首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the frog palate as a representative model of human mucociliary epithelium, we analyzed, after quick freezing fixation, the three-dimensional (3-D) respiratory mucus secretory release with high voltage (200-300 kV) transmission electron microscopy (TEM). The 3-D vision of the mucus release from the secretory cells was obtained as stereo-pairs and "bas-relief" images after analysis of stereo-pairs using an image analyzer. After standard glutaraldehyde fixation, the secretory cells showed a typical goblet shape with secretory granules heterogeneous in size and electron-density which often fuse together. On the other hand, quick-frozen secretory cells exhibited a columnar shape and their membrane-bound secretory granules contained a homogeneously dark matrix. The expanded gel mucus layer was preserved and its depth never exceeded 2 microns. When the epithelium was immersed in culture medium in presence of cholinergic agonist, a marked discharge of mucus was observed and the granules swelled at the apex of the secretory cell before being discharged in the lumen. In native cryofixed epithelium, the secretory granules exhibited a marked deformability during the process of their extrusion from the secretory cell. Clusters of secretory granules surrounded by cytoplasmic material were observed in the extracellular lumen, suggesting an apocrine-type secretion. These observations indicate that rapid cryofixation and 3-D stereoscopic imaging enable a unique opportunity to analyze, without artifact, the mucous secretory process. We speculate that, apart from the classical merocrine-type secretion mechanism, the respiratory mucus may be released, at least partly by an apocrine-type secretion.  相似文献   

2.
Summary In antral mucosa of the mouse stomach, the volume of mucus in mucous cells was measured morphometrically to determine whether this value changes during cell migration from the base of the pit to the surface. Both the volume density of mucous granules (the fraction of cell volume occupied by the granules) and the volume of intracellular mucus were reduced to about half in surface cells compared with those of upper pit cells. This indicates that mucus secretion is substantial during the later part of the lifespan of these cells, and is not due simply to the shedding of senescent cells.Supported by a grant from the National Health and Medical Research Council  相似文献   

3.
GP2 is the major membrane protein present in secretory granules of the exocrine pancreas. GP2's function is unknown, but a role in digestive enzyme packaging or secretion from secretory granules has been proposed. In addition, GP2 has been proposed to influence endocytosis and membrane recycling following stimulated secretion. Adenovirus-mediated GP2 overexpression in the rat pancreatic cell line AR4-2J was used to study its impact on digestive enzyme secretion and membrane recycling. Immunoelectron microscopy showed that GP2 and amylase co-localized in secretory granules in infected AR4-2J cells. CCK-8 stimulation resulted in a fourfold increase in amylase secretion with or without GP2 expression. GP2 expression also did not influence endocytosis following CCK-8 stimulation. Thus, GP2 expression in AR4-2J cells does not affect amylase packaging in secretory granules or stimulated secretion. GP2 expression also does not influence membrane recycling in response to stimulated stimulation in AR4-2J cells.  相似文献   

4.
The parasympathetic control of goblet cell secretion and the membrane events accompanying accelerated mucus release were studied in large intestinal mucosal biopsies maintained in an organ culture system. The secretory response of individual goblet cells to 10(-6) M acetylcholine chloride with 3 x 10(-3) M eserine sulfate (a cholinesterase inhibitor) was assessed by light microscopy and autoradiography, by scanning and transmission electron microscopy, and by freeze-fracture. Goblet cells on the mucosal surface are unaffected by acetylcholine. In crypt goblet cells acetylcholine-eserine induces rapid fusion of apical mucous granule membranes with the luminal plasma membrane (detectable by 2 min), followed by sequential, tandem fission of the pentalaminar, fused areas of adjacent mucous granule membranes. These events first involve the most central apical mucous granules, are then propagated to include peripheral granules, and finally spread toward the most basal granules. By 60 min, most crypt cells are nearly depleted. The apical membrane, although greatly amplified by these events, remains intact, and intracellular mucous granules do not coalesce with each other. During rapid secretion membrane-limited tags of cytoplasm are observed attached to the cavitated apical cell surface. These long, thin extensions of redundant apical membrane are rapidly lost, apparently by being shed into the crypt lumen.  相似文献   

5.
We examined 12 non-small cell lung carcinoma cell lines for expression of airway goblet, serous, and mucous cell characteristics. The cells expressed some ultrastructural traits of secretory epithelial cells but none contained secretory granules typical of the airway secretory cells. Using immunocytochemistry and cell-specific monoclonal antibodies, we identified heterogeneous expression of goblet, mucous, and serous cell markers among the cell lines. After metabolic radiolabeling, cells incorporated isotope into high molecular weight material. Incubation of pulse-radiolabeled cells with a number of known mucus secretogogues revealed that 5 of the 12 cell lines released radiolabeled material in response to the agonists. However, in each cell line only one of the receptor-activated pathways tested was intact. Although we did not identify a single cell line expressing a phenotype similar to normal airway secretory cells, particular functions retained by some of these cell lines may make them useful for specific studies of mucus production or secretion.  相似文献   

6.
Morphological and dynamic characteristics of epidermal mucus cells were examined in intact scales of Cyprinus carpio. Mucus cells were identified by alcian blue staining and live mucus cells characterized with differential interference contrast microscopy. Mucus cell pores were shown to be narrow slits or triangular‐shaped openings which are invariably situated at cell‐cell junctions. Small granules were often located at or just below the openings with larger granules positioned deeper into the cell. The large granules were observed to undergo a bubbling‐like activity, where a granule suddenly appears, enlarges and then abruptly disappears. Situated below the large granules is a dense matrix of quiescent small, tightly packed mucin granules. The findings suggest that mature epidermal mucus cells are structurally ordered with respect to secretory activity, where small numbers of initially basally located, densely packed granules rapidly expand in a location proximal to the pore and presumably prior to mucus release through the pore.  相似文献   

7.
The present study concerns pancreatic beta cells from rat foetus at 18, 19 and 21 days of gestation. On micrographs, the cytoplasm of beta cells was subdivided into 3 zones: one zone corresponding roughly to the cell web, a second zone just underlying the cell web, and a third zone comprising the remaining cytoplasm. The secretory granules present in each zone were counted; in the cell web, granules fused with plasma membrane were counted separately. During later foetal stages the increase in the frequency of granule to plasma membrane fusions parallels the increase in blood insulin levels, and the total number of granules in beta cells increases in parallel with the pancreatic insulin content. Therefore, as the beta cell matures, both secretion and biosynthesis of insulin increase sharply. The observed changes in the distribution of the granules in the different zones of the cytoplasm with the foetal age suggests that the cell web controls the access of the granules to the plasma membrane. The morphometric technique used allows a direct determination, at the cellular level, of even small variations in exocytosis-mediated secretory discharge and suggests a regulatory role of the cell web.  相似文献   

8.
The aim of this study was to verify whether different living conditions of Polychaeta are correlated with morphological and functional differences in the organization of the integument. For this purpose, we decided to study the epidermis of Timarete filigera, a non-tubicolous polychaete. With this objective in mind, we have identified the various cellular types responsible for mucous secretion in the epidermis of this species and defined the histochemical composition of the mucus produced by different types of gland cells. Three types of gland cells have been identified by histochemical and ultrastructural studies in the epidermis of this polychaete. The histochemistry was carried out using standard techniques and peroxidase-labelled lectins. In type 1 cells, the secretory granules contain neutral glycoproteins with glucosidic residues of GalNAc, Galbeta 1,3 GalNAc, glucosidic and/or mannosidic residues. In type 2 cells, the secretory granules contain acid glycoproteins mainly sulphated with glucosidic residues of GalNAc, Galbeta 1,3 GalNAc, glucosidic and/or mannosidic residues, and some terminal sialic acid. In type 3 cells, the residual granules have the same chemical composition as that of granules present in type 2 cells. The secretion of these glandular mucous cells consists of mainly sulphated acidic glycoproteins and GAG resistant to testis jaluronidase. In these cells, the residual granules have the same chemical composition as that of their secretion. The heterogeneity of mucus composition may be correlated with its different functions.  相似文献   

9.
Mucous granule exocytosis and CFTR expression in gallbladder epithelium   总被引:2,自引:0,他引:2  
A mechanistic model of mucous granule exocytosis by columnar epithelial cells must take into account the unique physical-chemical properties of mucin glycoproteins and the resultant mucus gel. In particular, any model must explain the intracellular packaging and the kinetics of release of these large, heavily charged species. We studied mucous granule exocytosis in gallbladder epithelium, a model system for mucus secretion by columnar epithelial cells. Mucous granules released mucus by merocrine exocytosis in mouse gallbladder epithelium when examined by transmission electron microscopy. Spherules of secreted mucus larger than intracellular granules were noted on scanning electron microscopy. Electron probe microanalysis demonstrated increased calcium concentrations within mucous granules. Immunofluorescence microscopic studies revealed intracellular colocalization of mucins and the cystic fibrosis transmembrane conductance regulator (CFTR). Confocal laser immunofluorescence microscopy confirmed colocalization. These observations suggest that calcium in mucous secretory granules provides cationic shielding to keep mucus tightly packed. The data also suggests CFTR chloride channels are present in granule membranes. These observations support a model in which influx of chloride ions into the granule disrupts cationic shielding, leading to rapid swelling, exocytosis and hydration of mucus. Such a model explains the physical-chemical mechanisms involved in mucous granule exocytosis.  相似文献   

10.
The effect of ethanol on the synthesis and secretion of mucus glycoprotein in gastric mucosal cells was investigated. The mucosal cell suspensions were subjected to a short-term (4 h) culture in the presence of 0-1.5 M ethanol, with [3H]proline and [3H]palmitic acid as markers for glycoprotein synthesis and acylation. The synthesized labeled mucus glycoprotein was isolated from the incubation medium (extracellular glycoprotein) and from the mucosal cells (intracellular glycoprotein), and analyzed. Depending upon the ethanol concentration in the cell culture medium, two distinct effects on the synthesis and secretion of mucus glycoprotein were observed. The cells cultured in the presence of 0.02-0.1 M ethanol showed increased ability for the incorporation of [3H]proline and [3H]palmitic acid, and for the secretion of the newly assembled mucus glycoprotein. The synthesis of the glycoprotein increased 18-fold, acylation 5-fold, and secretion 10-fold. The synthesized glycoprotein, however, contained four to five times less of acyl-bound fatty acids. Ethanol at 0.1-1.5 M caused a marked reduction (62-64%) in the mucus glycoprotein synthesis, but the amount of glycoprotein released to the medium remained constant. This indicated that higher concentrations of ethanol caused the release of the preformed intracellular mucus glycoprotein reserves. The results demonstrate that gastric mucosal cells incubated in the presence of ethanol exhibit impaired synthesis and secretion of mucus glycoprotein, and that the severity of impairment depends upon the ethanol concentration.  相似文献   

11.
Our earlier work demonstrated that the rate of protein synthesis in the exocrine cells of the rat pancreas is constant in different physiological states, including prolonged fasting. In this study we have followed the fate of the protein in the pancreatic cells of the fasting animal in vivo as well as in vitro. The data were obtained by quantitative radioautography and by biochemical determinations. In nonanesthesized, fasting rats, without cannulated pancreatic duct, some 80% of the proteins synthesized at a given time leaves the cell within 12 hr by way of secretion, intracellular breakdown not being important. Two mechanisms of fasting secretion exist. The first, starting at a slow rate after 20 min, is inferred to result from fortuitous contacts of young secretory granules with the apical cell membrane. The rate of secretion is the same in vivo as in vitro, at least during the first 4 hr after pulse labeling. Within 7 hr about 20% of the total amount of newly synthesized protein has left the cell. The second mechanism consists of an orderly movement of the mass of secretory granules towards the apical cell membrane as caused by the continuous assembly of new granules. The granules that come into contact with the cell membrane are discharged. It takes about 7–12 hr for secretory protein transported in this way to reach the cell membrane. The addition of new secretory granules to those present is essential for the second mechanism, for the blockade of protein synthesis by cycloheximide decreases the rate of this phase of secretion without interfering with the secretory process proper. Atropin does not inhibit the fasting secretion in vitro, nor does extensive washing of the tissue slices, excluding possible secretagogues as important factors in fasting secretion.  相似文献   

12.
Summary The endocrine pancreas of the Australian fattailed dunnart, Sminthopsis crassicaudata, was investigated by means of electron-microscopic immunocytochemistry using the protein A-gold technique on London resin (LR) white-embedded tissue. The primary antibodies used were raised against insulin, glucagon, somatostatin and pancreatic polypeptide. The morphology of the secretory granules differed in the four cell types. The insulin cells are pleomorphic, and the secretory granules composed of an electron-dense core surrounded by an electron-lucen halo. The glucago cells possess granules with an electron-dense core usually surrounded by a halo of less dense granular material. Somatostatin cells have large, less dense secretory granules. The pancreatic polypeptide cells show small, dense secretory granules. In order for an ultrastructural study to be considered reliable for the definite identification of endocrine cell types, it is essential that it be corroborated by immunocytochemical data at the light-or preferably electron-microscopic level. Recent developments in immuno-electron-microscopic techniques have contributed to a better knowledge of cells responsible for the secretion of a wide variety of hormones, as in this study.  相似文献   

13.
Summary The morphologic and functional properties of explant out-growth cells and epithelial cells isolated from swine trachea epithelium by proteolysis were examined. A mixed population of ciliated, serous, and basal cells, obtained from out-growths, from proteolysis of trachea epithelium, and from unattached explants in organ culture, all yielded cell cultures that were composed almost entirely of mucus-secreting cells. When the cells were grown in primary or secondary culture on a modified collagen matrix in supplemented HAM:DMEM (1:1) medium they expressed a mucus-secreting phenotype with numerous mucus granules at various stages of maturation and incorporated [3H]GlcN and35SO4 into secreted mucin glycoproteins. Results obtained in these studies suggest that extensive transdifferentiation of ciliated and serous cells to mucus-secreting cells occurs after the release and during subsequent attachment and culture. Ciliated cells containing mucus granules were seen in various stages of cilia resorption. Basal cells containing mucus granules were also frequently observed. The number of mucus-secreting cells and the synthesis of mucin glycoproteins increased dramatically with time of attachment and culture, whereas cell proliferation, population doubling time of 72 h, and incorporation of [3H]thymidine into DNA increased much more slowly. The number of mucus-secreting cells correlated closely with the level of secretion of mucin glycoproteins. Taken collectively, these studies help to elucidate the transdifferentiation process, which dramatically increases the number of mucus-secreting cells after disruption and release of epithelial cells from swine tracheobronchial epithelium. A similar mechanism involving disruption of the extracellular matrix may be involved in the stimulation of hypersecretion of mucus and mucin glycoproteins by chemical and infections irritants.  相似文献   

14.
The mucus secreted by the body surface of the terrestrial pulmonate slug, Ariolimax columbianus, is a variable mix of products of the giant mucous and channel cells of the skin. An in vitro sac preparation allows the study of control and products of these two cell types. Mucins in membrane-bound granules are released by the mucous cells on mechanical or electrical stimulation of the skin. The product of the channel cells is a blood ultrafiltrate, modified by reabsorption of Na+ and Cl- ions and transfer into the fluid of K+ and HCO3- ions (processes of secretion inhibited by ouabain, amiloride and furosemide; and by other epithelial blocking agents). Rates of secretion can be increased or decreased by gastropod neurotransmitters (acetylcholine, serotonin, and others), and by prostaglandin E2 and indomethacin.  相似文献   

15.
A monoclonal antibody against intestinal mucins (5H7) was obtained and used immunolabel thin frozen sections and Epon-embedded sections of rabbit jejunum. It recognized a mucin oligosaccharide, the synthesis of which increased during goblet cell migration along the crypt-villus axis. During the earliest steps in their differentiation, the goblet cells located at the bottom of crypts synthesized mucins devoid of the 5H7 epitope, thus generating unlabeled granules. These unlabeled granules were gradually replaced by more and more labeled granules during the cell maturation. During goblet cell migration along the middle half of the villi, the mucus granules were found to be totally renewed twice. However, some newly formed labeled granules were observed to reach the apical pole of the cells before older unlabeled ones and might have had a faster turnover. At least one glycoconjugate of the goblet cell microvillar membrane also bore the 5H7 epitope. It was rapidly carried from the Golgi apparatus to the apical plasma membrane domain by a transport process that was independent of baseline mucin secretion.  相似文献   

16.
Morphometric evidence derived from studies of mast cells, pancreatic acinar cells and other cell types supports a model in which the post-Golgi processes that generate mature secretory granules can be resolved into three steps: (1) fusion of small, Golgi-derived progranules to produce immature secretory granules which have a highly constrained volume; (2) transformation of such immature granules into mature secretory granules, a process often associated with a reduction in the maturing granule’s volume, as well as changes in the appearance of its content and (3) fusion of secretory granules of the smallest size, termed ‘unit granules’, forming granules whose volumes are multiples of the unit granule’s volume. Mutations which perturb this process can cause significant pathology. For example, Chediak–Higashi syndrome / lysosomal trafficking regulator (CHS)/(Lyst) mutations result in giant secretory granules in a number of cell types in human beings with the Chediak–Higashi syndrome and in ‘beige’ (Lystbg/Lystbg) mice. Analysis of the secretory granules of mast cells and pancreatic acinar cells in Lyst-deficient beige mice suggests that beige mouse secretory granules retain the ability to fuse randomly with other secretory granules no matter what the size of the fusion partners. By contrast, in normal mice, the pattern of granule–granule fusion occurs exclusively by the addition of unit granules, either to each other or to larger granules. The normal pattern of fusion is termed unit addition and the fusion evident in cells with CHS/Lyst mutations is called random addition. The proposed model of secretory granule formation has several implications. For example, in neurosecretory cells, the secretion of small amounts of cargo in granules constrained to a very narrow size increases the precision of the information conveyed by secretion. By contrast, in pancreatic acinar cells and mast cells, large granules composed of multiple unit granules permit the cells to store large amounts of material without requiring the amount of membrane necessary to package the same amount of cargo into small granules. In addition, the formation of mature secretory granules that are multimers of unit granules provides a mechanism for mixing in large granules the contents of unit granules which differ in their content of cargo.  相似文献   

17.
Summary Studies on the regulation of differentiation in airway epithelial cells have been hampered by the lack of cell culture systems that differentiate in vitro. One such system that does exhibit differentiation is hamster tracheal epithelial cells (HTE). A major problem with this system, however, is that at the time cells differentiate, they lyze the collagen gel upon which they grow, resulting in termination of the culture. Here we report that by growing the HTE cells at 32° instead of 37°C we can totally prevent lysis of the collagen gel. Cells grown at this lower temperature maintain their differentiated phenotype as evidenced by abundant mucus granules and the secretion of authentic mucus glycoproteins into the culture media. We have also developed a method for subculturing the primary cells which allows growth and differentiation in secondary culture. The HTE cells were capable of being passaged at least three times and did not become transformed as judged by their inability to grow in soft agar and to produce tumors in syngeneic animals. This improved HTE cell culture system will allow detailed studies on the mechanisms which regulate growth, differentiation, and mucus secretion in surface airway epithelial cells. This work was supported in part by grants HL-19717 and HL-36854 from the National Institutes of Health, Bethesda, MD.  相似文献   

18.
A role of VAMP8/endobrevin in regulated exocytosis of pancreatic acinar cells   总被引:10,自引:0,他引:10  
Despite our general understanding that members of the SNARE superfamily participate in diverse intracellular docking/fusion events, the physiological role of the majority of SNAREs in the intact organism remains elusive. In this study, through targeted gene knockout in mice, we establish that VAMP8/endobrevin is a major player in regulated exocytosis of the exocrine pancreas. VAMP8 is enriched on the membrane of zymogen granules and exists in a complex with syntaxin 4 and SNAP-23. VAMP8-/- mice developed normally but showed severe defects in the pancreas. VAMP8 null acinar cells contained three times more zymogen granules than control acinar cells. Furthermore, secretagogue-stimulated secretion was abolished in pancreatic fragments derived from VAMP8-/- mice. In addition, VAMP8-/- mice were partially resistant to supramaximal caerulein-induced pancreatitis. These results suggest a major physiological role of VAMP8 in regulated exocytosis of pancreatic acinar cells by serving as a v-SNARE of zymogen granules.  相似文献   

19.
The characterization of a mucus-producing human cell line (HC-84) derived from a colon carcinoma and its response to in vitro reserpine treatment is reported. Mucous granules were demonstrated within these cells on the basis of electron microscopic examination and incorporation of [3H]glucosamine with subsequent autoradiographic analysis. Fluorographic analysis of total HC-84 cell protein after incubation with [3H]glucosamine indicated that the majority of tritium was incorporated into two proteins with molecular weights of 115 and 120 kD. When total HC-84 protein was subjected to immuno-blot analysis utilizing rabbit antibody against human intestinal mucus, only these two proteins (115K and 120K) reacted positively, indicating a direct correlation between [3H]glucosamine incorporation and mucus production. Immunofluorescence localization of mucus within HC-84 cells utilizing this same antibody resulted in a punctate pattern of fluorescence within the cytoplasm. Treatment of HC-84 cells with 30 microM reserpine for 7 days resulted in a three-fold increase in mucus production compared with controls. There was also a concomitant loss of a 30K calmodulin-binding protein in cells treated with reserpine. These cells represent a useful system for studying the effect of reserpine on the processes of mucus synthesis and secretion.  相似文献   

20.
V Colomer  K Lal  T C Hoops    M J Rindler 《The EMBO journal》1994,13(16):3711-3719
The mechanisms for segregation of secretory and membrane proteins incorporated into storage granules from those transported constitutively have been thought to be conserved in diverse cell types, including exocrine and endocrine cells. However, GP2, the major protein of pancreatic zymogen granule membranes, in its native glycosyl phosphatidylinositol (GPI)-linked form, is incorporated into secretory granules when expressed in exocrine pancreatic AR42J cells, but not in the endocrine cells such as pituitary AtT20. To determine whether the protein moiety of GP2 contains the cell-type specific information for packaging into granules, a secretory form of GP2 (GP2-GPI-), with the GPI attachment site deleted, was generated and introduced into AR42J and AtT20 cells. Like native GP2, GP2-GPI- localized to the zymogen-like granules of AR42J cells and underwent regulated secretion. In AtT20 cells expressing GP2-GPI-, however, the protein was secreted by the constitutive pathway. Thus, a granule packaging signal is present in the luminal portion of GP2 that is functional only in the exocrine cells. However, this cell-type dependent sorting process is not limited to GP2 or membrane proteins. Amylase, a major content protein of pancreatic acinar and serous salivary gland granules, was also secreted exclusively by the constitutive pathway when expressed in AtT20 cells. The cell-type specific targeting of GP2 to granules correlated with its behavior in an in vitro aggregation assay where it co-aggregated more effectively with content proteins from pancreatic zymogen granules than with those from pituitary granules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号