首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Estrogen receptors (ER) alpha and beta bind estradiol (E2) and other estrogenic ligands with different affinities. To measure the rate of E2 association with ERa and ERbeta, we employed tetrahydrocrysene ketone (THCK), a fluorescent ligand that is an agonist with ERalpha and an antagonist with ERbeta. We report that THCK binds E2-liganded and unliganded ERalpha and ERbeta, indicating a THCK binding site(s) other than the E2 binding pocket. THCK fluorescence was greater for ligand-occupied ERbeta than ERalpha, suggesting differences in the microenvironment of the THCK binding site(s). THCK fluorescence was also significantly greater for E2-, 4-hydroxytamoxifen-, and tamoxifen aziridine-liganded versus unliganded ER, allowing calculations of E2 association rate constants (ka) of 7.60 +/- 0.75 and 5.12 +/- 0.30 x 10(5) M(-1) s(-1) for E2-ERalpha and E2-ERbeta, respectively. THCK did not affect ERalpha binding to estrogen response element (ERE) DNA, but decreased ERbeta-ERE binding. We conclude that THCK binding site(s) on ERalpha versus ERbeta are different and important for ER function.  相似文献   

2.
3.
The selective estrogen receptor modulator, 4-hydroxytamoxifen (4-OHT) is a full agonist at the transforming growth factor (TGF) alpha gene in ER negative breast cancer cells stably transfected with ER alpha cDNA (Levenson et al., Br. J. Cancer 77 (1998) 1812-1819). E(2) and 4-OHT increase TGF alpha mRNA and protein in a concentration dependent manner. The responses to E(2) and 4-OHT are blocked by the pure antiestrogen ICI 182,780, which does not induce TGF alpha. Transfected MDA-MB-231 cells contain functional ER alpha but no ER beta function was detected. Neo transfected cells that did not express ER alpha or cells stably transfected with the DNA binding domain mutant C202R/E203V which prevents gene activation did not induce TGF alpha mRNA after either E(2) or 4-OHT treatment. An examination of the time course for either 10 nM E(2) or 1 microM 4-OHT for MDA-MB-231 cells stably transfected with cDNA for ER alpha showed increases in TGF alpha mRNA within 2 or 3 h respectively. Cells pretreated with cycloheximide (1 microg/ml) showed induced TGF alpha mRNA in response to E(2) or 4-OHT but TGF alpha mRNA induction was blocked by actinomycin D (1 microg/ml). We conclude that both E(2) and 4-OHT induce TGF alpha by direct interaction of ER alpha with DNA and that ER beta is not involved in the estrogen-like response to 4-OHT in the MDA-MB-231 cells.  相似文献   

4.
5.
The capability of 17beta-estradiol (E2) to induce the non-genomic activities of its receptors (ER alpha and ER beta) and to evoke different signaling pathways committed to the regulation of cell proliferation has been analyzed in different cell cancer lines containing transfected (HeLa) or endogenous (HepG2, DLD1) ER alpha or ER beta. In these cell lines, E2 induced different effects on cell growth/apoptosis in dependence of ER isoforms present. The E2-ER alpha complex rapidly activated multiple signal transduction pathways (i.e., ERK/MAPK, PI3K/AKT) committed to both cell cycle progression and apoptotic cascade prevention. On the other hand, the E2-ER beta complex induced the rapid and persistent phosphorylation of p38/MAPK which, in turn, was involved in caspase-3 activation and cleavage of poly(ADP-ribose)polymerase, driving cells into the apoptotic cycle. In addition, the E2-ER beta complex did not activate any of the E2-ER alpha-activated signal molecules involved in cell growth. Taken together, these results demonstrate the ability of ER beta isoform to activate specific signal transduction pathways starting from plasma membrane that may justify the effect of E2 in inducing cell proliferation or apoptosis in cancer cells. In particular this hormone promotes cell survival through ER alpha non-genomic signaling and cell death through ER beta non-genomic signaling.  相似文献   

6.
DQw6b transgenic mice have been generated by microinjecting a linearized cosmid clone containing 34-kb DQb genomic DNA, isolated from HLA-homozygous B cell line AKIBA (DR2, Dw12, DQw6), into embryos of (CBA x B10.M)F2 or (SWR x SJL)F2. Among 85 mice screened, eight mice were transgene-positive. The transgene in seven of eight founders was germline-transmitted. FACS analysis and immunohistochemical studies with DQ beta-specific mAb demonstrated that DQ beta molecules in association with mouse A alpha f molecules are expressed on peripheral mononuclear cells, spleen cells, and in thymic medulla. More interestingly, V beta 11-, V beta 5.1-, and V beta 5.2-bearing T cells, but not V beta 8.2-bearing T cells, were clonally deleted in the H-2E-negative but DQ beta+ progeny of two selected founders (260-23 and 258-10). The deletion was found to take place intrathymically during the transition stage from immature to mature thymocyte development. We postulate that although human DQ genes are more homologous to mouse H-2A genes, A alpha f/DQ beta hybrid molecules may possess the same self-peptide- (or superantigen)-presenting epitope as E alpha/E beta molecules critical for deletion of V beta 11-, V beta 5.1-, and V beta 5.2-bearing T cells in thymus. Our results also confirm the previous findings that accessory molecules on thymocytes such as CD4 may be involved in thymic selection, and further suggest that an interaction of mousE CD4 and mouse A alpha chain is required for the clonal deletion.  相似文献   

7.
Vascular endothelial cells (EC) are an important target of estrogen action through both the classical genomic (i.e. nuclear-initiated) activities of estrogen receptors alpha and beta (ERalpha and ERbeta) and the rapid "non-genomic" (i.e. membrane-initiated) activation of ER that stimulates intracellular phosphorylation pathways. We tested the hypothesis that the red wine polyphenol trans-resveratrol activates MAPK signaling via rapid ER activation in bovine aortic EC, human umbilical vein EC, and human microvascular EC. We report that bovine aortic EC, human umbilical vein EC, and human microvascular EC express ERalpha and ERbeta. We demonstrate that resveratrol and estradiol (E(2)) rapidly activated MAPK in a MEK-1, Src, matrix metalloproteinase, and epidermal growth factor receptor-dependent manner. Importantly, resveratrol activated MAPK and endothelial nitric-oxide synthase (eNOS) at nm concentrations (i.e. an order of magnitude less than that required for ER genomic activity) and concentrations possibly achieved transiently in serum following oral red wine consumption. Co-treatment with ER antagonists ICI 182,780 or 4-hydroxytamoxifen blocked resveratrol- or E(2)-induced MAPK and eNOS activation, indicating ER dependence. We demonstrate for the first time that ERalpha-and ERbeta-selective agonists propylpyrazole triol and diarylpropionitrile, respectively, stimulate MAPK and eNOS activity. A red but not a white wine extract also activated MAPK, and activity was directly correlated with the resveratrol concentration. These data suggest that ER may play a role in the rapid effects of resveratrol in EC and that some of the atheroprotective effects of resveratrol may be mediated through rapid activation of ER signaling in EC.  相似文献   

8.
9.
Previous attempts to show a direct effect of physiological concentrations of 17 beta-estradiol (beta E2) on bone in vitro have been unsuccessful. We describe a culture system using neonatal mouse calvariae in which beta E2 in the range 1 pM to 1 nM inhibited parathyroid hormone (PTH) stimulated prostaglandin E2 (PGE2) release by 50 to 70% in the presence and absence of cortisol. In addition, beta E2 reduced medium calcium concentration and release of previously incorporated 45Ca by 10 and 20%, respectively, in PTH stimulated cultures. Indomethacin did not block beta E2 effects on resorption. 17 alpha-Estradiol (alpha E2) reduced PTH stimulated 45Ca release but not PGE2 release. Thus, beta E2 has direct effects on bone consistent with its known effects to decrease bone resorption in vivo.  相似文献   

10.
11.
12.
Cross-talk between growth factor receptors and the estrogen receptor (ER) has been proposed as a signaling mechanism in estrogen target tissues, with ER(alpha) as a direct target of growth factor receptor-activated signals, leading to regulation of estrogen target genes and estrogen-like biological responses to growth factors. We evaluated whether global genomic changes in the mouse uterus in response to epidermal growth factor or IGF-I mimic those of estradiol (E2), reflecting the cross-talk mechanism. Overlapping responses to growth factors and E2 were expected in the wild type (WT) whereas no response was expected in mice lacking ER(alpha) (ER(alpha) knockout). Surprisingly, although most of the E2 response in the WT also occurred after growth factor treatment, some genes were induced only by E2. Second, although E2 did not induce gene changes in the ER(alpha) knockout, the growth factor response was almost indistinguishable from that of the WT. Differences in response of some genes to IGF-I or epidermal growth factor indicated selective regulation mechanisms, such as phosphatidylinositol 3-kinase or MAPK-dependent responses. The robust ER(alpha)-independent genomic response to growth factor observed here is surprising considering that the biological growth response is ER(alpha) dependent. We propose two mechanisms as alternatives to the cross-talk mechanism for uterine gene regulation. First, E2 increases uterine growth factors, which activate downstream signaling cascades, resulting in gene regulation. Second, growth factors and estrogen regulate similar genes. Our results suggest that the estrogen response in the uterus involves E2-specific ER(alpha)-mediated responses as well as responses resulting from convergence of growth factor and ER-initiated activities.  相似文献   

13.
14.
We investigated the role of H524 of the human estrogen receptor alpha (ERalpha) for the binding of various estrogens [estradiol (E(2)), 3-deoxyestradiol (3-dE(2)), and 17beta-deoxyestradiol (17beta-dE(2))] and antiestrogens [4-hydroxytamoxifen (OHT), RU 39 411 (RU), and raloxifene (Ral)], which possess the 17beta-hydroxyl or counterpart hydroxyl (designated: 17beta/c-OH), with the exception of 17beta-dE(2) and OHT. The work involved a comparison of the binding affinities of these ligands for wild-type and H524 mutant ERs, modified or not with diethyl pyrocarbonate (DEPC), a selective histidine reagent. Alanine substitution of H524 did not significantly change the association affinity constant (relative to OHT) of 17beta-dE(2), whereas those of RU, Ral, E(2), and 3-dE(2) were decreased 3-fold, 14-fold, 24-fold, and 49-fold, respectively. Values of the two ligands available in radiolabeled form (E(2) and OHT) were correlated with the dissociation rate constants, which were increased 250-fold and 2-fold, respectively. The action of DEPC on wild-type ER led to a homogeneous ER population which still bound antiestrogens and 17beta-dE(2) with practically unchanged affinities (less than 4-fold decreases in relative affinity constants), while E(2) and 3-dE(2) displayed markedly decreased affinities (56-fold decrease for E(2)). Conversely, DEPC treatment of H524A mutant ER did not induce marked decreases in the relative affinities of any of the checked compounds (decreases wild-type ER) and very weakly protected H524A ER. Molecular modeling was tentatively used to interpret the biochemical results.  相似文献   

15.
16.
17.
In the present work using an established clonal mouse hippocampal (HT-22) cell line, we have examined whether the estrogen antagonist tamoxifen antagonizes the observed neuroprotective effects of estrogen against glutamate and amyloid beta protein neurotoxicity. Results obtained suggest that like estrogen, tamoxifen protects HT-22 cells against both 5mM glutamate and 2 microM amyloid beta protein induced cell death in a concentration dependent manner. Optimum protection was obtained at 500 nM tamoxifen. Tamoxifen was found to offer more potent protection at this dose against amyloid beta protein induced neurotoxicity when compared with glutamate neurotoxicity. We were unable to detect either estrogen receptor (ER)--ER alpha or ER beta presence in HT-22 cells using western blot technique. However, amyloid beta protein treatment significantly increases total glucocorticoid receptors (GRs) as determined by western blot technique, while prior treatment with estrogen or tamoxifen followed by amyloid beta protein resulted in the reduction of total GRs to the levels comparable to that observed for the control untreated cells. In addition, using confocal immunoflourescence microscopy technique, we observed that 20 h of treatment with 2 microM amyloid beta protein resulted in enhanced nuclear localization of GRs in HT-22 cells as compared to control untreated cells or 500 nM tamoxifen alone treated cells. Interestingly, 500 nM tamoxifen treatments for 24h, followed by 20 h treatment with 2 microM amyloid beta protein resulted in dramatic reduction in GRs nuclear localization. In conclusion, tamoxifen (i) protects HT-22 cells against amyloid beta protein neurotoxicity and (ii) neuroprotective effect is independent of ERs.  相似文献   

18.
We studied the inhibition of tryptic digestion of the subassembly alpha 2 beta of Escherichia coli DNA-dependent RNA polymerase to investigate its interaction with RNA and rifampicin. Both agents decreased distinctly the cleavage of subunit beta in the subassembly as well as the degradation of the transiently formed polypeptides (Mr greater than 80000). Short RNAs with a chain length of approximately 35 nucleotides were most protective at a concentration of 1 mg/ml while long RNAs were less effective at the same concentration. DNA did not exert any observable protective effects. The association of RNA with alpha 2 beta was shown by chromatography on phosphocellulose, which separates alpha 2 beta bound to RNA from free alpha 2 beta. The association of alpha 2 beta with RNA was inhibited by rifampicin.  相似文献   

19.
Although osteoblasts have been shown to respond to estrogens and express both isoforms of the estrogen receptor (ER alpha and ER beta), the role each isoform plays in osteoblast cell function and differentiation is unknown. The two ER isoforms are known to differentially regulate estrogen-inducible promoter-reporter gene constructs, but their individual effects on endogenous gene expression in osteoblasts have not been reported. We compared the effects of 17 beta-estradiol (E) and tamoxifen (TAM) on gene expression and matrix formation during the differentiation of human osteoblast cell lines stably expressing either ER alpha (hFOB/ER alpha 9) or ER beta (hFOB/ER beta 6). Expression of the appropriate ER isoform in these cells was confirmed by northern and western blotting and the responses to E in the hFOB/ER beta 6 line were abolished by an ER beta-specific inhibitor. The data demonstrate that (1) in both the hFOB/ER cell lines, certain responses to E or TAM (including alkaline phosphatase, IL-6 and IL-11 production) are more pronounced at the late mineralization stage of differentiation compared to earlier stages, (2) E exerted a greater regulation of bone nodule formation and matrix protein/cytokine production in the ER alpha cells than in ER beta cells, and (3) the regulated expression of select genes differed between the ER alpha and ER beta cells. TAM had no effect on nodule formation in either cell line and was a less potent regulator of gene/protein expression than E. Thus, both the ER isoform and the stage of differentiation appear to influence the response of osteoblast cells to E and TAM.  相似文献   

20.
Bovine estrogen receptor (ER) was purified to near homogeneity by estrogen response element (ERE) affinity chromatography, and its ERE binding ability was measured in vitro. Highly purified ER bound EREs with reduced affinity compared to partially purified ER. Partially purified ER contained hsp70, but highly purified ER did not. We examined whether addition of purified recombinant human hsp70 or purified bovine hsp70 would restore the higher ERE binding affinity, stoichiometry, and ligand retention detected with partially purified receptor and how hsp70 affected the rate of ER-ERE association and dissociation. ER-ERE binding was not affected by antibodies to either constitutive or induced forms of hsp70, regardless of ER purity. Addition of purified hsp70, with or without ATP and Mg2+, did not affect the association or dissociation rates of highly purified liganded ER binding to ERE. hsp70 Did not alter the total amount of ER-ERE complex formed. Similarly, hsp70 did not affect the rate of [3H]estradiol (E2) or [3H]4-hydroxytamoxifen (4-OHT) ligand dissociation from ER in the presence or absence of EREs. These data contrast with a report showing that maximal ERE binding by highly purified recombinant human ER required hsp70. We conclude that ER, purified from a physiological source, i.e., calf uterus, does not require hsp70 for maximal ER-ERE binding in vitro. Additionally, once ER is activated and bound by ligand, the receptor assumes its proper tertiary structure, and hsp70 does not impact ER ligand binding domain conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号