首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nef, a regulatory protein of human and simian immunodeficiency viruses, downregulates cell surface expression of both class I MHC and CD4 molecules in T cells by accelerating their endocytosis. Fibroblasts were used to study alterations in the traffic of class I MHC complexes induced by Nef. We found that Nef downregulates class I MHC complexes by a novel mechanism involving the accumulation of endocytosed class I MHC in the trans-Golgi, where it colocalizes with the adaptor protein-1 complex (AP-1). This effect of Nef on class I MHC traffic requires the SH3 domain-binding surface and a cluster of acidic amino acid residues in Nef, both of which are also required for Nef to downregulate class I MHC surface expression and to alter signal transduction in T cells. Downregulation of class I MHC complexes from the surface of T cells also requires a tyrosine residue in the cytoplasmic domain of the class I MHC heavy chain molecule. The requirement of the same surfaces of the Nef molecule for downregulation of surface class I MHC complexes in T cells and for their accumulation in the trans-Golgi of fibroblasts indicates that the two effects of Nef involve similar interactions with the host cell machinery and involve a molecular mechanism regulating class I MHC traffic that is common for both of these cell types. Interestingly, the downregulation of class I MHC does not require the ability of Nef to colocalize with the adaptor protein-2 complex (AP-2). We showed previously that the ability of Nef to colocalize with AP-2 correlates with the ability of Nef to downregulate CD4 expression. Our observations indicate that Nef downregulates class I MHC and CD4 surface expression via different interactions with the protein sorting machinery, and link the sorting and signal transduction machineries in the regulation of class I MHC surface expression by Nef.  相似文献   

2.
We analyzed the phosphorylation and the dynamics of TCR/CD3, CD8 and MHC class I molecules during the activation of a CD8+ cytotoxic T lymphocyte clone and of CD8- T helper hybridomas transfected with the gene coding for the native (J. Gabert, C. Langlet, R. Zamoyska, J.R. Parnes, A.M. Schmitt-Verhulst, and B. Malissen. 1987. Reconstitution of MHC class I specificity by transfer of the T cell receptor and Lyt-2 genes. Cell 50:545) or truncated CD8 alpha molecule. The CD3 components gamma and epsilon and the CD8 alpha subunit were phosphorylated after activation of the CTL clone with the protein kinase C activator PMA. Class I MHC molecules were phosphorylated irrespective of PMA activation. Constitutive phosphorylation of the MHC class I products was found to be intrinsic to the transmembrane/cytoplasmic portion of the molecules because it was transferred to the CD8 alpha hybrid molecules composed of extracellular CD8 and MHC class I transmembrane and intracytoplasmic domains (CD8-e/MHC-t-i). Measurements of the dynamics of these cell surface molecules by using radiolabeled mAb revealed distinct behaviors: TCR/CD3 complex ligand internalization was increased (around 50% after 40 to 60 min) after PMA activation, whereas the ligand of class I MHC molecules was internalized at constant rate irrespective of PMA activation. Ligand bound to native CD8 molecules was poorly internalized, irrespective of the activation of the T cells with PMA. The same ligand bound to the CD8-e/MHC-t-i hybrid molecule was internalized at the same rate as a class I MHC molecule ligand, indicating that the behavior of the hybrid molecule was characteristic of the transmembrane/cytoplasmic portion of MHC class I molecules.  相似文献   

3.
The cell surface molecules CD4 and CD8 greatly enhance the sensitivity of T-cell antigen recognition, acting as "co-receptors" by binding to the same major histocompatibility complex (MHC) molecules as the T-cell receptor (TCR). Here we use surface plasmon resonance to study the binding of CD8alphaalpha to class I MHC molecules. CD8alphaalpha bound the classical MHC molecules HLA-A*0201, -A*1101, -B*3501, and -C*0702 with dissociation constants (K(d)) of 90-220 microm, a range of affinities distinctly lower than that of TCR/peptide-MHC interaction. We suggest such affinities apply to most CD8alphaalpha/classical class I MHC interactions and may be optimal for T-cell recognition. In contrast, CD8alphaalpha bound both HLA-A*6801 and B*4801 with a significantly lower affinity (>/=1 mm), consistent with the finding that interactions with these alleles are unable to mediate cell-cell adhesion. Interestingly, CD8alphaalpha bound normally to the nonclassical MHC molecule HLA-G (K(d) approximately 150 microm), but only weakly to the natural killer cell receptor ligand HLA-E (K(d) >/= 1 mm). Site-directed mutagenesis experiments revealed that variation in CD8alphaalpha binding affinity can be explained by amino acid differences within the alpha3 domain. Taken together with crystallographic studies, these results indicate that subtle conformational changes in the solvent exposed alpha3 domain loop (residues 223-229) can account for the differential ability of both classical and nonclassical class I MHC molecules to bind CD8.  相似文献   

4.
The activity of NK cells is regulated by activating receptors that recognize mainly stress-induced ligands and by inhibitory receptors that recognize mostly MHC class I proteins on target cells. Comparing the cytoplasmic tail sequences of various MHC class I proteins revealed the presence of unique cysteine residues in some of the MHC class I molecules which are absent in others. To study the role of these unique cysteines, we performed site specific mutagenesis, generating MHC class I molecules lacking these cysteines, and demonstrated that their expression on the cell surface was impaired. Surprisingly, we demonstrated that these cysteines are crucial for the surface binding of the leukocyte Ig-like receptor 1 inhibitory receptor to the MHC class I proteins, but not for the binding of the KIR2DL1 inhibitory receptor. In addition, we demonstrated that the cysteine residues in the cytoplasmic tail of MHC class I proteins are crucial for their egress from the endoplasmic reticulum and for their palmitoylation, thus probably affecting their expression on the cell surface. Finally, we show that the cysteine residues are important for proper extracellular conformation. Thus, although the interaction between leukocyte Ig-like receptor 1 and MHC class I proteins is formed between two extracellular surfaces, the intracellular components of MHC class I proteins play a crucial role in this recognition.  相似文献   

5.
Cell-based tumor vaccines, consisting of MHC class I+ tumor cells engineered to express MHC class II molecules, stimulate tumor-specific CD4+ T cells to mediate rejection of established, poorly immunogenic tumors. Previous experiments have demonstrated that these vaccines induce immunity by functioning as APCs for endogenously synthesized, tumor-encoded Ags. However, coexpression of the MHC class II accessory molecule invariant chain (Ii), or deletion of the MHC class II cytoplasmic domain abrogates vaccine immunogenicity. Recent reports have highlighted the role of lipid microdomains in Ag presentation. To determine whether Ii expression and/or truncation of MHC class II molecules impact vaccine efficacy by altering MHC class II localization to lipid microdomains, we examined the lipid raft affinity of MHC class II molecules in mouse M12.C3 B cell lymphomas and SaI/A(k) sarcoma vaccine cells. Functional MHC class II heterodimers were detected in lipid rafts of both cell types. Interestingly, expression of Ii in M12.C3 cells or SaI/A(k) cells blocked the MHC class II interactions with cell surface lipid rafts. In both cell types, truncation of either the alpha- or beta-chain decreased the affinity of class II molecules for lipid rafts. Simultaneous deletion of both cytoplasmic domains further reduced localization of class II molecules to lipid rafts. Collectively, these data suggest that coexpression of Ii or deletion of the cytoplasmic domains of MHC class II molecules may reduce vaccine efficacy by blocking the constitutive association of MHC class II molecules with plasma membrane lipid rafts.  相似文献   

6.
Lymphocyte activation gene (LAG)-3 (CD223) is a CD4-related activation-induced cell surface molecule that binds to MHC class II molecules with high affinity and negatively regulates T cell expansion and homeostasis. In this study, we show that LAG-3 inhibits CD4-dependent, but not CD4-independent, T cell function via its cytoplasmic domain. Although high affinity interaction with MHC class II molecules is essential for LAG-3 function, tailless LAG-3 does not compete with CD4 for ligand binding. A single lysine residue (K468) within a conserved "KIEELE" motif is essential for interaction with downstream signaling molecules. These data provide insight into the mechanism of action of this important T cell regulatory molecule.  相似文献   

7.
The T cell-specific transmembrane glycoprotein CD4 interacts with class II MHC molecules via its external domain and is associated with tyrosine kinase p56lck via a cysteine motif in its cytoplasmic domain. We have assessed the ability of CD4 to synergize with the antigen-specific T cell receptor (TCR) for induction of transmembrane signals that result in lymphokine production. Mutant CD4 molecules were introduced into T cells that lacked endogenous CD4 but expressed TCRs specific for lysozyme peptides or the superantigen SEA bound to Ab or Abm12 class II MHC molecules. With either ligand, T cell activation occurred only when CD4 was associated with p56lck. These results demonstrate that residues within the cytoplasmic domain of CD4 are required for its coreceptor function in TCR-mediated signal transduction and strongly support the notion that the association of CD4 with p56lck is critical in this process.  相似文献   

8.
The relationship between surface molecule expression and encephalitogenicity of myelin basic protein (BP)-sensitized cells induced by three different sensitization protocols was studied using adoptive transfer in Lewis rats. (i) In BP/CFA sensitization, CD4+ blastoid T cells showing marked upregulation of CD4, class I and II MHC, and IL2 receptor molecules, but not CD5, CD8, or CD45, were generated after culture with BP. In this case, BP-cultured cells were strongly encephalitogenic in the recipients. (ii) In the case of BP/IFA sensitization, CD4+ T cells showed no remarkable change of cell size or surface molecule expression after culture with BP and were weakly encephalitogenic in the recipients. Vigorous proliferation of the cells induced by addition of recombinant IL2 to the culture with BP neither enhanced the encephalitogenicity nor produced CD4+ blastoid T cells showing marked upregulation of CD4, class I and II MHC, and IL2 receptor molecules. (iii) The sequentially transferred naive T cells showed no remarkable change of cell size or surface molecule expression, even after a second culture with BP, and were the least encephalitogenic. These data suggest that the generation of CD4+ blastoid T cells showing marked upregulation of CD4, class I and II MHC, and IL2 receptor molecules but not vigorous proliferation correlates closely with the potent encephalitogenicity in vivo.  相似文献   

9.
Lee S  Yoon J  Park B  Jun Y  Jin M  Sung HC  Kim IH  Kang S  Choi EJ  Ahn BY  Ahn K 《Journal of virology》2000,74(23):11262-11269
The human cytomegalovirus US3, an endoplasmic reticulum (ER)-resident transmembrane glycoprotein, forms a complex with major histocompatibility complex (MHC) class I molecules and retains them in the ER, thereby preventing cytolysis by cytotoxic T lymphocytes. To identify which parts of US3 confine the protein to the ER and which parts are responsible for the association with MHC class I molecules, we constructed truncated mutant and chimeric forms in which US3 domains were exchanged with corresponding domains of CD4 and analyzed them for their intracellular localization and the ability to associate with MHC class I molecules. All of the truncated mutant and chimeric proteins containing the luminal domain of US3 were retained in the ER, while replacement of the US3 luminal domain with that of CD4 led to cell surface expression of the chimera. Thus, the luminal domain of US3 was sufficient for ER retention. Immunolocalization of the US3 glycoprotein after nocodazole treatment and the observation that the carbohydrate moiety of the US3 glycoprotein was not modified by Golgi enzymes indicated that the ER localization of US3 involved true retention, without recycling through the Golgi. Unlike the ER retention signal, the ability to associate with MHC class I molecules required the transmembrane domain in addition to the luminal domain of US3. Direct interaction between US3 and MHC class I molecules could be demonstrated after in vitro translation by coimmunoprecipitation. Together, the present data indicate that the properties that allow US3 to be localized in the ER and bind MHC class I molecules are located in different parts of the molecule.  相似文献   

10.
HIV infection does not require endocytosis of its receptor, CD4   总被引:36,自引:0,他引:36  
The T cell surface molecule CD4 interacts with class II MHC molecules on the surface of target cells as well as with the envelope glycoprotein of human immunodeficiency virus (HIV). Internalization of CD4 molecules is observed after exposure of CD4+ T cells to either phorbol esters or appropriate antigen-bearing target cells. To determine whether HIV entry proceeds via receptor-mediated endocytosis or direct viral fusion with the cell membrane, we have constructed two mutants in the cytoplasmic domain of the CD4 protein that severely impair the ability of CD4 molecules to undergo endocytosis. Quantitative infectivity studies reveal that HeLa cell lines expressing wild-type or mutant CD4 molecules are equally susceptible to HIV infection. In addition, HIV binding does not lead to CD4 endocytosis. These studies indicate that although the CD4 molecule can be internalized, HIV entry proceeds via direct fusion of the viral envelope with the cell membrane.  相似文献   

11.
Several lines of evidence suggest that endocytosis of MHC class I molecules requires conserved motifs within the cytoplasmic domain. In this study, we show, in the C58 rat thymoma cell line transfected with HLA-B27 molecules, that replacement of the highly conserved tyrosine (Tyr320) in the cytoplasmic domain of HLA-B27 does not hamper cell surface expression of beta2-microglobulin H chain heterodimers or formation of misfolded molecules. However, Tyr320 replacement markedly impairs spontaneous endocytosis of HLA-B27. Although wild-type molecules are mostly internalized via endosomal compartments, Tyr320-mutated molecules remain at the plasma membrane in which partial colocalization with endogenous transferrin receptors can be observed, also impairing their endocytosis. Finally, we show that Tyr320 substitution enhances release of cleaved forms of HLA-B27 from the cell surface. These studies show for the first time that Tyr320 is most likely part of a cytoplasmic sorting motif involved in spontaneous endocytosis and shedding of MHC class I molecules.  相似文献   

12.
Simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) Nef proteins are related regulatory proteins that share several functions, including the ability to downregulate class I major histocompatibility complex (MHC) and CD4 expression on the cell surface and to alter T-cell-receptor-initiated signal transduction in T cells. We compared the mechanisms used by SIV mac239 Nef and HIV-1 Nef to downregulate class I MHC and found that the ability of SIV Nef to downregulate class I MHC requires a unique C-terminal region of the SIV mac239 Nef molecule which is not found in HIV-1 Nef. Interestingly, mutation of the PxxP motif in SIV Nef, unlike in HIV-1 Nef, does not affect class I MHC downregulation. We also found that downregulation of class I MHC by SIV Nef requires a conserved tyrosine in the cytoplasmic domain of the class I MHC heavy chain and involves accelerated endocytosis of class I complexes, as previously found with HIV-1 Nef. Thus, while SIV and HIV-1 Nef proteins use a similar mechanism to downregulate class I MHC expression, they have evolved different surfaces for molecular interactions with cell factors that regulate class I MHC traffic. Mutations in the C-terminal domain of SIV mac239 Nef selectively disrupt class I MHC downregulation, having no detectable effect on other functions of Nef, such as the downregulation of CD4 and CD3 surface expression, the stimulation of SIV virion infectivity, and the induction of SIV replication from T cells infected in the absence of stimulation. The resulting mutants will be useful reagents for studying the importance of class I MHC downregulation for SIV replication and AIDS pathogenesis in infected rhesus macaques.  相似文献   

13.
The specificity of the T-cell receptor (TCR) and its interaction with coreceptors play a crucial role in T-cell passing through developmental checkpoints and, eventually, determine the efficiency of adaptive immunity. The genes for the α and β chains of TCR were cloned from T-cell hybridoma 1D1, which was obtained by fusion of BWZ.36CD8α cells with CD8+ memory cells specific for the H-2Kb MHC class I molecule. Retroviral transduction of the 1D1 TCR genes and the CD4 and CD8 coreceptor genes was used to obtain 4G4 thymoma variants that exposed the CD3/TCR complex together with CD4, CD8, or both of the coreceptors on their surface. Although the main function of CD4 is to stabilize the interaction of TCR with MHC class II molecules, CD4 was found to mediate the activation of transfected cells via TCR specific for the H-2Kb MHC class I molecule. Moreover, CD4 proved to dominate over CD8, since the response of CD4+CD8+ transfectants was suppressed by antibodies against CD4 and the Ab MHC class II molecule but not to CD8. The response of CD4+ transfectants was not due to a cross-reaction of 1D1 TCR with MHC class II molecules, because the transfectants did not respond to splenocytes of H-2b knockout mice, which were defective in the assembly of the MHC class I molecule/β2 microglobulin/peptide complex and did not expose the complex on cell surface. The domination was not due to sequestration of p56lck kinase, since CD4 devoid of the kinase-binding site was functional in 4G4 thymoma cells. The results were used to explain some features of intrathymic cell selection and assumed to provide an experimental basis for developing new methods of anticancer gene therapy.  相似文献   

14.
15.
Ag-specific T cell recognition is mediated through direct interaction of clonotypic TCRs with complexes formed between Ag-presenting molecules and their bound ligands. Although characterized in substantial detail for class I and class II MHC encoded molecules, the molecular interactions responsible for TCR recognition of the CD1 lipid and glycolipid Ag-presenting molecules are not yet well understood. Using a panel of epitope-specific Abs and site-specific mutants of the CD1b molecule, we showed that TCR interactions occur on the membrane distal aspects of the CD1b molecule over the alpha1 and alpha2 domain helices. The location of residues on CD1b important for this interaction suggested that TCRs bind in a diagonal orientation relative to the longitudinal axes of the alpha helices. The data point to a model in which TCR interaction extends over the opening of the putative Ag-binding groove, making multiple direct contacts with both alpha helices and bound Ag. Although reminiscent of TCR interaction with MHC class I, our data also pointed to significant differences between the TCR interactions with CD1 and MHC encoded Ag-presenting molecules, indicating that Ag receptor binding must be modified to accommodate the unique molecular structure of the CD1b molecule and the unusual Ags it presents.  相似文献   

16.
The Ag receptors on CD8+ CTL recognize foreign antigenic peptides associated with cell surface MHC class I molecules. Peptides derived from self proteins are also normally presented by MHC class I molecules. Here we report that an H-2Kd-restricted murine CD8+ CTL clone directed to an influenza hemagglutinin epitope can recognize a peptide derived from the murine mitochondrial aconitase enzyme in association with H-2Kd molecules. Surprisingly, this self peptide is not normally displayed on the cell surface associated with the restricting MHC class I molecule. Several lines of evidence suggest that this self peptide, although requiring association with the Kd molecule for CTL recognition, is not associated with this or other MHC class I allele under physiologic conditions in intact cells. Rather, it is sequestered in the cytoplasm associated with a carrier protein and is released only upon cell disruption. These results suggest a means of restricting the entry of self peptide into the class I pathway. In addition, this finding raises the possibility that self peptides sequestered within the cell can, after release from damaged cells, interact with MHC class I molecules on bystander cells and trigger autoimmune injury by virus-specific CTLs during viral infection.  相似文献   

17.
The CD4 molecule is a receptor found on a subset of T lymphocytes. It has been proposed that, upon binding MHC class II molecules expressed on APC, the CD4 molecule enhances the responsiveness of the T cell by increasing intercellular avidity and/or by transducing an intracellular signal. We have analyzed the effect of removing the cytoplasmic domain of the CD4 molecule on the ability of the CD4 molecule to enhance T cell responsiveness. The cytoplasmic domain-deleted mutant of the CD4 molecule (CD4 delta) was found to be as efficient as the CD4 molecule at enhancing responsiveness to cells bearing the appropriate Ag. If subcellular Ag in the form of purified Ag incorporated into liposomes was used, the CD4 molecule was found to be much more efficient than the CD4 delta molecule at enhancing responsiveness. However, the defect in the ability of the CD4 delta molecule to enhance responsiveness could be compensated for by increasing the level of expression of the CD4 delta molecule.  相似文献   

18.
Molecular cloning and characterization of a novel CD1 gene from the pig.   总被引:1,自引:0,他引:1  
Much effort is underway to define the immunological functions of the CD1 multigene family, which encodes a separate lineage of Ag presentation molecules capable of presenting lipid and glycolipid Ags. To identify porcine CD1 homologues, a cosmid library was constructed and screened with a degenerate CD1 alpha3 domain probe. One porcine CD1 gene (pCD1.1) was isolated and fully characterized. The pCD1.1 gene is organized similarly to MHC class I and other CD1 genes and contains an open reading frame of 1020 bp encoding 339 amino acids. Expression of pCD1.1 mRNA was observed in CD3- thymocytes, B lymphocytes, and tissue macrophages and dendritic cells. The pCD1.1 cDNA was transfected into Chinese hamster ovary cells, and subsequent FACS analysis demonstrated that mAb 76-7-4, previously suggested to be a pig CD1 mAb, recognizes cell surface pCD1.1. Structurally, the pCD1.1 alpha1 and alpha2 domains are relatively dissimilar to those of other CD1 molecules, whereas the alpha3 domain is conserved. Overall, pCD1.1 bears the highest similarity with human CD1a, and the ectodomain sequences characteristically encode a hydrophobic Ag-binding pocket. Distinct from other CD1 molecules, pCD1.1 contains a putative serine phosphorylation motif similar to that found in human, pig, and mouse MHC class Ia molecules and to that found in rodent, but not human, MHC class-I related (MR1) cytoplasmic tail sequences. Thus, pCD1.1 encodes a molecule with a conventional CD1 ectodomain and an MHC class I-like cytoplasmic tail. The unique features of pCD1.1 provoke intriguing questions about the immunologic functions of CD1 and the evolution of Ag presentation gene families.  相似文献   

19.
BACKGROUND: T cells and natural killer (NK) cells perform complementary roles in the cellular immune system. T cells identify infected cells directly through recognition of antigenic peptides that are displayed at the target cell surface by the classical major histocompatibility complex (MHC) class I molecules. NK cells monitor the target cell surface for malfunction of this display system, lysing potentially infected cells that might otherwise evade recognition by the T cells. Human killer cell inhibitory receptors (KIRs) control this process by either inhibiting or activating the cytotoxic activity of NK cells via specific binding to MHC class I molecules on the target cell. RESULTS: We report the crystal structure of the extracellular region of the human p58 KIR (KIR2DL3), which is specific for the human MHC class I molecule HLA-Cw3 and related alleles. The structure shows the predicted topology of two tandem immunoglobulin-like domains, but comparison with the previously reported structure of the related receptor KIR2DL1 reveals an unexpected change of 23 degrees in the relative orientation of these domains. CONCLUSIONS: The altered orientation of the immunoglobulin-like domains maintains an unusually acute interdomain elbow angle, which therefore appears to be a distinctive feature of the KIRs. The putative MHC class I binding site is located on the outer surface of the elbow, spanning both domains. The unexpected observation that this binding site can be modulated by differences in the relative domain orientations has implications for the general mechanism of KIR-MHC class I complex formation.  相似文献   

20.
NK cells are cytotoxic to virus-infected and tumor cells that have lost surface expression of class I MHC proteins. Target cell expression of class I MHC proteins inhibits NK cytotoxicity through binding to inhibitory NK receptors. In contrast, a similar family of activating NK receptors, characterized by the presence of a charged residue in their transmembrane portion and a truncated cytoplasmic tail, augment lysis by NK cells when ligated by an appropriate class I MHC protein. However, the class I MHC specificity of many of these activating NK receptors is still unknown. Here, we show enhanced lysis of HLA-Cw4 but not HLA-Cw6-expressing cells, by a subset of NK clones. This subset may express killer cell Ig-like receptor two-domain short tail number 4 (KIR2DS4), as suggested by staining with various mAb. It is still possible, however, that these clones may express receptors other than KIR2DS4 that might recognize HLA-Cw4. Binding of KIR2DS4-Ig fusion protein to cells expressing HLA-Cw4 but not to those expressing HLA-Cw6 was also observed. The binding of KIR2DS4-Ig to HLA-Cw4 is weaker than that of killer cell Ig-like receptor two-domain long tail number 1 (KIR2DL1)-Ig fusion protein; however, such weak recognition is capable of inhibiting lysis by an NK transfectant expressing a chimeric molecule of KIR2DS4 fused to the transmembrane and cytoplasmic portion of KIR2DL1. Residue alpha14 is shown to be important in the KIR2DS4 binding to HLA-Cw4. Implications of the role of the activating NK receptors in immunosurveillance are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号