in exocytosis is unresolved. Mol. Reprod. Dev. 47:334–340, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
The coordinate expression of cortical granule-specific components in sea urchin oogenesis was studied using antibody probes. The components used to generate the organelle-specific antibodies included the whole cortical granule exudate, fertilization envelopes, hyalin, beta, 1-3,glucanase, and Ig8. Using immunolocalization techniques at both the light and electron microscopic levels, these molecules were found to be specific to cortical granules in three distinct cell types: developing oocytes, eggs, and accessory cells. In early oocytes, each of the cortical granule components are coordinately accumulated in the developing cortical granules dispersed throughout the cytoplasm. No other organelle within the developing oocytes or eggs contained detectable levels of any of these epitopes. In the somatic interstitial tissue of the ovary, cortical granule components also were accumulated specifically within cortical granule structures. Found only in select accessory cells, these cortical granules were indistinguishable in morphology and epitope composition from eggs and were contained within cytoplasmic aggregates termed mosaic globules. The mechanism of cortical granule concentration into mosaic globules is unknown, but this demonstration of common organelle constituents between oocytes and accessory cells may provide insight for such an understanding.  相似文献   

20.
Unfertilized eggs of the sea urchin Arbacia punctulata contain pigment granules distributed throughout their cytoplasm. During the first 15 minutes after fertilization, these vesicles move out to the cortex where they become firmly anchored. We have used time-lapse video differential interference microscopy to analyze the motility of these organelles in unfertilized and fertilized Arbacia eggs. Pigment granules exhibit saltatory movement in both unfertilized and fertilized eggs. Quantitation of vesicle saltations before and after fertilization demonstrates that while there is no significant difference in the speed or path-length of vesicle movement, there is a dramatic change in the orientation of these saltations. Saltations in the unfertilized egg are very non-radial and are as likely to be directed toward the cortex as away. In contrast, saltations in the fertilized egg are more radially oriented and more likely to be cortically directed. This transition must reflect underlying changes in the cellular structures necessary for pigment granule saltations. The change in the orientation of pigment granule saltations following fertilization requires both a transient increase in the cytoplasmic concentration of Ca2+ and an elevation of cytoplasmic pH. Similarly, the ability of pigment granules to adhere to the cortex requires both the transient elevation of cytoplasmic Ca2+ and the alkalinization of the cytoplasm. As the reorganization of cortical actin at fertilization is regulated by these ionic fluxes, and both movement and adhesion are sensitive to cytochalasins, we hypothesize that the alterations in directed motility and adhesion reflect underlying changes in the actin cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号