首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanism of action of a mammalian DNA repair endonuclease   总被引:17,自引:0,他引:17  
The mechanism of action of a DNA repair endonuclease isolated from calf thymus was determined. The calf thymus endonuclease possesses a substrate specificity nearly identical with that of Escherichia coli endonuclease III following DNA damage by high doses of UV light, osmium tetroxide, and other oxidizing agents. The calf thymus enzyme incises damaged DNA at sites of pyrimidines. A cytosine photoproduct was found to be the primary monobasic UV adduct. The calf thymus endonuclease and E. coli endonuclease III were found to possess similar, but not identical, DNA incision mechanisms. The mechanism of action of the calf thymus endonuclease was deduced by analysis of the 3' and 5' termini of the enzyme-generated DNA scission products with DNA sequencing methodologies and HPLC analysis of the material released by the enzyme following DNA damage. The calf thymus endonuclease removes UV light and osmium tetroxide damaged bases via an N-glycosylase activity followed by a 3' apurinic/apyrimidinic (AP) endonuclease activity. The calf thymus endonuclease also possesses a novel 5' AP endonuclease activity not possessed by endonuclease III. The product of this three-step mechanism is a nucleoside-free site flanked by 3'-and 5'-terminal phosphate groups. These results indicate the conservation of both substrate specificity and mechanism of action in the enzymatic removal of oxidative base damage between prokaryotes and eukaryotes. We propose the name redoxy endonucleases for this group of enzymes.  相似文献   

2.
The substrate specificity of a calf thymus endonuclease on DNA damaged by UV ligh, ionizing radiation, and oxidizing agents was investigated. End-labeled DNA fragments of defined sequence were used as substrates, and the enzyme-generated scission products were analyzed by using DNA sequencing methodologies. The enzyme was shown to incise damaged DNA at pyrimidine sites. The enzyme incised DNA damaged with UV light, ionizing radiation, osmium tetroxide, potassium permanganate, and hydrogen peroxide at cytosine and thymine sites. The substrate specificity of the calf thymus endonuclease was compared to that of Escherichia coli endonuclease III. Similar pyrimidine base damage specificities were found for both enzymes. These results define a highly conserved class of enzymes present in both procaryotes and eucaryotes that may mediate an important role in the repair of oxidative DNA damage.  相似文献   

3.
R P Hertzberg  P B Dervan 《Biochemistry》1984,23(17):3934-3945
The synthesis of methidiumpropyl-EDTA (MPE) is described. The binding affinities of MPE, MPE.Ni(II), and MPE.Mg(II) to calf thymus DNA are 2.4 X 10(4) M-1, 1.5 X 10(5) M-1, and 1.2 X 10(5) M-1, respectively, in 50 mM NaCl, pH 7.4. The binding site size is two base pairs. MPE.Mg(II) unwinds PM2 DNA 11 +/- 3 degrees per bound molecule. MPE.Fe(II) in the presence of O2 efficiently cleaves DNA and with low sequence specificity. Reducing agents significantly enhance the efficiency of the cleavage reaction in the order sodium ascorbate greater than dithiothreitol greater than NADPH. At concentrations of 0.1-0.01 microM in MPE.Fe(II) and 10 microM in DNA base pairs, optimum ascorbate and dithiothreitol concentrations for DNA cleavage are 1-5 mM. Efficient cleavage of DNA (10 microM in base pairs) with MPE.Fe(II) (0.1-0.01 microM) occurs over a pH range of 7-10 with the optimum at 7.4 (Tris-HCl buffer). The optimum cleavage time is 3.5 h (22 degrees C). DNA cleavage is efficient in a Na+ ion concentration range of 5 mM to 1 M, with the optimum at 5 mM NaCl. The number of single-strand scissions on supercoiled DNA per MPE.Fe(II) under optimum conditions is 1.4. Metals such as Co(II), Mg(II), Ni(II), and Zn(II) inhibit strand scission by MPE. The released products from DNA cleavage by MPE.Fe(II) are the four nucleotide bases. The DNA termini at the cleavage site are 5'-phosphate and roughly equal proportions of 3'-phosphate and 3'-(phosphoglycolic acid). The products are consistent with the oxidative degradation of the deoxyribose ring of the DNA backbone, most likely by hydroxy radical.  相似文献   

4.
An apurinic/apyrimidinic (AP) endonuclease (E.C.3.1.25.2) has been purified 1100 fold to apparent homogeneity from calf thymus by a series of ion exchange, gel filtration and hydrophobic interaction chromatographies. The purified AP endonuclease is a monomeric protein with an apparent molecular weight on SDS-PAGE of 37,000. On gel filtration the protein behaves as a protein of apparent molecular weight 40,000. DNA cleavage by this AP endonuclease is dependent on the presence of AP sites in the DNA. DNA cleavage requires the divalent cation Mg2+ and has a broad pH optimum of 7.5-9.0. Maximal rates of catalysis occur at NaCl or KCl concentrations of 25-50 mM. The amino acid composition and the amino-terminal amino acid sequence for this AP endonuclease are presented. Comparison of the properties of this AP endonuclease purified from calf thymus with the reported properties of the human AP endonuclease purified from HeLa cells or placenta indicate that the properties of such an AP endonuclease are highly conserved in these two mammalian species.  相似文献   

5.
A series of metalloporphyrins linked through basic chains to certain DNA interactive groups has been synthesized. Several of these agents reproduce the characteristic properties of the antitumor glycopeptide bleomycin, including the oxygen-mediated scission of DNA in the presence of thiols, antibiobic activity under aerobic conditions, and activity against human and animal tumor models. Initial screening by scission of PM2-CCC-DNA identified six of the compounds, including those bearing acridine and acodazole intercalating groups, as the most active. The specificity of the oxygen-mediated scission of a 139 base pair HindIII/NciI restriction fragment of pBR322 by these six selected agents was then determined and compared with the action of pancreatic DNase by densitometric scans. All six of these compounds produce uniform base and sequence neutral cleavage of the restriction fragment at each base site. The six active compounds bear either of two types of intercalators, 6-chloro-2-methoxyacridine or acodazole, and with linkages to the ferric binding domain of -NH(CH2)2-, -NH(CH2)3-, -NH(CH2)4-, or -NH(CH2)3NH(CH2)3- and either porphyrin or deuteroporphyrin moieties. Comparison of the Kassoc values for binding to calf thymus DNA suggests that the enhanced binding observed with the linker -NH(CH2)3NH(CH2)3- contributes to the efficiency of sequence neutral DNA scission and may be a factor in the relative anticancer activities of these agents. The iron porphyrins give no evidence of the production of base propenals in DNA degradation, and the autoradiograms clearly indicate that a phosphate group is attached to the 5' end of the oligomer. The scission is partially suppressible by catalase and superoxide dismutase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The thermodynamics of formation of a novel divalent metal ion-DNA complex known as M-DNA have been investigated using an ethidium bromide (EB) fluorescence assay, and with isothermal titration calorimetry. The process of M-DNA formation was observed from the EB assay to be strongly temperature-dependent. The binding of Zn(2+) to calf thymus (42% GC content) and Escherichia coli (50% GC content) DNA at pH 8.5 exhibited an endothermic cooperative binding process at Zn(2+) concentrations of approximately 0.1 mM, indicating an entropy driven process. This binding process is consistent with a site-specific binding interaction, similar in nature to Z-DNA formation; however, the interaction occurs at much lower metal ion concentrations. The enthalpy of M-DNA formation for calf thymus DNA was determined to be 10.5+/-0.7 and 9+/-2 kJ/mbp at DNA concentrations of 100 and 50 microg ml(-1), respectively. An enthalpy of 13+/-3 kJ/mbp was obtained for M-DNA formation for 50 microg ml(-1) E. coli DNA. No evidence of M-DNA formation was observed in either DNA at pH 7.5 with Zn(2+) or at either pH 7.5 or 8.5 with Mg(2+).  相似文献   

7.
We have compared the sites of nucleotide incision on DNA damaged by oxidizing agents when cleavage is mediated by either Escherichia coli endonuclease III or an endonuclease present in bovine and human cells. E. coli endonuclease III, the bovine endonuclease isolated from calf thymus, and the human endonuclease partially purified from HeLa and CEM-C1 lymphoblastoid cells incised DNA damaged with osmium tetroxide, ionizing radiation, or high doses of UV light at sites of pyrimidines. For each damaging agent studied, regardless of whether the E. coli, bovine, or human endonuclease was used, the same sequence specificity of cleavage was observed. We detected this endonuclease activity in a variety of human fibroblasts derived from normal individuals as well as individuals with the DNA repair deficiency diseases ataxia telangiectasia and xeroderma pigmentosum. The highly conserved nature of such a DNA damage-specific endonuclease suggests that a common pathway exists in bacteria, humans, and other mammals for the reversal of certain types of oxidative DNA damage.  相似文献   

8.
Wheat seedling nuclease catalyzes the hydrolysis of intact, bihelical viral DNA or high molecular weight, native Escherichia coli DNA to produce limit polymers which are resistant to further hydrolysis by additional enzyme. These limit products are double-stranded polymers free of single strand interruptions and are terminated at their 5' ends with equal amounts of either deoxycytidylate or deoxyguanylate residues. The average size of the duplex limit products, as determined by (a) alkaline and neutral sucrose gradient sedimentation, (b) viscometric determination of molecular weight, and (c) 5'-end labeling, varies from 2 to 4 times 10-6 depending on the source of the DNA. The involvement of regions rich in adenine-thymine base pairs at the sites of cleavage of the DNA molecule is suggested by the following experimental results: (a) the copolymeric duplex, poly(dA-dt) is hydrolyzed at a rate comparable to that found for denatured calf thymus DNA, a rate which is several orders of magnitude faster than that at which native calf thymus DNA is hydrolyzed; (b) lambda DNA, which contains an adenine-thymine-rich region near its center, is rapidly cleaved to yield two fragments of similar size; (c) the rate of hydrolysis of native DNA is increased approximately 14-fold by increasing the reaction temperature from 20 degrees to 30 degrees.  相似文献   

9.
TheEscherichia coli B (Eco B) restriction endonuclease releases approximately 75 nucleotides as acid-soluble oligonucleotides for each single-strand endonucleolytic scission that it catalyzes. This reaction, like the endonucleolytic cleavage, requires ATP, Mg++, S-adenosylmethionine, and unmodified DNA containing appropriate specificity sites. Like the endonuclease reaction, the release of oligonucleotides terminates after roughly 5 minutes. The acid-soluble oligonucleotides have an average chain length of roughly 7, and an apparently random base composition.  相似文献   

10.
Spermidine-condensed calf thymus DNA structures have been studied by ion competition using a sedimentation assay and by micrococcal nuclease digestion. Competitor ions Mg2+, Ca2+ and putrescine2+ show specific ion effects; but all three appear to affect the DNA condensation-decondensation equilibrium caused by spermidine3+ in a qualitatively similar manner, suggesting the spermidine3+-DNA interaction is largely electrostatic. Our data show a hysteresis in condensation and decondensation transition directions. We interpret this in terms of a kinetic block in the condensation direction with decondensation representing the equilibrium state of the system. These results agree with results obtained from related systems using different measurement techniques. Micrococcal nuclease digestion of spermidine-condensed calf thymus DNA produces broad but discrete bands in gel electrophoresis experiments. At least two bands determined to be 760 +/- 87 bp and 1355 +/- 135 bp, possess the size ratio 1:1.8 +/- 0.4 consistent with their forming the monomer and dimer fragments of an arithmetic band series. We rationalize this result in terms of a localized micrococcal nuclease cleavage model of circumferentially-wrapped DNA toruses proposed previously by Marx, K.A. and Reynolds, T.C. (Proc. Natl. Acad. Sci. (1982) 79, 6484-6488). The arithmetic series monomer band (760 +/- 87 bp), corresponding to wrapping B DNA once circumferentially about the torus, is in agreement with the electron microscopic measurements of hydrated calf thymus DNA torus circumferences presented by Marx, K.A. and Ruben, G.C. (Nucleic Acids Res. (1983) 11, 1839-1853).  相似文献   

11.
Aluminum is a known neurotoxic agent and its neurotoxic effects may be due to its binding to DNA. However, the mechanism for the interaction of aluminum ions with DNA is not well understood. Here, we report the application of isothermal titration calorimetry (ITC), fluorescence spectroscopy, and UV spectroscopy to investigate the thermodynamics of the binding of aluminum ions to calf thymus DNA (CT DNA) under various pH and temperature conditions. The binding reaction is driven entirely by a large favorable entropy increase but with an unfavorable enthalpy increase in the pH range of 3.5-5.5 and at all temperatures examined. Aluminum ions show a strong and pH-dependent binding affinity to CT DNA, and a large positive molar heat capacity change for the binding, 1.57 kcal mol(-1) K(-1), demonstrates the burial of the polar surface of CT DNA upon groove binding. The fluorescence of ethidium bromide bound to CT DNA is quenched by aluminum ions in a dynamic way. Both Stern-Volmer quenching constant and the binding constant increase with the increase of the pH values, reaching a maximum at pH 4.5, and decline with further increasing the pH to 5.5. At pH 6.0 and 7.0, aluminum ions precipitate CT DNA completely and no binding of aluminum ions to CT DNA is observed by ITC. Combining the results from these three methods, we conclude that aluminum ions bind to CT DNA with high affinity through groove binding under aluminum toxicity pH conditions and precipitate CT DNA under physiological conditions.  相似文献   

12.
Isolation and characterization of the Escherichia coli mutH gene product   总被引:28,自引:0,他引:28  
The Escherichia coli mutH gene product has been isolated in near homogeneous form using an in vitro complementation assay for DNA mismatch correction (Lu, A.-L., Clark, S., and Modrich, P. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 4639-4643) which is dependent on mutH function. The protein has a subunit Mr of 25,000, and purified preparations contain a Mg2+-dependent endonuclease activity which cleaves 5' to the dG of d(GATC) sequences to generate 5'-phosphoryl and 3'-hydroxyl termini. Symmetrically methylated d(GATC) sites are resistant to the endonuclease, hemimethylated sequences are cleaved on the unmethylated strand, and unmethylated d(GATC) sites are usually subject to scission on only one DNA strand. Although this endonuclease activity is extremely weak (less than 1 scission/h/mutH monomer equivalent) and cleavage at a d(GATC) site does not depend on the presence of a mismatched base pair within the DNA substrate, the activity does not appear to be a contaminant of mutH preparations. d(GATC) endonuclease activity and mutH complementing activity co-purify through multiple column steps without change in relative specific activities, and both activities co-electrophorese under native conditions. These findings suggest that the mutH product functions at the strand discrimination stage of mismatch correction and that this stage of the reaction involves scission of the unmethylated DNA strand.  相似文献   

13.
Extracts of calf thymus have been fractionated to reveal a nuclease activity that specifically cleaves model Holliday junctions in vitro. The products of cleavage are unbranched linear duplex DNA molecules. Using synthetic four-way junctions, we show that the major sites of cutting are diametrically opposed, at sites one nucleotide from the base of the junction. Other types of four-way junctions, including pseudo-cruciform structures and cruciforms extruded from supercoiled plasmids, are also cleaved by the nuclease. The Mr of the partially purified activity, determined by gel filtration, is approximately 75,000. The calf thymus enzyme provides the first example of an endonuclease from a higher eukaryote that acts specifically on branch points in DNA, and indicates that junction-resolving proteins are normal constituents of somatic cells.  相似文献   

14.
An endonuclease that can act on calf thymus DNA and circular doublestranded phage PM2 DNA has been isolated from HeLa S3 cell chromatin. Approximately 200-fold purification was achieved by a sequence of subcellular fractionation, differential NaCl solubility and chromatography on CM-Sephadex, DEAE-cellulose and hydroxyapatite, and isoelectric point is pH 5.1 +/- 0.2. Divalent cations are necessary for its activity and the enzyme is heat inactivated at 60 degrees C. The enzyme activity is sensitive to caffeine and sulfhydryl reacting compounds. The molecular weight, determined by gel filtration and SDS gel electrophoresis, is approx. 22 000.  相似文献   

15.
The coordination geometry around copper(II) in [Cu(imda)(phen)(H2O)] (1) (H2imda = iminodiacetic acid, phen = 1,10-phenanthroline) is described as distorted octahedral while those in [Cu(imda)(5,6-dmp)] (2) (5,6-dmp = 5,6-dimethyl-1,10-phenanthroline) and [Cu(imda)(dpq)] (3) (dpq = dipyrido-[3,2-d:2',3'-f]-quinoxaline) as trigonal bipyramidal distorted square-based pyramidal with the imda anion facially coordinated to copper(II). Absorption spectral (Kb: 1, 0.60+/-0.04x10(3); 2, 3.9+/-0.3x10(3); 3, 1.7+/-0.5x10(4) M(-1)) and thermal denaturation studies (deltaTm: 1, 5.70+/-0.05; 2, 5.5+/-10; 3, 10.6+/-10 degrees C) and viscosity measurements indicate that 3 interacts with calf thymus DNA more strongly than 1 and 2. The relative viscosities of DNA bound to 1 and 3 increase while that of DNA bound to 2 decreases indicating formation of kinks or bends and/or conversion of B to A conformation as revealed by the decrease in intensity of the helicity band in the circular dichroism spectrum of DNA. While 1 and 3 are bound to DNA through partial intercalation, respectively, of phen ring and the extended planar ring of dpq with DNA base stack, the complex 2 is involved in groove binding. All the complexes show cleavage of pBR322 supercoiled DNA in the presence of ascorbic acid with the cleavage efficiency varying in the order 3 > 1 > 2. The highest oxidative DNA cleavage of dpq complex is ascribed to its highest Cu(II)/Cu(I) redox potential. Oxidative cleavage studies using distamycin reveal minor groove binding for the dpq complex but a major groove binding for the phen and 5,6-dmp complexes. Also, all the complexes show hydrolytic DNA cleavage activity in the absence of light or a reducing agent with cleavage efficiency varying in the order 1 > 3 > 2.  相似文献   

16.
Preferential cleavage by restriction endonuclease HinfIII   总被引:1,自引:0,他引:1  
The efficiency of endonucleolytic scission by restriction endonuclease HinfIII varies markedly for different recognition sites. The relative frequencies of cleavage at these sites have been determined on the basis of analysis of specific unit length linear molecules formed. The efficiency of restriction reaction depends also on the number of recognition sites in the DNA substrate. Cleavage by HinfIII in the absence or presence of S-adenosylmethionine is observed only when at least three recognition sites are present. HinfIII also shows preferential methylation of certain sites observable even for a substrate with one recognition site. The nucleotide sequences at sites cleaved or methylated at high frequency have been compared.  相似文献   

17.
Peroxynitrite is a strong oxidizing agent that is formed in the reaction of nitric oxide and superoxide anion. It is capable of oxidizing and nitrating a variety of biological targets including DNA, and these modifications may be responsible for a number of pathological conditions and diseases. A recent study showed that peroxynitrite reacts with 2',3',5'-tri-O-acetylguanosine to yield a novel compound, tri-O-acetyl-1-(beta-D-erythro-pentafuranosyl)-5-guanidino-4-nitroimidazole, and, unlike other peroxynitrite-mediated guanine oxidation products, it is a stable and significant component formed even at low peroxynitrite concentrations. In this work, we studied the in vitro formation of the guanine-derived product, 5-guanidino-4-nitroimidazole, in synthetic oligonucleotides and DNA treated with peroxynitrite. When calf thymus DNA or oligonucleotides were reacted with peroxynitrite at ambient temperature, the modified base 5-guanidino-4-nitroimidazole was generated along with several other products. The oligonucleotides containing the 5-guanidino-4-nitroimidazole modification were purified by reverse-phase and anion-exchange HPLC and characterized by matrix-assisted laser desorption mass spectrometry. 5-Guanidino-4-nitroimidazole formation in peroxynitrite-treated DNA was characterized after enzymatic digestion of the reacted DNA to the nucleoside level. HPLC purification and electrospray ionization mass spectrometry (with selected reaction monitoring) enabled the analysis of this modified nucleoside with high sensitivity. The yield of 5-guanidino-4-nitroimidazole formed in single-stranded DNA was approximately 10-fold higher than that found in duplex DNA. With calf thymus DNA, 5-guanidino-4-nitroimidazole was dose-dependently formed at low peroxynitrite concentrations. In stability tests, a synthetic oligonucleotide containing the 5-guanidino-4-nitroimidazole modification was only partially cleaved by hot piperidine and was a weak substrate for Fpg glycosylase repair enzyme; in addition, this site was not cleaved by endonuclease III. These results suggest that nuclear DNA containing 5-guanidino-4-nitroimidazole may not be quickly repaired by DNA repair enzyme systems. Finally, primer extension experiments revealed that this lesion is a potential DNA replication blocker when polymerization is catalyzed by polymerase alpha and polymerase I (Klenow fragment, lack of exonuclease activity) but not with human polymerase beta. Replication fidelity experiments further showed that 5-guanidino-4-nitroimidazole may cause G-->T and G-->C transversions in calf thymus polymerase alpha and E. coli polymerase I.  相似文献   

18.
In this study, we further examined the sequence selectivity of camptothecin in mammalian topoisomerase I cDNA from human and Chinese hamster. In the absence of camptothecin, almost all the bases at the 3'-terminus of cleavage sites are T for calf thymus and wheat germ topoisomerase I. In addition, wheat germ topoisomerase I exhibits preference for C (or not T) at -3 and for T at -2 position. As for camptothecin-stimulated cleavage with topoisomerase I, G (or not T) at +1 is an additional strong preference. This sequence selectivity of camptothecin is similar to that previously found in SV40 DNA, suggesting that camptothecin preferentially interacts with topoisomerase I-mediated cleavage sites where G is the base at the 5'-terminus. These results support the stacking model of camptothecin (Jaxel et al. (1991) J. Biol. Chem. 266, 20418-20423). Comparison of calf thymus and wheat germ topoisomerase I-mediated cleavage sites in the presence of camptothecin shows that many major cleavage sites are similar. However, the relative intensities are often different. One of the differences was attributable to a bias at position -3 where calf thymus topoisomerase I prefers G and wheat germ topoisomerase I prefers C. This difference may explain the unique patterns of cleavage sites induced by the two enzymes. Sequencing analysis of camptothecin-stimulated cleavage sites in the surrounding regions of point mutations in topoisomerase I cDNA, which were found in camptothecin-resistant cell lines, reveals no direct relationship between DNA cleavage sites in vitro and mutation sites.  相似文献   

19.
A comparison was made of the activity of the UV-specific endonucleases of bacteriophage T4 (T4 endonuclease V) and of Micrococcus luteus on ultravilet light-irradiated DNA substrates of defined sequence. The two enzymes cleave DNA at the site of pyrimidine dimers with the same frequency. The products of the cleavage reaction are the same, suggesting that the scission of DNA by T4 endonuclease V occurs via the combined actin of a pyrimidine dimer specific DNA glycosylase and an apyrimidinic-apurinic (AP) endonuclease as was recently shown for the M. luteus enzyme. The pyrimidine dimer DNA-glycosylase activity of both enzymes is more active on double-stranded DNA than it is on single-stranded DNA.  相似文献   

20.
5-Hydroxymethyluracil (HmUra) residues formed by the oxidation of thymine are removed from DNA through the action of a DNA glycosylase activity. This activity was purified over 1870-fold from calf thymus and found to be distinct from uracil (Ura)-DNA glycosylase. The HmUra-DNA glycosylase has a molecular weight of 38,000, a pH optimum of 6.7-6.8 and an apparent Km of 0.73 +/- 0.04 microM. These values are similar to those reported for other mammalian DNA glycosylases. The enzyme removed HmUra residues from single- and double-stranded DNA with almost equal efficiency. HmUra-DNA glycosylase activity was not product inhibited by free HmUra. The DNA glycosylase activity was inhibited by Mg2+, but the purest enzyme fractions contained a Mg2+-dependent apurinic/apyrimidinic endonuclease activity. HmUra-DNA glycosylase and the recently described 5-hydroxymethylcytosine (HmCyt)-DNA glycosylase (Cannon, S. V., Cummings, A. C., and Teebor, G. W. (1988) Biochem. Biophys. Res. Commun. 151, 1173-1179) are unique among known DNA glycosylases in being present in mammalian cells and absent from bacteria. These DNA glycosylase activities were shown here to reside on different proteins. We suggest that the major function of HmUra-DNA glycosylase, together with HmCyt-DNA glycosylase, is the maintenance of methylated cytosine residues in the DNA of higher organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号