首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimal conditions for the preparation of relatively pure microsomes and microsomal subfractions from rat lung have been determined. The most important of these conditions is homogenization of a 20% (w/v) suspension of lung tissue in 0.44 M sucrose/1% (w/v) bovine serum albumin with four up-and-down strokes at 440 rev./min in a Potter-Elvehjem homogenizer. The 10 000 × g supernatant prepared from this homogenate can be centrifuged at 105 000 × g to obtain total microsomes or subfractionated into rough and smooth microsomes on a Cs+-containing discontinuous sucrose gradient. The total, rough and smooth microsomes have been characterized in terms of their chemical composition, enzymatic activity, and morphology. These preparations should prove useful in studies of various enzymes in lung (e.g. benzpyrene monooxygenase, epoxide hydrase, enzymes of phospholipid and ascorbic acid synthesis) and in subfractionations designed to reveal heterogeneites in the lateral plane of the lung endoplasmic reticulum.  相似文献   

2.
Current models for in vitro studies of tissue function and physiology, including responses to hypoxia or environmental toxins, are limited and rely heavily on standard 2-dimensional (2-D) cultures with immortalized murine or human cell lines. To develop a new more powerful model system, we have pursued methods to establish and expand cultures of primary lung cell types and reconstituted tissues from marine mammals. What little is known about the physiology of the deep-sea diving pygmy sperm whale (PSW), Kogia breviceps, comes primarily from stranding events that occur along the coast of the southeastern United States. Thus, development of a method for preserving live tissues and retrieving live cells from deceased stranded individuals was initiated. This report documents successful cryopreservation of PSW lung tissue. We established in vitro cultures of primary lung cell types from tissue fragments that had been cryopreserved several months earlier at the stranding event. Dissociation of cryopreserved lung tissues readily provides a variety of primary cell types that, to varying degrees, can be expanded and further studied/manipulated in cell culture. In addition, PSW-specific molecular markers have been developed that permitted the monitoring of fibroblast, alveolar type II, and vascular endothelial cell types. Reconstitution of 3-D cultures of lung tissues with these cell types is now underway. This novel system may facilitate the development of rare or disease-specific lung tissue models (e.g., to test causes of PSW stranding events and lead to improved treatments for pulmonary hypertension or reperfusion injury in humans). Also, the establishment of a "living" tissue bank biorepository for rare/endangered species could serve multiple purposes as surrogates for freshly isolated samples.  相似文献   

3.
4.
Much is known about the essentiality of the halogens fluorine (F), chlorine (Cl), and iodine (I), but very little has been discussed with respect to bromine (Br). As a member of the halogen family its chemical properties are comparable to those of other halogens, but its presence has been masked by the presence of I and Cl in chemical analyses. By virtue of new technology and a special computerized machine called the Kevex Model 0600 Energy Dispersive X-Ray Induced X-Ray Fluorescence Spectrometer (EDXRF), we can specifically identify bromine in different compartments and verify its concentration accurately. In order to establish standard values of Br concentrations and evaluate the nature of its presence in humans, samples of serum, urine, and hair were collected from ten healthy adult males and analyzed for bromine content. Our samples had normal distributions, with serum bromine levels ranging from 3.2 to 5.6 μg/mL, urine levels between 0.3 to 7.0 μg/mL, and hair levels determined from 1.1 to 49.0 μg/mL. These levels, especially those of serum bromine, have been encountered by other examiners whose samples also had normal distributions. These findings suggest to us that bromine may well be an essential trace element, as are its other halogen family members.  相似文献   

5.
Metabolic fingerprints, in the form of patterns of high-concentration endogenous metabolites, of 1-nitronaphthalene (NN)-induced lung toxicity have been elucidated in bronchoalveolar lavage fluid (BALF), urine, blood plasma, and intact lung and liver tissue using NMR spectroscopy-based metabolic profiling. A single dose of NN (75 mg kg(-1)) was administered orally to Sprague-Dawley rats. BALF and lung tissue were obtained 24 h after dosing from these animals and matched control rats post-mortem. High-resolution (1)H-NMR spectroscopy of BALF samples indicated that NN caused increases in concentrations of choline, amino acids (leucine, isoleucine and alanine) and lactate together with decreased concentrations of succinate, citrate, creatine, creatinine and glucose. In addition, the intact lung weights were higher in the NN-treated group (p<0.01), consistent with pulmonary oedema. The NMR-detected perturbations indicated that NN induces a perturbation in energy metabolism in both lung and liver tissue, as well as surfactant production and osmolyte levels in the lungs. As well as reporting the first NMR spectroscopic combined examination of BALF and intact lung, this study indicates that such holistic approaches to investigating mechanisms of lung toxicity may be of value in evaluating disease progression or the effects of therapeutic intervention in pulmonary conditions such as surfactant disorders or asthma.  相似文献   

6.
Versican, a chondroitin sulfate proteoglycan, is important in embryonic development, and disruption of the versican gene is embryonically lethal in the mouse. Although several studies show that versican is increased in various organs during development, a focused quantitative study on versican expression and distribution during lung and central nervous system development in the mouse has not previously been performed. We tracked changes in versican (Vcan) gene expression and in the accumulation and degradation of versican. Vcan expression and quantitative immunohistochemistry performed from embryonic day (E) 11.5 to E15.5 showed peak Vcan expression at E13.5 in the lungs and brain. Quantitative mRNA analysis and versican immunohistochemistry showed differences in the expression of the versican isoforms in the embryonic lung and head. The expression of Vcan mRNA and accumulation of versican in tissues was complementary. Immunohistochemistry demonstrated co-localization of versican accumulation and degradation, suggesting distinct roles of versican deposition and degradation in embryogenesis. Very little versican mRNA or protein was found in the lungs of 12- to 16-week-old mice but versican accumulation was significantly increased in mice with Pseudomonas aeruginosa lung infection. These data suggest that versican plays an important role in fundamental, overlapping cellular processes in lung development and infection.  相似文献   

7.
Increased amounts of serotonin as well as histamine have been found in the blood of animals during anaphylactic shock. Certain animals, particularly those in which antihistamines do not prevent anaphylaxis, have been found to have increased quantities of serotonin in the lung tissue during anaphylactic shock. Serotonin is a chemical derived from the amino acid tryptophan, which is widely distributed. It is excreted in the urine as the metabolite 5-hydroxyindoleacetic acid. Serotonin has been found in increased amounts in the blood of patients with carcinoids. The increase of serotonin in the blood and the finding of the excretory product in the urine has become a corroborative sign of the disease. The involvement of serotonin in the production of mental disease is evidenced by the effect of serotonin antagonists, which appear to influence mental behavior.That serotonin antagonists may be of ultimate value in the treatment of allergic disease is a possibility to be considered.  相似文献   

8.
Increased amounts of serotonin as well as histamine have been found in the blood of animals during anaphylactic shock. Certain animals, particularly those in which antihistamines do not prevent anaphylaxis, have been found to have increased quantities of serotonin in the lung tissue during anaphylactic shock.Serotonin is a chemical derived from the amino acid tryptophan, which is widely distributed. It is excreted in the urine as the metabolite 5-hydroxyindoleacetic acid. Serotonin has been found in increased amounts in the blood of patients with carcinoids. The increase of serotonin in the blood and the finding of the excretory product in the urine has become a corroborative sign of the disease. The involvement of serotonin in the production of mental disease is evidenced by the effect of serotonin antagonists, which appear to influence mental behavior.That serotonin antagonists may be of ultimate value in the treatment of allergic disease is a possibility to be considered.  相似文献   

9.
Abstract

Metabolic fingerprints, in the form of patterns of high-concentration endogenous metabolites, of 1-nitronaphthalene (NN)-induced lung toxicity have been elucidated in bronchoalveolar lavage fluid (BALF), urine, blood plasma, and intact lung and liver tissue using NMR spectroscopy-based metabolic profiling. A single dose of NN (75?mg?kg?1) was administered orally to Sprague–Dawley rats. BALF and lung tissue were obtained 24?h after dosing from these animals and matched control rats post-mortem. High-resolution 1H-NMR spectroscopy of BALF samples indicated that NN caused increases in concentrations of choline, amino acids (leucine, isoleucine and alanine) and lactate together with decreased concentrations of succinate, citrate, creatine, creatinine and glucose. In addition, the intact lung weights were higher in the NN-treated group (p<0.01), consistent with pulmonary oedema. The NMR-detected perturbations indicated that NN induces a perturbation in energy metabolism in both lung and liver tissue, as well as surfactant production and osmolyte levels in the lungs. As well as reporting the first NMR spectroscopic combined examination of BALF and intact lung, this study indicates that such holistic approaches to investigating mechanisms of lung toxicity may be of value in evaluating disease progression or the effects of therapeutic intervention in pulmonary conditions such as surfactant disorders or asthma.  相似文献   

10.
In a previous preliminary investigation, we reported on the excretion, tissue disposition and metabolism of the chemopreventive agent 1,4-phenylenebis(methylene)selenocyanate (p-XSC) in the rat, but similar studies in the mouse have not been explored. Following the oral administration of p-XSC (50 micromol/kg body weight), selenium excretion in feces was comparable to that in urine in mice, but in rats, feces was the major route of excretion. Tetraselenocyclophane (TSC) was the major metabolite detected in mouse and rat feces. In both species, levels of selenium in exhaled air were negligible. At termination, in the mouse, the stomach had the highest selenium content followed by liver and blood, but lung and kidney contained negligible levels of selenium; in the rat, the selenium level in liver was the highest followed by kidney, stomach, blood and lung. The identification of TSC as a fecal metabolite in both species let us to postulate the following metabolic pathway: p-XSC-->glutathione conjugate (p-XSeSG)-->a selenol (p-XSeH)-->TSC. Since the glutathione conjugate appears to be the proximal precursor for the selenol metabolite that may be an important intermediate in cancer chemoprevention, we report for the first time the synthesis of p-XSeSG and its other potential metabolites, namely the cysteine- and N-acetylcysteine-conjugates of p-XSC. HPLC analysis of the urine and bile showed a few metabolites of p-XSC; none of which eluted with the synthetic standards described above. When we examined the conversion of p-XSC and p-XSeSG in vitro using rat cecal microflora, TSC was formed from p-XSeSG but not from p-XSC. The formation of TSC from p-XSC in vivo but not in vitro suggests that p-XSC needs to be metabolized to p-XSeSG or an intermediate derived from its further metabolism. Thus, p-XSeSG was given orally to rats and the results showed that the pattern of selenium excretion after p-XSeSG treatment was similar to that of p-XSC; TSC was also identified as a fecal metabolite of p-XSeSG. It may be that the conversion of p-XSeSG to TSC is too facile, or the mere conjugation of p-XSC with glutathione does not occur in rats and mice.  相似文献   

11.
The tobacco specific nitrosamine 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK), which is found in high amounts in tobacco products, is believed to play an important role in lung cancer induction in smokers. NNK requires metabolic activation by cytochrome P450 mediated alpha-hydroxylation to exhibit its carcinogenic properties. On the other hand, NNK is inactivated by carbonyl reduction to its alcohol-equivalent 4-methylnitrosamino-1-(3-pyridyl)-1-butanol (NNAL) followed by glucuronidation and final excretion into urine or bile. Carbonyl reduction and alpha-hydroxylation are the predominant pathways in man, and it has been postulated that the extent of these competing pathways determines the individual susceptibility to lung cancer. Moreover, only a minor part of all habitual smokers develop lung cancer, suggesting the existence of susceptibility genes. Microsomal 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD 1) (EC 1.1.1.146) and cytosolic carbonyl reductase (CR) (EC 1.1.1.184) have been shown to be mainly responsible for NNAL formation in liver and lung. In the present study, we performed comparative investigations of human lung tissue samples from several patients with respect to the expression and activity of 11beta-HSD 1 and carbonyl reductase. We observed varying levels in 11beta-HSD 1 and carbonyl reductase expression in these patients, as revealed by RT-PCR and ELISA. Also, the tissue samples showed a different activity and inhibitor profile for both enzymes. According to our results, variations in the expression and activity of NNK carbonyl reducing enzymes may constitute a major determinant in the overall NNK detoxification capacity and thus may be linked to the great differences observed in the individual susceptibility of tobacco-smoke related lung cancer.  相似文献   

12.
Glycyrrhizic acid (GA), an active ingredient in licorice, has multiple pharmacological activities. However, the effects of GA on sepsis-induced acute lung injury (ALI) have not been determined. Tthe aim of this study was to investigate the molecular mechanism involved in the effects of GA against sepsis-induced ALI in rats. We found that GA alleviated sepsis-induced ALI through improvements in various pathological changes, as well as decreases in the lung wet/dry weight ratio and total protein content in bronchoalveolar lavage fluid, and a significant increase in the survival rate of treated rats. Additionally, GA markedly inhibited sepsis-induced pulmonary inflammatory responses. Moreover, we found that treatment with GA inhibited oxidative stress damage and apoptosis in lung tissue induced by ALI. Finally, GA treatment significantly inhibited NF-κ B, JNK and P38 MAPK activation. Our data indicate that GA has a protective effect against sepsis-induced ALI by inhibiting the inflammatory response, damage from oxidative stress, and apoptosis via inactivation of NF-κB and MAPK signaling pathways, providing a molecular basis for a new medical treatment for sepsis-induced ALI.  相似文献   

13.
The objective of this study is using radiolabelled PBN to determine the tissue distribution, excretion, and metabolism of PBN in rats in order to evaluate the effective time to trap free radical in appropriate tissue(s). Our results demonstrated that PBN is rapidly absorbed when it is injected intraperitoneally in the animal. PBN can be used as an effective spin trapping agent for a variety of tissues since it is evenly distributed among a wide range of tissues measured. Since there is no difference in the tissue concentrations and distribution pattern of PBN at 15, 30 and 60min after injection of PBN. it is appropriate to choose any of these time intervals to terminate the experiment and extract the spin adduct. The excretion of PBN, however, is slow. The majority of the radioactivity (70%) was excreted by the first 3 days. Only 5.7% of radioactivity was collected from 3 to 14 days. The remaining 25% of the radioactivity may be in the form of expired 14CO2. Trace amounts of radioactivity were recovered in the feces. PBN has probably only one major form of metabolite excreted in the urine. A small amount of the parent compound, however, was also excreted in the urine. The chemical structure of the metabolite(s) is still unknown.  相似文献   

14.
15.
Erin N  Clawson GA 《BioTechniques》2004,37(2):232, 234, 236 passim
Substance P (SP), a neuropeptide that is widely distributed both peripherally and centrally, mediates several pathophysiological processes. Among current assays for SP, enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay (RIA) have been most widely used. Several previous studies, mostly performed with nerve extracts or organ perfusates, determined that acidity of the extraction buffer as well as the number extractions performed constitute factors influencing accurate measurements. We used an ELISA protocol in this study to analyze methodological aspects of SP measurement in extracts from heart, skin, and lung. The extraction procedure had two steps, an acid extraction followed by a column extraction. We could effectively measure SP with extract from as little as 10 mg of tissue. For each tissue examined, different variables influenced the SP measured. For all tissues, the weight of tissue extracted was critical; the more tissue extracted, the lower the sensitivity of the assay. This problem could be overcome in skin by omitting the column extraction. When mechanical loses were considered (e.g., loss during extraction and SP retained by the column after elution), column extraction improved SP measurements only with lung tissue. The amount of SP remaining in the sample after the first extraction also varied among tissues. The first acid extraction effectively isolated 80% of total SP from skin. In contrast, the first extraction with lung tissue recovered only 58%. Because both acid and heat effectively release SP from nerve endings, this could reflect the presence of non-neuronal SP, especially in lung. High-dose capsaicin treatment, which depletes SP in nerve endings, caused 42% loss of SP in skin independent of amount of tissue extracted Our results suggest that a second acid extraction of tissue should be performed and that column extraction is clearly detrimental with skin samples.  相似文献   

16.
The pattern of unconjugated pterins in liver tissue and in urine from patients with atypical forms of phenylketonuria with hyperphenylalaninemia (HPA) has been investigated with a high performance liquid chromatographic technique. Two patients with defects in the biosynthesis of biopterin have been shown to have higher than normal levels of neopterin and lower than normal levels of biopterin. In contrast, a patient with HPA due to a deficiency of dihydropteridine reductase has the reverse urinary pattern, i.e., high biopterin, low neopterin. These results indicate that the ratio of neopterin to biopterin in urine can be of value in discriminating between HPA due to a deficiency of phenylalanine hydroxylase (classic PKU), HPA due to dihydropteridine reductase deficiency, and HPA due to a block in the biosynthesis of biopterin.  相似文献   

17.

Background

Lung fibrosis is characterized by fibroblast proliferation and the deposition of collagens. Curcumin, a polyphenol antioxidant from the spice tumeric, has been shown to effectively counteract fibroblast proliferation and reducing inflammation and fibrotic progression in animal models of bleomycin-induced lung injury. However, there is little mechanistic insight in the biological activity of curcumin. Here, we study the effects of curcumin on the expression and activity of cathepsins which have been implicated in the development of fibrotic lung diseases.

Methods

We investigated the effects of curcumin administration to bleomycin stimulated C57BL/6 mice and human fetal lung fibroblasts (HFL-1) on the expression of cathepsins K and L which have been implicated in matrix degradation, TGF-β1 modulation, and apoptosis. Lung tissues were evaluated for their contents of cathepsins K and L, collagen, and TGF-β1. HFL-1 cells were used to investigate the effects of curcumin and cathepsin inhibition on cell proliferation, migration, apoptosis, and the expression of cathepsins K and L and TGF-β1.

Results

Collagen deposition in lungs was decreased by 17-28% after curcumin treatment which was accompanied by increased expression levels of cathepsins L (25%-39%) and K (41%-76%) and a 30% decrease in TGF-β1 expression. Moreover, Tunel staining of lung tissue revealed a 33-41% increase in apoptotic cells after curcumin treatment. These in vivo data correlated well with data obtained from the human fibroblast line, HFL-1. Here, cathepsin K and L expression increased 190% and 240%, respectively, in the presence of curcumin and the expression of TGF-β1 decreased by 34%. Furthermore, curcumin significantly decreased cell proliferation and migration and increased the expression of surrogate markers of apoptosis. In contrast, these curcumin effects were partly reversed by a potent cathepsin inhibitor.

Conclusion

This study demonstrates that curcumin increases the expression of cathepsins K and L in lung which an effect on lung fibroblast cell behavior such as proliferation, migration and apoptosis rates and on the expression of TGF-β1 in mouse lung and HFL-1 cells. These results suggest that cathepsin-inducing drugs such as curcumin may be beneficial in the treatment of lung fibrosis.  相似文献   

18.
The purpose of this study was the development of a new incubation system that can allow continuous exposure of lung tissue to complex atmospheres as a tool for the assessment of aerial environmental lung toxicology. To assess the pertinence of this new exposure system, we studied the impact of diesel engine exhausts as a complex atmosphere containing both gaseous and particulate fractions and have been able to discriminate between the toxicological impacts of the gaseous phase and particulate matter from diesel exhausts. Continuous flow-through rotating chambers with controlled pO2, pCO2, and hygrometry have been designed in which lung slices are positioned in rolling inserts that allow free access of atmosphere to the exposed lung tissue. Under control conditions, cell viability was preserved for at least 48 h as assessed by intracellular ATP, GSH, and K+ levels and slice O2 consumption levels. Short-term exposure (1 h) to diesel whole exhausts did not affect intracellular potassium or slice O2 consumption, while intracellular ATP and GSH levels were markedly decreased. Exposure to filtered exhausts showed less marked effects on both ATP and GSH levels. Superoxide dismutase activity was decreased in a similar way by both total and filtered exhausts while Se+-dependent glutathione peroxidase activity was induced by filtered exhausts to a larger extent than after total exhaust exposure, showing different response patterns of lung tissue after exposure to whole or filtered exhausts. In conclusion, this newly designed model opens a promising area in in vitro environmental lung toxicology testing.  相似文献   

19.
Tuberculosis (TB) still holds a major threat to the health of people worldwide, and there is a need for cost-efficient but reliable models to help us understand the disease mechanisms and advance the discoveries of new treatment options. In vitro cell cultures of monolayers or co-cultures lack the three-dimensional (3D) environment and tissue responses. Herein, we describe an innovative in vitro model of a human lung tissue, which holds promise to be an effective tool for studying the complex events that occur during infection with Mycobacterium tuberculosis (M. tuberculosis). The 3D tissue model consists of tissue-specific epithelial cells and fibroblasts, which are cultured in a matrix of collagen on top of a porous membrane. Upon air exposure, the epithelial cells stratify and secrete mucus at the apical side. By introducing human primary macrophages infected with M. tuberculosis to the tissue model, we have shown that immune cells migrate into the infected-tissue and form early stages of TB granuloma. These structures recapitulate the distinct feature of human TB, the granuloma, which is fundamentally different or not commonly observed in widely used experimental animal models. This organotypic culture method enables the 3D visualization and robust quantitative analysis that provides pivotal information on spatial and temporal features of host cell-pathogen interactions. Taken together, the lung tissue model provides a physiologically relevant tissue micro-environment for studies on TB. Thus, the lung tissue model has potential implications for both basic mechanistic and applied studies. Importantly, the model allows addition or manipulation of individual cell types, which thereby widens its use for modelling a variety of infectious diseases that affect the lungs.  相似文献   

20.
Urine is one of the most attractive analyte used for clinical diagnosis. NSCLC (non-small cell lung carcinoma), which includes adenocarcinoma, squamous cell carcinoma and large-cell carcinoma, is a leading cause of cancer-related deaths. In the present study, urinary proteomes of normal individuals and NSCLC patients were compared using 1D SDS-PAGE. From the distinctly differentially expressed bands in SDS-PAGE gel, 40 proteins were identified by chip-HPLC-MS/MS, including five proteins relevant to NSCLC. One of the selected proteins, alpha-1-antichymotrypsin (AACT), was further validated in urine by western blot and in lung tissue by immunohistochemistry staining. Higher expression level of AACT in NSCLC patients was observed by western blot when compared with normal urine samples. Significantly, the NSCLC tumor tissue (18 out of 20 cases, 90%) showed a significantly higher expression level of AACT compared to adjacent non-tumor lung tissue (3 out of 20 cases, 15%). These results establish AACT as a potential biomarker for objective and non-invasive diagnosis of NSCLC in urine and the other four NSCLC-related proteins were also listed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号