首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Metabolic studies in HEp-2/MP,MIR cells (an adenosine kinase, hypoxanthine phosphoribosyltransferase negative mutant) indicated the presence of adenosine phosphorylase activity. This activity, unknown in established mammalian cell lines, resulted in the glycosidic cleavage of both adenosine and the antiviral drug arabinosyladenine. The activity was observed readily in the presence or absence of the adenosine deaminase inhibitor conformycin. Isopycnic separation of [3H] thymidine-labeled DNA species in CsCl density gradients resulted in the appearance of two distinct peaks. The heavier peak coincided with [14C]thymidine-labeled marker DNA of human origin, whereas the lighter peak was within the range associated with mycoplasmal DNA. Testing by commercial laboratories confirmed the presence of mycoplasma in HEp-2/MP,MIR cells. The contaminant was identified as Mycoplasma hyorhinis, a porcine mycoplasma. Following gamma-irradiation (3000 rads) to block cellular mitosis, the mucoplasma-contaminated HEp-2/MP,MIR cells were cocultivated with mycoplasma-free wild-type HEp-2 cells which did not exhibit adenosine phosphorylase activity. Following serial cocultivation in a medium designed to favor the survival of the wild-type cells, adenosine phosphorylase activity was found in the previously uninfected cells. Studies of this nature emphasize the need for investigators to carefully monitor their cell lines for mycoplasma.  相似文献   

2.
Mammalian cells have enzymes that deaminate adenosine to inosine, which can readily be phosphorolysed to hypoxanthine. They do not, however, possess enzymes to form adenine by the cleavage of adenosine. For this reason, the release of adenine from adenosine by mammalian cell cultures has usually been interpreted as indicating the presence of mycoplasma, a frequent microbial contaminant that contains high levels of adenosine phosphorylase. We found that some human lymphoblast cultures free of mycoplasma showed high levels of adenosine cleavage and that this activity resulted from adenosine phosphorylase in the bovine serum used as the culture growth supplement. A survey of 13 serum supplements disclosed that fetal bovine serum (six lots) contains the highest adenosine phosphorylase activity, ranging from 9 to 648 nmol adenine produced per hour per ml serum; newborn calf serum (four lots) has much less activity, ranging from 0 to 5 nmol adenine produced per hour per ml serum; and donor horse serum (three lots) contains no detectable activity. These results suggest that mycoplasma tests dependent on the presence of adenosine phosphorylase or other enzyme activities may give false-positives with cultures containing fetal bovine serum supplements.  相似文献   

3.
Summary Human H. Ep-2 and mouse 3T6 cells infected byMycoplasma hyorhinis showed an increase in [3H]uracil uptake and a more than 20-fold increase in the activity of uracil phosphoribosyltransferase (UraPRT). Uninfected cell cultures gave background levels of this enzyme activity. A survey of 16 strains of mycoplasma showed 13 to possess UraPRT activity. Rabbit kidney cells (RK13) were infected with eight different strains of four mycoplasma species known to be common cell culture contaminants. Seven of the eight cell cultures showed elevated UraPRT activities four days after infection. This enzyme activity may be of value in monitoring cell cultures for mycoplasma and aid in classification. This work was supported by Contract NO1-CP-53530 with the National Cancer Institute, National Institutes of Health, and Contract FDA 74-41 of the Food and Drug Administration, Bethesda, Maryland 20014.  相似文献   

4.
Mycoplasma hyorhinis strains were isolated from Chinese hamster DON cells which lacked the ability to produce hybrid colonies in HAT medium. The mycoplasma isolates were virtually devoid of HGPRT activity in vivo and in vitro in the presence of excess co-enzyme, phosphoribosylpyrophosphate. Deliberate infection of mycoplasma-free cells caused no alterations in the HGPRT? and TK? phenotypes of the cells. Heterokaryon formation with infected cells was normal and the failure to produce hybrid colonies resulted from depletion, by nucleoside phosphorylase activity, of exogenous thymidine required for rescue of hybrid cells in HAT medium. Increasing the thymidine concentration and repeatedly replenishing HAT medium permitted hybrid clone formation.  相似文献   

5.
Deoxycoformycin-treated P388 and L1210 mouse leukemia cells salvage 2'-deoxyadenosine from the medium only inefficiently, because deoxyadenosine deamination is blocked and its phosphorylation is limited by feedback controls. Mycoplasma contamination at a level that had no significant effect on the growth of the cells increased the salvage of deoxyadenosine greater than 10 fold over a 90 min period of incubation at 37 degrees C, but in this case deoxyadenosine was mainly incorporated into ribonucleotides and RNA via adenine formed from deoxyadenosine by mycoplasma adenosine phosphorylase. Deoxyadenosine was an efficient substrate for this enzyme, in contrast to 2',3'-dideoxyadenosine which was not phosphorolyzed. Mycoplasma infection was confirmed by the presence of uracil phosphoribosyltransferase activity and by culture isolation. The contaminant has been identified as Mycoplasma orale. Mycoplasma infection had no effect on the deamination and phosphorylation of deoxyadenosine and adenosine, on the salvage of hypoxanthine and adenine, or on the degradation of dAMP and dATP by the cells or on their acid and alkaline phosphatase activities.  相似文献   

6.
S49 mouse leukemia cells exhibit both equilibrative and Na(+)-dependent, concentrative formycin B transport. The latter represents only a minor nucleoside transport component and is detectable only when equilibrative nucleoside transport is inhibited by dipyridamole or another transport inhibitor. Thus in uncontaminated S49 cells formycin B accumulated only to slightly above the intracellular-extracellular equilibrium level. In contrast, in suspensions of S49 cells contaminated with mycoplasma, formycin B accumulated in the intracellular water space in unmodified form to 40-50-times the extracellular concentration in a dipyridamole-independent manner during 90 min of incubation at 37 degrees C. The mycoplasma active formycin B transport system was inhibited by all nucleosides tested, including thymidine and deoxycytidine, which are not substrates for the concentrative nucleoside transporter of S49 cells. Mycoplasma contamination was detected by the presence of cell-associated adenosine phosphorylase activity.  相似文献   

7.
Summary A sensitive ultramicrochemical enzyme test for mycoplasmal contamination of cultured cells, based on the determination of the activity of adenosine phosphorylase, is described. The test was performed by assaying the enzymatic conversion of [8-14C]adenine and ribose-1-phosphate to [8-14C]adenosine by incubating a plastic leaflet carrying a counted number of cells (1 to 10). These leaflets were isolated from the bottom of the same plastic film dish in which the cells were cultured for experimental or diagnostic purposes, e.g. prenatal diagnosis or inborn errors of metabolism. The present test should be several 1000-fold more sensitive than the originally reported enzymatic method because (a) the adenosinephosphorylase reaction is measured in the nucleoside forming direction which is by far the most active; and (b) the assay is performed with the cells and not with the culture medium. The latter is of special importance for the detection of those low-grade contaminations in which most of the mycoplasma particles are attached to cell membranes. This investigation was partly supported by FUNGO (The Netherlands), INSERM (France) (A. T. P. 36.76.68), and DGRST (France) (No. 75.50.004).  相似文献   

8.
F Van Roy  W Fiers 《In vitro》1977,13(6):357-365
Among a number of techniques for the detection of mycoplasmal contamination in African green monkey kidney (AGMK) cell lines, the assay of uridine phosphorylase activity is unsuitable because of the presence of high levels of endogenous enzymatic activity. A thymidine phosphorylase test, however, based on the chromatographic analysis of radiolabeled thymidine breakdown, turned out to be a simple and sensitive mycoplasma detection method. We found, using the latter technique, that 0.22-micrometer-filtered virus inocula could still transfer mycoplasma unless treated with diethyl ether. The effect of mycoplasmal contamination on the synthesis of simian virus 40 and adenovirus in AGMK cells was negligible under the conditions used (no depletion of arginine). Incorporation of radioactive thymidine in viral macromolecules, however, was inhibited severely by the presence of mycoplasma.  相似文献   

9.
Summary Among a number of techniques for the detection of mycoplasmal contamination in African green monkey kidney (AGMK) cell lines, the assay of uridine phosphorylase activity is unsuitable because of the presence of high levels of endogenous enzymatic activity. A thymidine phosphorylase test, however, based on the chromatographic analysis of radiolabeled thymidine breakdown, turned out to be a simple and sensitive mycoplasma detection method. We found, using the latter technique, that 0.22-μm-filtered virus inocula could still transfer mycoplasma unless treated with diethyl ether. The effect of mycoplasmal contamination on the synthesis of simian virus 40 and adenovirus in AGMK cells was negligible under the conditions used (no depletion of arginine). Incorporation of radioactive thymidine in viral macromolecules, however, was inhibited severely by the presence of mycoplasma. This investigation was supported by a grant from theFonds voor Geneeskundig Wetenschappelijk Onderzoek (No. 20.298). F.V. R. is an Aspirant of the BelgianNationaal Fonds voor Wetenschappelijk Onderzoek.  相似文献   

10.
Summary Five mycoplasma species most frequently isolated from cell cultures were tested for the presence of endogenous hypoxanthine phosphoribosyl-transferase (HPRT), activity. All of the five, cultured in cell-free medium, contained variable but significant levels of HPRT. Two strains ofM. hyorhinis exhibited a 13-fold difference in their specific HPRT activity. When infected with any of these mycoplasma species, HPRT-deficient mouse cell mutants rapidly acquired a cell-associated HPRT activity; however, the cells remained sensitive to HAT medium and resistant to 6-thioguanine. On the other hand, normal HPRT-positive cells deliberately infected with the mycoplasmas uniformly became sensitive to HAT medium. The apparent transfer of mycoplasma-specific HPRT activity to HPRT-deficient cells may be used as a sensitive measure of cell infection by these mycoplasma strains. The HPRT activities of mycoplasmas share several common properties so that they can be distinguished easily from the mammalian HPRT isozymes. Compared to the animal cell enzymes, the mycoplasmal HPRT activities are less heat stable, more strongly inhibited by 6-thioguanine, and in general migrate more slowly in electrophoresis at a neutral pH. This work was supported in part by PHS Research Grants 5 R01 GM21014 and 1 P03 GM19100 (Genetics Center Grant to Albert Einstein College of Medicine), and PHS Research Contracts N01 GM 6-2119 and N01-AG-4-2865 (to the Institute for Medical Research), from the National Institute of General Medical Sciences and National Institute on Aging. S. S. is a recipient of a Faculty Research Award from the American Cancer Society.  相似文献   

11.
C Ronda  R Lpez  A Gmez    E García 《Journal of virology》1983,48(3):721-730
The transfecting activity of pneumococcal phage Cp-1 DNA was destroyed by treatment with proteolytic enzymes, although these enzymes did not affect transfection with bacteriophage Dp-4 DNA. This transfection was stimulated by calcium ions. Protease-treated Cp-1 DNA competes for binding and uptake with transforming pneumococcal DNA as well as with transfecting Dp-4 DNA to approximately the same extent as does untreated Cp-1 DNA. In addition, [3H]thymidine-labeled Cp-1 DNA, treated with proteases or untreated, was absorbed with the same efficiency. These data suggest that uptake of Cp-1 DNA is not affected by protease treatment. [3H]thymidine-labeled Cp-1 DNA showed remarkable resistance against surface nuclease activity of competent wild-type cells. The monomeric form of the Cp-1 DNA-protein complex showed a linear dose response in transfection.  相似文献   

12.
Acetaminophen (APAP) and bromobenzene (BrB) are reported to selectively inhibit plasma membrane (PM) but not endoplasmic reticulum (ER) Ca2+ transport in rat liver (1). The ability of these hepatotoxicants to increase cytoplasmic Ca2+ levels as a result of disrupted Ca2+ pumping was determined in cultured rat hepatocytes by monitoring the activity of glycogen phosphorylase a, a Ca2+ -sensitive (via phosphorylase kinase) enzyme. Following exposure to 2.5 to 10 mM APAP for five minutes, dose-dependent increases in phosphorylase a activity were observed (58 to 190 U/g protein). Endoplasmic reticulum Ca2+ pump activity was not inhibited after any dose of APAP (56 nmol Ca2+ per milligram protein per 30 minutes). Phosphorylase a activity remained elevated for 60 minutes after exposure to APAP (124 μl/g protein). Following exposure to 0.5 to 2 mM BrB for five minutes, phosphorylase a activity also increased (58 to 229 U/g protein) in a dose-related manner. Endoplasmic reticulum Ca2+ pump activity was inhibited after BrB exposure (from 58 to 16 nmol Ca2+ per milligram protein per 30 minutes). Phosphorylase a activity remained elevated for 60 minutes after exposure to BrB (147 U/g protein). Evidence of elevated cytoplasmic Ca2+ is consistent with the inhibition of Ca2+ -extruding/sequestering mechanisms at hepatocyte PM and/or ER. Prolonged elevation of cytosolic Ca2+ levels could overstimulate Ca2+ -sensitive processes within liver cells and thus initiate or contribute to hepatotoxic injury.  相似文献   

13.
Effects of ionizing radiation on multidrug resistance (MDR) of human larynx cancer HEp-2 cells have been studied. MDR was determined from sensitivity of HEp-2 cells to daunorubicin, taxol and vincristine in the absence and in the presence of MDR inhibitors (cyclosporin A and avermectin B1) and from the suppression by cyclosporin A of the rhodamine-123 release from HEp-2 cells. It was found that 8 and 16 h after irradiation (4 Gy), HEp-2 MDR was increased with a further return to the control level by the 24th hour after irradiation. The effect of irradiation was especially well-pronounced by 16 h for cells irradiated with 1 Gy and was manifested in enhanced release of rhodamine-123 and increased resistance of HEp-2 cells to vincristine. Besides, this effect depended on cell density, being at maximum at 80–100 × 103 cells/cm2. It is concluded that the observed dependence of HEp-2 MDR on ionizing radiation and cell density is a result of changes in intracellular content of reactive oxygen species.  相似文献   

14.
Seven different tissue culture cells have been cultured with and without mycoplasma (M. hyorhinis) in the presence of various precursors of RNA. Total cellular RNA was isolated and analysed by electrophoresis on polyacrylamide gels. The results obtained with mycoplasma-infected cells can be summarized as follows:
1. 1. When cells are labelled with [8-3H]guanosine or [5-3H]uridine there is some incorporation into host cell 28S and 18S rRNA, but it is less than into mycoplasma 23S and 16S rRNA. [8-3H]guanosine or [5-3H]uridine are also incorporated into host cell and mycoplasma tRNA and mycoplasma 4.7S RNA, but the incorporation into host cell 5S rRNA and low molecular weight RNA components (LMW RNA) is reduced.
2. 2. [5-3H]uracil is not incorporated into host cell RNA but into mycoplasma tRNA, 4.7S RNA, a mycoplasma low molecular weight RNA component M1 and 23S and 16S rRNA.
3. 3. [3H]methyl groups are incorporated into mycoplasma tRNA, 23S and 16S rRNA, but not into host cell 28S, 18S, 5S rRNA nor into mycoplasma 4.7S RNA.
4. 4. With [32P]orthophosphate or [3H]adenosine as precursors, the labelling is primarily in the host RNA.
Mycoplasma infection influences the labelling of RNA primarily by an effect on the utilization of the exogenously added radioactive RNA precursors, since the generation time of mycoplasma infected cells is about the same as that of uninfected cells. Mycoplasma infection may completely prevent the identification of LMW RNA components.  相似文献   

15.
Variants of Chinese hamster ovary and Novikoff rat hepatoma cells resistant to tubercidin and 2,5-diaminopurine, or to both drugs, were isolated, and their ability to convert adenosine and various adenosine analogs to nucleotides was compared to that of wild-type cells, both in intact cells and cell-free extracts. Adenosine deamination, and thus its conversion to nucleotides via inosine-hypoxanthine-inosine monophosphate, was inhibited by pretreatment of the cells or cell extracts with 2-deoxycoformycin. Cell-free extracts of the tubercidin-resistant variants, as well as of two adenosine-resistant mutants of Chinese hamster ovary cells, phosphorylated adenosine, tubercidin, pyrazofurin, or tricyclic nucleoside in the presence of ATP at less than 1% of the rate of extracts of wild-type cells. However, addition of phosphoribosyl pyrophosphate stimulated the conversion of adenosine to nucleotides 40-fold. Similarly, intact adenosine kinase-deficient cells failed to phosphorylate the adenosine analogs, but still converted adenosine to nucleotides at 5-10% the rate observed with wild-type cells. Phosphorylation of adenosine and tubercidin in wild-type cells was inhibited by substrate at concentration above 5-10 microM. In contrast, the rate of conversion of adenosine to nucleotides by adenosine kinase-deficient cells increased linearly up to a concentration of 400 microM adenosine, with the consequence that, at this concentration, these cells took up adenosine almost as rapidly as wild-type cells. Adenosine uptake by these kinase-deficient cells was inhibited by adenine and 5'-deoxyadenosine, and was largely abolished in mutants devoid also of adenine phosphoribosyltransferase. We conclude that adenosine is converted to nucleotides in adenosine kinase-deficient cells via adenine. Indirect evidence implicates 5'-methylthioadenosine phosphorylase as the enzyme responsible for the degradation of adenosine to adenine.  相似文献   

16.
In previous communications we have demonstrated that the subunits of normal human erythrocyte purine nucleoside phosphorylase can be resolved into four major (1–4) and two minor (1p and 2p) components with the same molecular weight but different apparent isoelectric points (and net ionic charge). The existence of subunits with different charge results in a complex isoelectric focusing pattern of the native erythrocytic enzyme. In contrast, the isoelectric focusing pattern of the native enzyme obtained from cultured human fibroblasts is simpler. The multiple native isoenzymes obtained from human erythrocytes and human brain have isoelectric points ranging from 5.0 to 6.4 and from 5.2 to 5.8, respectively, whereas cultured human fibroblasts have two major native isoenzymes with apparent isoelectric points of 5.1 and 5.6.Purine nucleoside phosphorylase has been purified at least a hundredfold from 35S-labeled cultured human fibroblasts. A two-dimensional electrophoretic analysis of the denatured purified normal fibroblast enzyme revealed that it consists mainly of subunit 1 (90%) with small amounts of subunits 2 (10%) and 3 (1%). This accounts for the observed differences between the native isoelectric focusing and the electrophoretic patterns of the erythrocyte and fibroblast enzymes. The purine nucleoside phosphorylase subunit 1 is detectable in the autoradiogram from a two-dimensional electrophoretic analysis of a crude, unpurified extract of 35S-labeled cultured normal human fibroblasts. The fibroblast phosphorylase coincides with the erythrocytic subunit 1 of the same enzyme, and the cultured fibroblasts of a purine nucleoside phosphorylase deficient patient (patient I) lack this protein component, genetically confirming the identity of the purine nucleoside phosphorylase subunit in cultured fibroblasts.This work was supported by a grant from the National Institute of Arthritis, Metabolism, and Digestive Diseases, National Institutes of Health, United States Public Health Service. L. J. G. is supported by a fellowship from the National Institute of Child Health and Human Development. D. W. M. is an Investigator, Howard Hughes Medical Institute.  相似文献   

17.
Base excision repair (BER) is dedicated to the repair of oxidative DNA damage caused by reactive oxygen species generated by chemical and physical agents or by metabolism which can react with DNA and cause a variety of mutations. Epithelial cells are typically the first type of host cell to come into contact with potential microbial invaders. In this work, we have evaluated whether the adherence to human epithelial cells causes DNA damage and associated filamentation. Experiments concerning adherence to HEp-2 cells were carried out with mutants deficient in BER that were derived from Escherichia coli K-12. Since the removal of mannose during bacterial interaction with HEp-2 cells allows adhesion through mannose-sensitive adhesins, the experiments were also performed in the presence and the absence of mannose. Our results showed enhanced filamentation for the single xth (BW9091) and triple xth nfo nth (BW535) mutants in adherence assays with HEp-2 cells performed without d-mannose. The increased filamentation growth was inhibited by complementation of BER mutants with a wild type xth gene. Moreover, we measured SOS induction of bacteria adhered to HEp-2 cells in the presence and absence of d-mannose through of SOS-chromotest assay and we observed a higher β-galactosidase expression in the absence of mannose. In this context, data showed evidence that bacterial attachment to HEp-2 epithelial surfaces can generate DNA lesions and SOS induction.  相似文献   

18.
The purine and pyrimidine metabolism of Tetrahymena pyriformis   总被引:1,自引:0,他引:1  
The metabolism of purines and pyrimidines by the ciliated protozoan Tetrahymena was investigated with the use of enzymatic assays and radioactive tracers. A survey of enzymes involved in purine metabolism revealed that the activities of inosine and guanosine phosphorylase (purine nucleoside: orthophosphate ribosyltransferase, E.C. 2.4.2.1) were high, but adenosine phosphorylase activity could not be demonstrated. The apparent Km for guanosine in the system catalyzing its phosphorolysis was 4.1 ± 0.6 × 10?3 M. Pyrophosphorylase activities for IMP and GMP (GMP: pyrophosphate phosphoribosyltransferase, E.C. 2.4.2.8), AMP (AMP: pyrophosphate phosphoribosyltransferase, E.C. 2.4.2.7), and 6-mercaptopurine ribonucleotide were also found in this organism; but a number of purine and pyrimidine analogs did not function as substrates for these enzymes. The metabolism of labeled guanine and hypoxanthine by intact cells was consistent with the presence of the phosphorylases and pyrophosphorylases of purine metabolism found by enzymatic studies. Assays for adenosine kinase (ATP: adenosine 5'-phosphotransferase, E.C. 2.7.1.20) inosine kinase, guanosine kinase, xanthine oxidase (xanthine: O2 oxidoreductase, E.C. 1.2.3.2), and GMP reductase (reduced-NADP: GMP oxidoreductase [deaminating], E.C. 1.6.6.8) were all negative. In pyrimidine metabolism, cytidine-deoxycytidine deaminase (cytidine aminohydrolase, E.C. 3.5.4.5), thymidine phosphorylase (thymidine: orthophosphate ribosyltransferase, E.C. 2.4.2.4), and uridine-deoxyuridine phosphorylase (uridine: orthophosphate ribosyltransferase, E.C. 2.4.2.3) were active; but cytidine kinase, uridine kinase (ATP: uridine 5'-phosphotransferase, E.C. 2.7.1.48), and CMP pyrophosphorylase could not be demonstrated.  相似文献   

19.
Using a genetic approach, Chinese hamster ovary (CHO) cells sensitive (aphS) and resistant (aphR) to aphidicolin were grown in the presence or absence of various DNA polymerase inhibitors, and the newly synthesized DNA isolated from [32P]dNMP-labelled, detergent-permeabilized cells, was characterized after fractionation by gel electrophoresis. The particular aph Rmutant CHO cell line used was one selected for resistance to aphidicolin and found to possess an altered DNA polymerase of the a-family. The synthesis of a 24 kb replication intermediate was inhibited in wild-type CHO cells grown in the presence of aphidicolin, whereas the synthesis of this replication intermediate was not inhibited by this drug in the mutant CHO cells or in the aphidicolin-resistant somatic cell hybrid progeny constructed by fusion of wild-type and mutant cell lines. Arabinofuranosylcytosine (ara-C), like aphidicolin, inhibited the synthesis of this 24 kb DNA replication intermediate in the wild-type CHO cells but not in the aphR mutant cells. However, carbonyldiphosphonate (COMDP) inhibited the synthesis of the 24 kb replication intermediate in both wild-type and mutant cells. N2-(p-n-Butylphenyl)-2 deoxyguanisine-5-triphosphate (BuPdGTP) was found to inhibit the formation of Okazaki fragments equally well in the wild-type and mutant cell lines and thus led to inhibition of synthesis of DNA intermediates in both cases. It appears that aphidicolin and ara-C both affect a common target on the DNA polymerase, which is different from that affected by COMDP in vivo. These data also show that aphidicolin, ara-C and COMDP affect the elongation activity of DNA polymerase but not the initiation activity of the enzyme during DNA replication. This is the first report of such differentiation of the DNA polymerase activities during nuclear DNA replication in mammalian cells. The method of analysis described here for replication intermediates can be used to examine the inhibitory activities of other chemicals on DNA synthesis.  相似文献   

20.
Induction studies on pyrimidine metabolizing enzymes in E. coli B have shown that the enzymes fall into three distinct groups according to their induction pattern. a) Cytidine deaminase and uridine phosphorylase, are induced by cytidine, CMP and adenosine; no induction was observed with uridine and AMP; b) thymidine phosphorylase is induced by cytidine, adenosine, all deoxyribonucleosides, CMP, deoxyribonucleotides, deoxyribose and deoxyribose-1-phosphate; c) uridine-cytidine kinase, uracil phosphoribosyltransferase, 5'-nucleotidase, thymidine kinase, are uninducible enzymes. Simultaneous addition of cytidine and glucose partially overcomes the cytidine deaminase and uridine phosphorylase induction. Cytidine deaminase reaches its maximum activity levels, in E. coli growing cells in presence of cytidine, two hours before the uridine phosphorylase activity. Maximum glucose repression of cytidine deaminase and uridine phosphorylase was obtained in correspondence of maximum cytidine induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号