首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Free radical research》2013,47(5):335-347
The ability of the immature lung to induce antioxidant defences in response to hyperoxic stress was examined. Preterm guinea pigs (65 days gestation, term = 68 d) were exposed to either 21+ O2, 85+ O2 or 95+ O2 for 72 hours. Exposure to 85+ O2 increased lung catalase, glutathione peroxidase and manganese superoxide dismutase activities in comparison to air controls. Exposure to 95+ O2 resulted only in an increase in glutathione peroxidase activity. Bronchoalveolar lavage fluid GSH concentration was increased by a similar amount by both exposure regimes, while lung copper/zinc superoxide dismutase activity was unchanged by either treatment. Comparison of the antioxidant response of term and preterm animals exposed to 85+ O2 for 72 hours indicated a greater response in the lung of the preterm animals. Manganese superoxide dismutase activity was elevated in both term and preterm animals, while catalase and glutathione peroxidase activities were elevated only in preterm animals. The extent of microvascular permeability as indicated by bronchoalveolar lavage fluid protein concentration, was lower in preterm animals than in term animals. We conclude that the immature lung can respond to hyperoxic stress by antioxidant induction and that the nature of the response is dependent, in part, both on the severity of the stress and on the maturity of the lung.  相似文献   

2.
The time course and nature of the pulmonary inflammatory and antioxidant responses, both during and after hyperoxic-induced acute lung injury were studied in the preterm guinea pig. Three-day preterm (65 days gestation) guinea pigs were randomly exposed to either 21% O2 (control) or 95% O2 (hyperoxia) for 72 hours. All pups were then maintained in ambient conditions for up to a further 11 days, during which time lung damage was monitored. In animals exposed to hyperoxia, evidence of acute lung injury and inflammation was characterized by a marked increase in microvascular permeability and elevated numbers of neutrophils in bronchoalveolar lavage fluid. Protein concentration, elastase-like activity and elastase-inhibitory capacity in lavage fluid were at a maximum at the end of the 72 hours hyperoxic exposure. Four days later, all values had returned to control levels. In contrast, increased numbers of neutrophils, macrophages and lymphocytes were recovered in the lavage fluid during this early recovery period. Coinciding with the influx of inflammatory cells, there was a significant increase in glutathione peroxidase, manganese superoxide dismutase and catalase activities in immature lung. Lung copper/zinc superoxide dismutase activity remained unchanged during both experimental periods. The strong temporal relationship between the influx of inflammatory cells to the lung and the induction of pulmonary antioxidant enzyme defences suggests that a common mechanism underlies both responses. These findings have led us to regard inflammation in the hyperoxic-injured immature lung as a beneficial event and not, as previously suggested, as part of the injurious process.  相似文献   

3.
Recent intervention studies revealed that supplementation with retinoids resulted in a higher incidence of lung cancer. Recently the causal mechanism has begun to be clarified. We report here that retinol caused cellular oxidative stress and modulated superoxide dismutase, catalase and glutathione peroxidase activities. Retinol (7 μM) significantly increased TBARS, conjugated dienes, and hydroperoxide-initiated chemiluminescence in cultured Sertoli cells. In response to retinol treatment superoxide dismutase, catalase and glutathione peroxidase activities increased. TBARS content and catalase activities were decreased by a free radical scavenger. These findings suggest that retinol may induce oxidative stress and modulate antioxidant enzyme activities in Sertoli cells.  相似文献   

4.
Partial reduction of molecular oxygen produces reactive oxyradicals, including the superoxide anion radical (O - 2 ) and hydroxyl radical (·OH). The gas gland functions under hyperoxic and acidic conditions and therefore is likely to be subjected to enhanced oxidative stress. Aspects of pro- and antioxidant processes in gas gland were compared with other tissues likely to be subject to differing degrees of oxyradical production, viz. liver (site of chemically-mediated oxyradical production), gills and skeletal muscle. Antioxidant enzyme activities (superoxide dismutase, catalase, selenium-dependent and total glutathione peroxidase) per g wet weight were highest in liver and lowest in muscle. Catalase and glutathione peroxidase activies per g wet weight were higher in gills than in gas gland, whereas the reverse was seen for superoxide dismutase. Cytosolic superoxide dismutase activities per mg protein were two- and nine-fold higher in gas gland than in liver and gills. The pH characteristics of the antioxidant enzymes were generally similar in all the tissues. Glutathione, vitamin E and unsaturated (peroxidizable) lipid levels were generally highest in liver followed by gas gland. Lipid peroxidation (malonaldehyde equivalents) was evident in all tissues except gas gland. Hydrogen peroxide and O - 2 were involved in the NAD(P)H-dependent ferric/EDTA-mediated formation of ·OH (as measured by 2-keto-4-methiolbutyrate oxidation) by mitochondrial and postmitochondrial fractions of gas gland. Tissue maximal potentials for ·OH production paralled superoxide dismutase but not catalase or glutathione peroxidase activities. Overall, the results confirm the presence of effective antioxidant defences in gas gland and support previous workers' contentions of a central role for superoxide dismutase in this process.Abbreviations EDTA di-sodium ethylenediaminetetra-acetic acid - G-6-P glucose-6-phosphate - GPX total glutathione peroxidase - GSH reduced glutathione - GSSG oxidised glutathione - GST glutathion-S-transferase - HPLC high performance liquid chromatography - KMBA 2-keto-4-methiolbutyric acid - MOPS 3-[N-morpholino] propane-sulphonic acid - PMS postmitochondrial supernatant - Se-GPX selenium-dependent glutathion peroxidase - SOD superoxide dismutase - TCA trichloroacetic acid  相似文献   

5.
Changes in the activity of so-called oxidative stress defensive enzymes, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and heme oxygenase, as well as changes in lipid peroxidation and reduced glutathione levels, were measured in guinea pig and rat liver after acute cobalt loading. Cobalt chloride administration produced a much higher degree of lipid peroxidation in guinea pig than in rat liver compared with the control animals. The intrahepatic reduced glutathione content in control guinea pig was higher than that in rat, but was equally decreased in both species after cobalt administration. The enzymatic scavengers of free radicals, superoxide dismutase, catalase and glutathione peroxidase, were significantly decreased in rat liver after acute cobalt loading, and as a compensatory reaction, the heme oxygenase activity was increased (seven-fold). In guinea pig liver, only superoxide dismutase activity was depleted in response to cobalt-induced oxidative stress, while catalase and glutathione peroxidase were highly activated and the heme oxygenase activity was dramatically increased (13-fold). It is assumed that enhanced heme oxygenase activity may have important antioxidant significance by increasing the liver oxidative-stress defense capacity.  相似文献   

6.
Recent intervention studies revealed that supplementation with retinoids resulted in a higher incidence of lung cancer. Recently the causal mechanism has begun to be clarified. We report here that retinol caused cellular oxidative stress and modulated superoxide dismutase, catalase and glutathione peroxidase activities. Retinol (7 μM) significantly increased TBARS, conjugated dienes, and hydroperoxide-initiated chemiluminescence in cultured Sertoli cells. In response to retinol treatment superoxide dismutase, catalase and glutathione peroxidase activities increased. TBARS content and catalase activities were decreased by a free radical scavenger. These findings suggest that retinol may induce oxidative stress and modulate antioxidant enzyme activities in Sertoli cells.  相似文献   

7.
Because hyperoxia induces early injury to lung endothelial cells and since tolerance to hyperoxia is correlated with increased lung antioxidant enzyme activity, we measured superoxide dismutase, catalase and glutathione peroxidase in both fresh isolates and primary cultures of endothelial cells from pig pulmonary artery and aorta. Cultured endothelial cells were studied at confluency and up to 5 days thereafter under control or hyperoxic conditions. In both types of confluent cell, total and cyanide-insensitive superoxide dismutase increased when compared to fresh cells. The most conspicuous postconfluency change in both types of endothelial cell was a marked decrease in gluthathione peroxidase, which could be prevented by the addition of selenomethionine to culture media. A 5-day exposure to hyperoxia resulted in a 2-fold increase in cyanide-insensitive superoxide dismutase in both aortic and pulmonary artery endothelial cells. In view of a similar decrease in DNA in both types of cells despite some differences in enzyme levels, oxygen cytotoxicity could not be related to a particular antioxidant enzyme profile.  相似文献   

8.
As immature and aged rats could be more sensitive to ozone (O(3))-linked lung oxidative stress we have attempted to shed more light on age-related susceptibility to O(3) with focusing our interest on lung mitochondrial respiration, reactive oxygen species (ROS) production and lung pro/antioxidant status. For this purpose, we exposed to fresh air or O(3) (500 ppb 12 h per day, for 7 days) 3 week- (immature), 6 month- (adult) and 20 month-old rats (aged). We determined, in lung, H(2)O(2) release by mitochondria, activities of major antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT)], heat shock protein (HSP(72)) content and 8-oxodG and dG-HNE nDNA contents, as DNA oxidative damage markers. In adult rats we did not observe alteration of pro/antioxidant status. In contrast to adults, immature rats exposed to O(3) higher nDNA 8-oxodG content and HSP(72) and without antioxidant enzymes modification. Aged rats displayed mild uncoupled lung mitochondria, increased SOD and GPx activities, and higher 8-oxodG content after O(3) exposure. Thus, in contrast to adults, immature and aged rats displayed lung oxidative stress after O(3) exposure. Higher sensitivity of immature to O(3) was partly related to ventilatory parameters and to the absence of antioxidant enzyme response. In aged rats, the increase in cytosolic SOD and GPx activities during O(3) exposure was not sufficient to prevent the impairment in mitochondrial function and accumulation in lung 8- oxodG. Finally, we showed that mitochondria seem not to be a major source of ROS under O(3) exposure.  相似文献   

9.
The changes in antioxidant status of rat lung after intratracheal instillation of stone-wool and glass fibres were studied. The animals were exposed to 2 or 8 mg of fibres for 4 or 16 weeks, the bronchoalveolar lavage was performed and the activity of superoxide dismutase, glutathione peroxidase and the total amount of glutathione was estimated both in tissue and in cell free fraction of bronchoalveolar lavage and the ascorbic acid was determined in lung tissue. The results showed the higher burden by stone-wool. Most changes were detected in groups exposed to higher dose of fibres for shorter time period, the most sensitive parameter was superoxide dismutase. The lung tissue was studied also by light microscopy and transmission electron microscopy.  相似文献   

10.
11.
The effect of increased intracellular oxygen activation on cellular antioxidant defenses in CHO and HeLa cells was studied. In both cell types, hyperoxic exposure (up to 4 days, 600-700 mm Hg O2) and in CHO cells menadione (up to 3 days, 15 microM) failed to affect the enzymatic antioxidant defenses Mn-containing superoxide dismutase (Mn-SOD), CuZn-SOD, catalase and glutathione peroxidase. The markedly increased antioxidant enzyme activities observed in a recently obtained oxygen-tolerant CHO variant persisted under normoxia. These data suggest that the synthesis of antioxidant enzymes is constitutive. Glutathione levels of HeLa cells did not respond to hyperoxia whereas in CHO cells hyperoxia and menadione exposure resulted in a 2- and 7-fold increase in glutathione contents, respectively. However, considering the large variations in glutathione contents observed under normal culture conditions, it is uncertain whether this increase is to be considered as a true adaptive response.  相似文献   

12.
Treatment with antioxidants may act more effectively to alter markers of free radical damage in combinations than singly. This study has determined whether treatment with combinations of pycnogenol, beta-carotene, and alpha-lipoic acid was more effective at reducing oxidative stress in diabetic rats than treatment with these antioxidants alone. It is not feasible, based on this study, to assume that there are interactive effects that make combinations of these antioxidants more effective than any one alone to combat oxidative stress. Female Sprague-Dawley rats, normal and streptozotocin-induced diabetic, were treated (10 mg/kg/day ip for 14 days) with pycnogenol, beta-carotene, pycnogenol + beta-carotene, or pycnogenol + beta-carotene + alpha-lipoic acid; controls were untreated. Concentrations of thiobarbituric acid reactive substances, glutathione and glutathione disulfide, and activities of glutathione reductase, glutathione peroxidase, superoxide dismutase, and catalase were measured in liver, kidney, and heart. Four types of effects were observed: (1) treatment with beta-carotene alone either reversed (cardiac glutathione disulfide) or elevated (cardiac glutathione, hepatic glutathione peroxidase activity) levels seen in diabetic animals; (2) beta-carotene alone produced no effect, but pycnogenol both alone and in combinations elevated (renal glutathione peroxidase and glutathione reductase activities, hepatic glutathione reductase activity and glutathione disulfide) or depressed (cardiac glutathione disulfide) levels seen in untreated diabetic animals; (3) all treatments with antioxidants, either alone or in combination, either normalized (lipid peroxidation in all tissues), elevated (hepatic GSH, cardiac glutathione peroxidase activity), or had no effect on (activities of hepatic catalase and superoxide dismutase in all tissues) levels seen in diabetic animals; (4) in only one case (cardiac glutathione reductase activity) levels in diabetic animals treated with combinations of antioxidants were normal, but elevated in animals treated with either antioxidant alone. Antioxidant effects seem to be dependent on the nature of the antioxidant used and not on combination effects.  相似文献   

13.
Tracheal insufflation of tumor necrosis factor (TNF; 5 micrograms or 1.2 x 10(5) U) markedly enhanced the survival of adult rats exposed to 100% O2: 12 of 17 rats (71%) survived for greater than 11 days, whereas 30 of 30 control (Hanks' balanced salt solution) insufflated rats (100%) died within 3 days of O2 exposure. Insufflation of gamma-interferon (5 micrograms) or intraperitoneal injection of up to 40 micrograms TNF did not afford any protection. At 55 h after O2 exposure, TNF-insufflated rats showed less pulmonary edema, as determined by the extravascular lung water content-to-bloodless lung dry weigh ratio and less alveolar capillary leak as determined by the protein content in the bronchoalveolar lavage fluid, than control insufflated rats similarly exposed. This protection against O2 toxicity by TNF insufflation was associated with increased lung superoxide dismutase, catalase, and glutathione peroxidase activities. The enhancement of lung antioxidant enzyme activities was noted at 55 h of O2 exposure, when control animals began to die of O2 toxicity. This temporal relationship suggests that TNF-induced increase in antioxidant enzyme activities contributes, at least in part, to the observed protection.  相似文献   

14.
Seedlings of spinach were grown in Hoagland's medium containing 0, 20, 40, 60, 80, 100 microM PbCl2, respectively, for 4 weeks. Chloroplasts were assayed for overproduction of reactive oxygen species (ROS) such as superoxide radicals (O2(*-)) and hydrogen peoxide (H2O2) and of lipid peroxide (malonyldialdehyde) and for activities of the antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase, and guaiacol peroxidase and glutathione content, oxygen-evolving rate, and chlorophyll content. Increase in both ROS and lipid peroxide content and reduction in photosynthesis and activities of the antioxidant defense system indicated that spinach chloroplast underwent a stress condition due to an oxidative attack. Seedling growth cultivated in containing Pb2+ media was significantly inhibited. The results imply that spinach chloroplast was not able to tolerate the oxidative stress induced by Pb2+ due to having no effective antioxidant defense mechanism.  相似文献   

15.
Exposure of several different animal models to O2-induced lung injury has revealed marked differences in sensitivity of various species to O2 damage. These differences may be due in part to variation of cellular antioxidant defenses. To characterize lung antioxidant enzyme activities in different species, we measured lung activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GSH S-trans) in rat, hamster, baboon, and human lung. Soluble lung fractions were also fractionated on Sephadex G-150-S columns and GSH-Px activity was measured using both cumene hydroperoxide and H2O2. This was done to evaluate non-Se-dependent GSH-Px activity in these lung samples. Human lung was obtained at surgery from patients undergoing lobectomy or pneumonectomy for localized lung tumors. SOD activity was similar for all four groups. GSH-Px activity was higher in rat lung than baboon or hamster lung. Lung CAT activity was variable with the highest activity present in the baboon which revealed a lung CAT activity 10 times higher than activity present in the rat. Lung GSH S-trans activities were higher in hamster, baboon, and human lung than in rat lung. Non-Se-dependent GSH-Px was present in rat lung but absent in hamster, baboon, and human lung. We conclude that the hamster was the best model of the animals studied for mimicking human lung antioxidant enzyme activities. Rat lung antioxidant enzyme activities were markedly different from any of the other species examined.  相似文献   

16.
The status of lipid peroxidation, glutathione, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, superoxide dismutase, catalase, ascorbic acid, and alpha-tocopherol was studied in the urinary bladder of guinea pigs exposed to the carcinogenic fern Onychium contiguum. There was significant increase in the preformed lipid peroxides in the urinary bladders from fern exposed animals. The amount of lipid peroxides produced on incubation of urinary bladder homogenates with or without catalyst was significantly higher in the fern exposed animals. The concentrations of glutathione and alpha-tocopherol and the activities of glutathione reductase and catalase were elevated in the urinary bladders of the animals exposed to the fern. No effect was observed on the concentration of ascorbic acid and the activities of glutathione peroxidase, glutathione-S-transferase, and superoxide dismutase. It is summarized that the fern toxins increased oxidative stress in the urinary bladder and antioxidant status was altered. However, the altered antioxidant status did not provide protection from the toxin induced injury. Histopathology of the urinary bladder in the fern exposed animals revealed oedema, haemorrhages, and congestion. This is the first study to show increase in lipid peroxidation along with altered antioxidant status in the urinary bladder of fern exposed animals.  相似文献   

17.
《Free radical research》2013,47(5-6):323-334
The protection of human diploid fibroblasts against high oxygen tension was investigated using various combinations of the three major antioxidant enzymes: superoxide dismutase, catalase and gluthathione peroxidase. α-Tocopherol, a well-known hydrophobic antioxidant, was also tested in combination with the different enzymes. Microinjection of solutions containing different combinations of the three enzymes was compared with the injection of each single enzyme. We observed that the protections given by catalase or superoxide dismutase on the one hand, and by glutathione peroxidase on the other hand, were additive. Surprisingly, the combinations of catalase and superoxide dismutase were less effective than catalase alone and was even toxic at low SOD concentrations. Addition of α-tocopherol following the injection of any of the three enzymes was highly beneficial, but the strongest synergistic effect was obtained with glutathione peroxidase. These results stress the importance of membrane protection by α-tocopherol and indirectly by glutathione peroxidase. They also showed that any injection leading to the decrease in the O2?. or H2 O 2 concentration combined with one of these two protectors is very beneficial for the cells probably by decreasing the OH concentration. This is also proven by the very good protective effect obtained with desferrioxamine.  相似文献   

18.
The aim of this work was to investigate the response of the antioxidant defense system to two oxidative stressors, hydrogen peroxide and tert-butyl hydroperoxide, in HepG2 cells in culture. The parameters evaluated included enzyme activity and gene expression of superoxide dismutase, catalase, glutathione peroxidase, and activity of glutathione reductase. Besides, markers of the cell damage and oxidative stress evoked by the stressors such as cell viability, intracellular reactive oxygen species generation, malondialdehyde levels, and reduced glutathione concentration were evaluated. Both stressors, hydrogen peroxide and tert-butyl hydroperoxide, enhanced cell damage and reactive oxygen species generation at doses above 50 microM. The concentration of reduced glutathione decreased, and levels of malondialdehyde and activity of the antioxidant enzymes consistently increased only when HepG2 cells were treated with tert-butyl hydroperoxide but not when hydrogen peroxide was used. A slight increase in the gene expression of Cu/Zn superoxide dismutase and catalase with 500 microM tert-butyl hydroperoxide and of catalase with 200 microM hydrogen peroxide was observed. The response of the components of the antioxidant defense system evaluated in this study indicates that tert-butyl hydroperoxide evokes a consistent cellular stress in HepG2.  相似文献   

19.
We report here the effects of chronic ethanol consumption on the antioxidant defense system in rat kidney. Thirty‐two male Wistar rats were randomly divided in two identical groups and were treated as follows: control group (water for fluid) and the ethanol‐fed group (2 g/kg body weight/24 h). The animals were sacrificed after 10 weeks, and respectively 30 weeks of ethanol consumption, and the renal tissue was isolated and analyzed. Results revealed that kidney alcohol dehydrogenase activities increased significantly after ethanol administration, but the electrophoretic pattern of alcohol dehydrogenase isoforms was unmodified. The SDS polyacrylamidegel electrophoretic study of kidney proteins has revealed the appearance of two new protein bands after long‐term ethanol consumption. The kidney reduced glutathione/oxidized glutathione ratio decreased, indicating an oxidative stress response due to ethanol ingestion. The malondialdehyde contents and xanthine oxidase activities were unchanged. The antioxidant enzymatic defense system showed a different response during the two periods of ethanol administration. After 10 weeks, catalase, glutathione peroxidase, glutathione reductase, and glucose‐6‐phosphate dehydrogenase were activated, while superoxide dismutase, glutathione transferase, and γ‐glutamyltranspeptidase levels were stationary. After 30 weeks, superoxide dismutase and glutathione peroxidase activities were unmodified, but catalase, glutathione transferase, γ‐glutamyltranspeptidase, glutathione reductase, and glucose‐6‐phosphate dehydrogenase activities were significantly increased. Remarkable changes have been registered after 30 weeks of ethanol administration for glutathione reductase and glucose‐6‐phosphate dehydrogenase activities, including an increase by 106 and 216' of control values, respectively. These results showed specific changes in rat kidney antioxidant system and glutathione status as a consequence of long‐term ethanol administration. © 2005 Wiley Periodicals, Inc. J Biochem Mol Toxicol 19:386‐395, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20101  相似文献   

20.
Several studies indicate that active oxygen species play an important role in the development of pulmonary disease (asbestosis and silicosis) after exposure to mineral dust. The present study was conducted to determine if inhaled fibrogenic minerals induced changes in gene expression and activities of antioxidant enzymes (AOE) in rat lung. Two different fibrogenic minerals were compared, crocidolite, an amphibole asbestos fiber, and cristobalite, a crystalline silicon dioxide particle. Steady-state mRNA levels, immunoreactive protein, and activities of selected AOE were measured in lungs 1-10 days after initiation of exposure and at 14 days after cessation of a 10-day exposure period. Exposure to asbestos resulted in significant increases in steady-state mRNA levels of manganese-containing superoxide dismutase (MnSOD) at 3 and 9 days and of glutathione peroxidase at 6 and 9 days. An increase in steady-state mRNA levels of copper, zinc-containing superoxide dismutase (CuZnSOD), was observed at 6 days. Exposure to asbestos also resulted in overall increased enzyme activities of catalase, glutathione peroxidase and total superoxide dismutase in lung. In contrast, silica caused a dramatic increase in steady-state levels of MnSOD mRNA at all time periods and an increase in glutathione peroxidase mRNA levels at 9 days. Activities of AOE remained unchanged in silica-exposed lungs. In both models, increases in gene expression of MnSOD correlated with increased amounts of MnSOD immunoreactive protein in lung and the pattern and extent of inflammation. These data indicate that the profiles of AOE are dissimilar during the development of experimental asbestosis or silicosis and suggest different mechanisms of lung defense in response to these minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号