共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Multiple factors bind the upstream activation sites of the yeast enolase genes ENO1 and ENO2: ABFI protein, like repressor activator protein RAP1, binds cis-acting sequences which modulate repression or activation of transcription. 总被引:16,自引:14,他引:16 下载免费PDF全文
P K Brindle J P Holland C E Willett M A Innis M J Holland 《Molecular and cellular biology》1990,10(9):4872-4885
9.
10.
11.
12.
The SWI/SNF complex is an ATP-dependent chromatin remodeling complex that plays an important role in the regulation of eukaryotic gene expression. Very little is known about the function of SWI/SNF complex in plants compared with animals and yeast. SWI3 is one of the core components of the SWI/SNF chromatin remodeling complexes in yeast. We have identified a putative SWI3-like cDNA clone, CHB2 (AtSWI3B), from Arabidopsis thaliana by screening the expressed sequence tag database. CHB2 encodes a putative protein of 469 amino acids and shares 23% amino acid sequence identity and 64% similarity with the yeast SWI3. The Arabidopsis genome contains four SWI3-like genes, namely CHB1 (AtSWI3A), CHB2 (AtSWI3B), CHB3 (AtSWI3C) and CHB4 (AtSWI3D). The expression of CHB2, CHB3 and CHB4 mRNA was detected in all tissues analyzed by RT-PCR. The expression of CHB1 mRNA, however, could not be detected in the siliques, suggesting that there is differential expression among CHB genes in different Arabidopsis tissues. To investigate the role of CHB2 in plants, Arabidopsis plants were transformed with a gene construct comprising a CHB2 cDNA in the antisense orientation driven by the CaMV 35S promoter. Repression of CHB2 expression resulted in pleiotropic developmental abnormalities including abnormal seedling and leaf phenotypes, dwarfism, delayed flowering and no apical dominance, suggesting a global role for CHB2 in the regulation of gene expression. Our results indicate that CHB2 plays an essential role in plant growth and development. 相似文献
13.
In vivo DNA-binding properties of a yeast transcription activator protein. 总被引:13,自引:17,他引:13
14.
15.
16.
The fission yeast genes pyp1+ and pyp2+ encode protein tyrosine phosphatases that negatively regulate mitosis. 下载免费PDF全文
S Ottilie J Chernoff G Hannig C S Hoffman R L Erikson 《Molecular and cellular biology》1992,12(12):5571-5580
We have used degenerate oligonucleotide probes based on sequences conserved among known protein tyrosine phosphatases (PTPases) to identify two Schizosaccharomyces pombe genes encoding PTPases. We previously described the cloning of pyp1+ (S. Ottilie, J. Chernoff, G. Hannig, C. S. Hoffman, and R. L. Erikson, Proc. Natl. Acad. Sci. USA 88:3455-3459, 1991), and here we describe a second gene, called pyp2+. The C terminus of each protein contains sequences conserved in the apparent catalytic domains of all known PTPases. Disruption of pyp2+ results in viable cells, as was the case for pyp1+, whereas disruption of pyp2+ and pyp1+ results in synthetic lethality. Overexpression of either pyp1+ or pyp2+ in wild-type strains leads to a delay in mitosis but is suppressed by a wee1-50 mutation at 35 degrees C or a cdc2-1w mutation. A pyp1 disruption suppresses the temperature-sensitive lethality of a cdc25-22 mutation. Our data suggest that pyp1+ and pyp2+ act as negative regulators of mitosis upstream of the wee1+/mik1+ pathway. 相似文献
17.
Two functional alpha-tubulin genes of the yeast Saccharomyces cerevisiae encode divergent proteins. 总被引:20,自引:14,他引:20 下载免费PDF全文
P J Schatz L Pillus P Grisafi F Solomon D Botstein 《Molecular and cellular biology》1986,6(11):3711-3721
Two alpha-tubulin genes from the budding yeast Saccharomyces cerevisiae were identified and cloned by cross-species DNA homology. Nucleotide sequencing studies revealed that the two genes, named TUB1 and TUB3, encoded gene products of 447 and 445 amino acids, respectively, that are highly homologous to alpha-tubulins from other species. Comparison of the sequences of the two genes revealed a 19% divergence between the nucleotide sequences and a 10% divergence between the amino acid sequences. Each gene had a single intervening sequence, located at an identical position in codon 9. Cell fractionation studies showed that both gene products were present in yeast microtubules. These two genes, along with the TUB2 beta-tubulin gene, probably encode the entire complement of tubulin in budding yeast cells. 相似文献
18.
19.
20.
Fognani C Kilstrup-Nielsen C Berthelsen J Ferretti E Zappavigna V Blasi F 《Nucleic acids research》2002,30(9):2043-2051
TALE (three amino acid loop extension) homeodomain proteins include the PBC and the MEINOX sub-families. MEINOX proteins form heterodimer complexes with PBC proteins. Heterodimerization is crucial to DNA binding and for nuclear localization. PBC-MEINOX heterodimers bind DNA also in combination with HOX proteins, thereby modulating their DNA-binding specificity. TALE proteins therefore play crucial roles in multiple developmental and differentiation pathways in vivo. We report the identification and characterization of a novel human gene homologous to PREP1, called PREP2. Sequence comparisons indicate that PREP1 and PREP2 define a novel sub-family of MEINOX proteins, distinct from the MEIS sub-family. PREP2 is expressed in a variety of human adult tissues and displays a more restricted expression pattern than PREP1. PREP2 is capable of heterodimerizing with PBC proteins. Heterodimerization with PBX1 appears to be essential for nuclear localization of both PREP2 and PBX1. A comparison between the functional properties of PREP1 and PREP2 reveals that PREP2-PBX display a faster DNA-dissociation rate than PREP1-PBX heterodimers, suggesting different roles in controlling gene expression. Like PREP1, PREP2-PBX heterodimers are capable of forming ternary complexes with HOXB1. The analysis of some PREP2 in vitro properties suggests a functional diversification among PREP and between PREP and MEIS MEINOX proteins. 相似文献