首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human dihydroorotate dehydrogenase (huDHODH) is essential for de novo biosynthesis of pyrimidines and the target of two immunosuppressive drugs, brequinar and the leflunomide metabolite A77-1726 (Chen et al., 1992; Davis et al., 1996). Using a T7 RNA polymerase expression system, we produced huDHODH as a fusion protein containing an amino-terminal decahistidine tag. Escherichia coli growth and expression conditions were optimized to enhance huDHODH solubility and to permit purification of the enzyme in the absence of detergent. Soluble huDHODH, purified by a simple two-step procedure, was catalytically active, monomeric, and contained a flavin mononucleotide (FMN) cofactor in a 1:1 FMN/protein molar ratio. Kinetic analysis showed that huDHODH uses a two site ping-pong mechanism, where DHO is oxidized at one site and the second substrate, ubiquinone, is reduced at the other. This result is consistent with the mechanism proposed for bovine liver DHODH (Hines and Johnston, 1989).  相似文献   

2.
The malarial parasite relies on de novo pyrimidine biosynthesis to maintain its pyrimidine pools, and unlike the human host cell it is unable to scavenge preformed pyrimidines. Dihydroorotate dehydrogenase (DHODH) catalyzes the oxidation of dihydroorotate (DHO) to produce orotate, a key step in pyrimidine biosynthesis. The enzyme is located in the outer membrane of the mitochondria of the malarial parasite. To characterize the biochemical properties of the malarial enzyme, an N-terminally truncated version of P. falciparum DHODH has been expressed as a soluble, active enzyme in E. coli. The recombinant enzyme binds 0.9 molar equivalents of the cofactor FMN and it has a pH maximum of 8.0 (k(cat) 8 s(-1), K(m)(app) DHO (40-80 microm)). The substrate specificity of the ubiquinone cofactor (CoQ(n)) that is required for the oxidation of FMN in the second step of the reaction was also determined. The isoprenoid (n) length of CoQ(n) was a determinant of reaction efficiency; CoQ(4), CoQ(6) and decylubiquinone (CoQ(D)) were efficiently utilized in the reaction, however cofactors lacking an isoprenoid tail (CoQ(0) and vitamin K(3)) showed decreased catalytic efficiency resulting from a 4 to 7-fold increase in K(m)(app). Five potent inhibitors of mammalian DHODH, Redoxal, dichloroallyl lawsone (DCL), and three analogs of A77 1726 were tested as inhibitors of the malarial enzyme. All five compounds were poor inhibitors of the malarial enzyme, with IC(50)'s ranging from 0.1-1.0 mm. The IC(50) values for inhibition of the malarial enzyme are 10(2)-10(4)-fold higher than the values reported for the mammalian enzyme, demonstrating that inhibitor binding to DHODH is species specific. These studies provide direct evidence that the malarial DHODH active site is different from the host enzyme, and that it is an attractive target for the development of new anti-malarial agents.  相似文献   

3.
Inhibitors of dihydroorotate dehydrogenase (DHODH) have been suggested for the treatment of rheumatoid arthritis, psoriasis, autoimmune diseases, Plasmodium, and bacterial and fungal infections. Here we present the structures of N-terminally truncated (residues Met30-Arg396) DHODH in complex with two inhibitors: a brequinar analogue (6) and a novel inhibitor (a fenamic acid derivative) (7), as well as the first structure of the enzyme to be characterized without any bound inhibitor. It is shown that 7 uses the "standard" brequinar binding mode and, in addition, interacts with Tyr356, a residue conserved in most class 2 DHODH proteins. Compared to the inhibitor-free structure, some of the amino acid side chains in the tunnel in which brequinar binds and which was suggested to be the binding site of ubiquinone undergo changes in conformation upon inhibitor binding. Using our data, the loop regions of residues Leu68-Arg72 and Asn212-Leu224, which were disordered in previously studied human DHODH structures, could be built into the electron density. The first of these loops, which is located at the entrance to the inhibitor-binding pocket, shows different conformations in the three structures, suggesting that it may interfere with inhibitor/cofactor binding. The second loop has been suggested to control the access of dihydroorotate to the active site of the enzyme and may be an important player in the enzymatic reaction. These observations provide new insights into the dynamic features of the DHODH reaction and suggest new approaches to the design of inhibitors against DHODH.  相似文献   

4.
Plasmodium falciparum dihydroorotate dehydrogenase (pfDHODH) is a flavin-dependent mitochondrial enzyme that provides the only route to pyrimidine biosynthesis in the parasite. Clinically significant inhibitors of human DHODH (e.g., A77 1726) bind to a pocket on the opposite face of the flavin cofactor from dihydroorotate (DHO). This pocket demonstrates considerable sequence variability, which has allowed species-specific inhibitors of the malarial enzyme to be identified. Ubiquinone (CoQ), the physiological oxidant in the reaction, has been postulated to bind this site despite a lack of structural evidence. To more clearly define the residues involved in CoQ binding and catalysis, we undertook site-directed mutagenesis of seven residues in the structurally defined A77 1726 binding site, which we term the species-selective inhibitor site. Mutation of several of these residues (H185, F188, and F227) to Ala substantially decreased the affinity of pfDHODH-specific inhibitors (40-240-fold). In contrast, only a modest increase in the Kmapp for CoQ was observed, although mutation of Y528 in particular caused a substantial reduction in kcat (40-100-fold decrease). Pre-steady-state kinetic analysis by single wavelength stopped-flow spectroscopy showed that the mutations had no effect on the rate of the DHO-dependent reductive half-reaction, but most reduced the rate of the CoQ-dependent flavin oxidation step (3-20-fold decrease), while not significantly altering the Kdox for CoQ. As with the mutants, inhibitors that bind this site block the CoQ-dependent oxidative half-reaction without affecting the DHO-dependent step. These results identify residues involved in inhibitor binding and electron transfer to CoQ. Importantly, the data provide compelling evidence that the binding sites for CoQ and species-selective site inhibitors do not overlap, and they suggest instead that inhibitors act either by blocking the electron path between flavin and CoQ or by stabilizing a conformation that excludes CoQ binding.  相似文献   

5.
Dihydroorotate dehydrogenase (DHODH) catalyzes the oxidation of dihydroorotate to orotate in the pyrimidine biosynthesis pathway. It is functionally connected to the respiratory chain, delivering electrons to ubiquinone. We report here that inhibition of cytochrome c oxidase by nitric oxide (NO) indirectly inhibits DHODH activity. In digitonin-permeabilized cells, DEA/NO, a chemical NO donor, induced a dramatic decrease in DHO-dependent O(2) consumption. The inhibition was reversible and more pronounced at low O(2) concentration; it was correlated with a decrease in orotate synthesis. Since orotate is the precursor of all pyrimidine nucleotides, indirect inhibition of DHODH by NO may significantly contribute to NO-dependent cytotoxicity.  相似文献   

6.
In all organisms the fourth catalytic step of the pyrimidine biosynthesis is driven by the flavoenzyme dihydroorotate dehydrogenase (DHODH, EC 1.3.99.11). Cytosolic DHODH of the established model organism Saccharomyces cerevisiae catalyses the oxidation of dihydroorotate to orotate and the reduction of fumarate to succinate. Here, we investigate the structure and mechanism of DHODH from S. cerevisiae and show that the recombinant ScDHODH exists as a homodimeric enzyme in vitro. Inhibition of ScDHODH by the reaction product was observed and kinetic studies disclosed affinity for orotate (K(ic)=7.7 microM; K(ic) is the competitive inhibition constant). The binding constant for orotate was measured through comparison of UV-visible spectra of the bound and unbound recombinant enzyme. The midpoint reduction potential of DHODH-bound flavine mononucleotide determined from analysis of spectral changes was -242 mV (vs. NHE) under anaerobic conditions. A search for alternative electron acceptors revealed that homologues such as mesaconate can be used as electron acceptors.  相似文献   

7.
Therapeutic agents brequinar sodium and leflunomide (Arava) work by binding in a hydrophobic tunnel formed by a highly variable N-terminus of family 2 dihydroorotate dehydrogenase (DHODH). The X-ray crystallographic structure of an analog of brequinar bound to human DHODH was determined. In silico screening of a library of compounds suggested another subset of brequinar analogs that do not inhibit human DHODH as potentially effective inhibitors of Plasmodium falciparum DHODH.  相似文献   

8.
A series of 2-phenyl quinoline-4-carboxylic acid derivatives related to brequinar, an inhibitor of human dihydroorotate dehydrogenase (DHODH), has been prepared and evaluated as inhibitors of DHODH from the malaria parasite Plasmodium falciparum. Brequinar was essentially inactive against PfDHODH (IC(50) 880 microM) whereas several members of the series inhibited PfDHODH. Unexpectedly, replacement of the carboxylic acid required for brequinar to inhibit hDHODH was not essential in the diisopropylamides that inhibited PfDHODH.  相似文献   

9.
Dihydroorotate dehydrogenase (DHODH, EC 1.3.99.11), the fourth enzyme of pyrimidine de novo synthesis, is an integral flavoprotein of the inner mitchondrial membrane and is functionally connected to the respiratory chain. Here, experiments have been directed toward determining the roles of the N-terminal sequence motifs both in enzymatic properties of insect DHODH produced in vitro and the in vivo function of the protein. Full-length and three N-terminal truncated derivatives of the Drosophila melanogaster enzyme were expressed in Escherichia coli and purified. For identification on Western blots of recombinant DHODH as well as the native enzyme from flies polyclonal anti-DHODH immunoglobulins were generated and affinity-purified. The enzymatic characteristics of the four versions of DHODH were very similar, indicating that the N-terminus of the enzyme does not influence its catalytic function or its susceptibility to prominent DHODH inhibitors: A77-1726, brequinar, dichloroallyl-lawsone and redoxal. Whereas the efficacy of A77-1726 and dichloroallyl-lawsone were similar with Drosophila and human DHODH, that of brequinar and redoxal differed significantly. The differences in responses of insect DHODH and the enzyme from other species may allow the design of new agents that will selectively control insect growth, due to pyrimidine nucleotide limitation. In vivo expression of the full-length and N-truncated DHODHs from engineered transgenes revealed that the truncated proteins could not support normal de novo pyrimidine biosynthesis during development of the fly (i.e., failure to complement dhod-null mutations), apparently due to instability of the truncated proteins. It is concluded that the proper intracellular localization, directed by the N-terminal targeting and transmembrane motifs, is required for stability and subsequent proper biological function in vivo.  相似文献   

10.
Palfey BA  Björnberg O  Jensen KF 《Biochemistry》2001,40(14):4381-4390
Dihydroorotate dehydrogenase (DHOD) oxidizes dihydroorotate (DHO) to orotate in the only redox reaction of pyrimidine biosynthesis. The enzyme from Escherichia coli is a membrane-bound FMN-containing enzyme that is thought to use ubiquinone as the oxidizing substrate. The chemistry of the reduction of the flavin in DHOD from E. coli by the substrate dihydroorotate (DHO) was studied at 4 degrees C in anaerobic stopped-flow experiments conducted over a broad range of pH values. A Michaelis complex that was characterized by a approximately 20 nm red-shift of the oxidized flavin absorbance formed within the dead-time of the stopped-flow instrument ( approximately 1 ms) upon mixing with DHO. The flavin of the intermediate was reduced by DHO, forming a reduced flavin-orotate charge-transfer complex. The rate constant for the flavin reduction reaction increased with pH, from a value of 1 s(-1) at pH 6.5 to approximately 360 s(-1) at pH values greater than an observed pK(a) of 9.5 which was ascribed to Ser175, the active-site base. At all pH values, the reduced flavin-orotate charge-transfer complex dissociated too slowly to be catalytically relevant. Therefore, the oxidizing quinone substrate must bind to the reduced enzyme-orotate complex at a site distinct from the substrate binding site, in agreement with steady-state kinetic studies [Bj?rnberg, O., Grüner, A.-C., Roepstorff, P., and Jensen, K. F. (1999) Biochemistry 38, 2899-2908]. Menadione was used as a model quinone substrate to oxidize dithionite-reduced DHOD. The reduced enzyme-orotate complex reacted rapidly with menadione (180 s(-1)), demonstrating that the reduced enzyme-orotate complex is a catalytically competent intermediate.  相似文献   

11.
The inhibition of dihydro-orotase (E 3.5.2.3) and dihydroorotate (DHO) dehydrogenase (dihydro-orotate oxidase, EC 1.3.3.1) by cellular orotate (OA) in Ehrlich ascites cells was studied by measuring the accumulation of the intermediates of de novo pyrimidine biosynthesis at various times after the addition of 6-azauridine to the culture medium. The addition of 6-azauridine resulted in the accumulation of orotidine, OA, DHO, and carbamyl aspartate (CAA). The use of the observed ratios of [CCA]/[OA] and [DHO]/[OA] and other known constants allowed us to calculate that the increased cellular OA concentration caused primarily an inhibition of DHO dehydrogenase rather than an inhibition of dihydroorotase. A constant ratio of [CAA]/[DHO] was observed which probably indicates that the interconversion of these two intermediates catalyzed by dihydroorotase is near equilibrium in these cells as has been observed in vitro (Christopherson, R.I., Matsuura, T., and Jones, M.E. (1978) Anal. Biochem. 89, 225-234). It is suggested that the probable intracellular accumulation of CAA in patients with oroticaciduria may have significant secondary effects.  相似文献   

12.
Plasmodium dihydroorotate dehydrogenase (DHODH) is a mitochondrial membrane-associated flavoenzyme that catalyzes the rate-limiting step of de novo pyrimidine biosynthesis. DHODH is a validated target for malaria, and DSM265, a potent inhibitor, is currently in clinical trials. The enzyme catalyzes the oxidation of dihydroorotate to orotate using flavin mononucleotide (FMN) as cofactor in the first half of the reaction. Reoxidation of FMN to regenerate the active enzyme is mediated by ubiquinone (CoQD), which is the physiological final electron acceptor and second substrate of the reaction. We have developed a fluorescence-based high-throughput enzymatic assay to find DHODH inhibitors. In this assay, the CoQD has been replaced by a redox-sensitive fluorogenic dye, resazurin, which changes to a fluorescent state on reduction to resorufin. Remarkably, the assay sensitivity to find competitive inhibitors of the second substrate is higher than that reported for the standard colorimetric assay. It is amenable to 1536-well plates with Z′ values close to 0.8. The fact that the human enzyme can also be assayed in the same format opens additional applications of this assay to the discovery of inhibitors to treat cancer, transplant rejection, autoimmune diseases, and other diseases mediated by rapid cellular growth.  相似文献   

13.
Dihydroorotate dehydrogenase (DHODH; EC 1.3.99.11) is a central enzyme of pyrimidine biosynthesis and catalyzes the oxidation of dihydroorotate to orotate. DHODH is an important target for antiparasitic and cytostatic drugs since rapid cell proliferation often depends on the de novo synthesis of pyrimidine nucleotides. We have cloned the pyr4 gene encoding mitochondrial DHODH from the basidiomycetous plant pathogen Ustilago maydis. We were able to show that pyr4 contains a functional mitochondrial targeting signal. The deletion of pyr4 resulted in uracil auxotrophy, enhanced sensitivity to UV irradiation, and a loss of pathogenicity on corn plants. The biochemical characterization of purified U. maydis DHODH overproduced in Escherichia coli revealed that the U. maydis enzyme uses quinone electron acceptor Q6 and is resistant to several commonly used DHODH inhibitors. Here we show that the expression of the human DHODH gene fused to the U. maydis mitochondrial targeting signal is able to complement the auxotrophic phenotype of pyr4 mutants. While U. maydis wild-type cells were resistant to the DHODH inhibitor brequinar, strains expressing the human DHODH gene became sensitive to this cytostatic drug. Such engineered U. maydis strains can be used in sensitive in vivo assays for the development of novel drugs specifically targeted at either human or fungal DHODH.  相似文献   

14.
Production of superoxide radical during oxidation of dihydroorotate in rat liver mitochondria was not affected by antimycin A, thenoyltrifluoroacetone, or added ubiquinone but was inhibited by orotate, a product inhibitor of dihydroorotate dehydrogenase. It appears likely that superoxide is generated at the primary dehydrogenase. Dihydroorotate dehydrogenase differs from succinate dehydrogenase both in its utilization of ubiquinone and in the mechanism of cytochrome b reduction. Thenoyltrifluoroacetone completely inhibits fumarate synthesis and reduction of cytochrome b by succinate. Formation of orotate is only partially inhibited by thenolytrifluoroacetone and the inhibitor does not prevent reduction of cytochrome b by dihydroorotate. It is proposed that several pathways exist for linkage of the primary dihydrorotate dehydrogenase with the electron transport chain. One route involves electron transfer from ubiquinone to cytochrome c and is inhibited by thenoyltrifluoroacetone. A second route bypasses ubiquinone and is inhibited by antimycin A. A third pathway utilizes both ubiquinone and cytochrome b and is partiayly inhibited by either thenoyltrifluoroacetone or antimycin A.  相似文献   

15.
Mammalian dihydroorotate dehydrogenase, the fourth enzyme of pyrimidine de novo synthesis is an integral protein of the inner mitochondrial membrane that faces the intermembrane space and is functionally connected to the respiratory chain via ubiquinone. Here, we describe the first cloning and analyzing of the complete cDNA of mouse dihydroorotate dehydrogenase. Based on our recent functional expression of the full-length rat and human dihydroorotate dehydrogenase, here we expressed N-terminal-truncated C-terminal-histidine-tagged constructs of the mouse, rat and human enzymes in Escherichia coli. These proteins were devoid of the N-terminal bipartite sequence consisting of the mitochondrial targeting sequence and adjacent hydrophobic domain necessary for import and proper location and fixation of the enzyme in the inner mitochondrial membrane. By employing metal-chelate affinity chromatography under native conditions, the enzymes were purified without detergents to a specific activity of more than 100 micromol x min(-1) x mg(-1) at pH optimum of 8.0--8.1. Flavin analyses by UV-visible spectrometry of the native enzymes gave fairly stoichiometric ratios of 0.6--1.2 mol flavin per mol protein. The kinetic constants of the truncated rat enzyme (K(m) = 11 microM dihydroorotate; K(m) = 7 microM ubiquinone) and human enzyme (K(m) = 10 microM dihydroorotate; K(m) = 14 microM ubiquinone) were very close to those recently reported for the full-size enzymes. The constants for the mouse enzyme, K(m) = 26 microM dihydroorotate and K(m) = 62 microM ubiquinone, were slightly elevated in comparison to those of the other species. The three truncated enzymes were tested for their efficacy with five inhibitors of topical clinical relevance against autoimmune disorders and tumors. Whereas the presence of the N-terminus of dihydroorotate dehydrogenase was essentially irrelevant for the efficacy of the malononitrilamides A77-1726, MNA715 and MNA279 with the rat and human enzyme, the N-termini were found to be important for the efficacy of the dianisidine derivative redoxal. Moreover, the complete N-terminal part of the human enzyme seemed to be of crucial importance for the 'slow-binding' features of the cinchoninic acid derivative brequinar, which was suggested to be one of the reasons for the narrow therapeutic window reported from clinical trials on its anti-proliferative and immunosuppressive action.  相似文献   

16.
The flavoprotein dihydroorotate dehydrogenase (DHOD) catalyzes the oxidation of dihydroorotate to orotate. Dihydrooxonate is an analogue of dihydroorotate in which the C5 carbon is substituted by a nitrogen atom. We have investigated dihydrooxonate as a substrate of three DHODs, each representing a distinct evolutionary class of the enzyme, namely the two family 1 enzymes from Lactococcus lactis, DHODA and DHODB, and the enzyme from Escherichia coli, which, like the human enzyme, belongs to family 2. Dihydrooxonate was accepted as a substrate although much less efficiently than dihydroorotate. The first half-reaction was rate limiting according to pre-steady-state and steady-state kinetics with different electron acceptors. Cysteine and serine have been implicated as active site base residues, which promote substrate oxidation in family 1 and family 2 DHODs, respectively. Mutants of DHODA (C130A) and E. coli DHOD (S175A) have extremely low activity in standard assays with dihydroorotate as substrate, but with dihydrooxonate the mutants display considerable and increasing activity above pH 8.0. Thus, the absence of the active site base residue in the enzymes seems to be compensated for by a lower pK(a) of the 5-position in the substrate. Oxonate, the oxidation product of dihydrooxonate, was a competitive inhibitor versus dihydroorotate, and DHODA was the most sensitive of the three enzymes. DHODA was reinvestigated with respect to product inhibition by orotate. The results suggest a classical one-site ping-pong mechanism with fumarate as electron acceptor, while the kinetics with ferricyanide is highly dependent on the detailed reaction conditions.  相似文献   

17.
Leflunomide (LFM) is an inhibitor of mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) that catalyzes the conversion of dihydroorotate to orotate coupled with the generation of reactive oxygen species (ROS) from mitochondria. We demonstrate here that LFM causes an unrestrained proliferation of mitochondria both in human osteosarcoma cell line 143B cells and rat liver derived RL-34 cells. Increases in the total mass of mitochondria per cell in LFM-treated cells were evidenced by the application of Green FM or 10-n-nonyl acridine orange to flow cytometry, an enhanced replication of mtDNA and electron microscopy. Externally added uridine improved the disturbance in cell cycle progression in LFM-treated cells, but failed to suppress such unrestrained mitochondrial proliferation. On the contrary, lapacol and 5-fluoroorotate, inhibitors of DHODH besides LFM, suppressed the biogenesis of mitochondria during the cell cycle progression. LFM, but not lapacol or 5-fluoroorotate, caused increases of the intracellular level of acetylated alpha-tubulin. These data suggest that the inhibition of DHODH may not be at least primarily related to the LFM-induced abnormal proliferation of mitochondria, and support our recent published observation that changes in the physicochemical properties of microtubules may be in someway concerned with the biogenesis of mitochondria.  相似文献   

18.
BACKGROUND: Dihydroorotate dehydrogenase (DHODH) catalyzes the fourth committed step in the de novo biosynthesis of pyrimidines. As rapidly proliferating human T cells have an exceptional requirement for de novo pyrimidine biosynthesis, small molecule DHODH inhibitors constitute an attractive therapeutic approach to autoimmune diseases, immunosuppression, and cancer. Neither the structure of human DHODH nor any member of its family was known. RESULTS: The high-resolution crystal structures of human DHODH in complex with two different inhibitors have been solved. The initial set of phases was obtained using multiwavelength anomalous diffraction phasing with selenomethionine-containing DHODH. The structures have been refined to crystallographic R factors of 16.8% and 16.2% at resolutions of 1. 6 A and 1.8 A for inhibitors related to brequinar and leflunomide, respectively. CONCLUSIONS: Human DHODH has two domains: an alpha/beta-barrel domain containing the active site and an alpha-helical domain that forms the opening of a tunnel leading to the active site. Both inhibitors share a common binding site in this tunnel, and differences in the binding region govern drug sensitivity or resistance. The active site of human DHODH is generally similar to that of the previously reported bacterial active site. The greatest differences are that the catalytic base removing the proton from dihydroorotate is a serine rather than a cysteine, and that packing of the flavin mononucleotide in its binding site is tighter.  相似文献   

19.
V Hines  M Johnston 《Biochemistry》1989,28(3):1222-1226
The steady-state kinetic mechanism of highly purified bovine liver mitochondrial dihydroorotate dehydrogenase has been investigated. Initial velocity analysis using S-dihydroorotate and coenzyme Q6 revealed parallel-line, double-reciprocal plots, indicative of a ping-pong mechanism. The dead-end inhibition pattern with barbituric acid and the reactions with alternate cosubstrates methyl-S-dihydroorotate and menadione also point to a ping-pong mechanism. However, product orotate was found to be competitive with dihydroorotate and uncompetitive with Q6. These findings suggest that dihydroorotate dehydrogenase may follow a nonclassical, two-site ping-pong mechanism, typical of an enzyme that contains two non-overlapping and kinetically isolated substrate binding sites. That these two sites communicate by an intramolecular electron-transfer system involving FMN and perhaps an iron-sulfur center is also suggested by the kinetic behavior of the enzyme.  相似文献   

20.
A mutant (A204) of Chinese hamster ovary cells (CHO-K1), which is deficient in dihydroorotate (DHO) dehydrogenase (E.C. 1.3,3.1) activity, has been isolated by a replica plating procedure. The mutant does not show a requirement for exogenously added pyrimidines. Examination of intact cells shows that the mutant accumulates a large amount of carbamyl aspartate and is markedly but not totally deficient in biosynthesis of orotate from earlier precursors of pyrimidine biosynthesis, including aspartate and dihydroorotic acid, when compared to wild-type cells. Analysis of cell-free extracts of mutant and wild-type cells shows that the mutant is deficient in DHO dehydrogenase activity, possessing ca. 5% of the wild-type activity. this evidence leads to the conclusion that this mutant, A204, is in fact partially deficient in DHO dehydrogenase, and that in these cells it is this enzyme which carries out the fourth step of de novo pyrimidine biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号