首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The milk-fat-globule membrane (MFGM) was isolated from guinea-pig milk and the membrane-associated proteins and glycoproteins characterized by electrophoretic techniques. Major components of the membrane included PAS-I, a sialoglycoprotein of Mr greater than or equal to 200000, the redox enzyme xanthine oxidase and the glycoprotein, butyrophilin. Membrane preparations also contained two other glycoproteins, GP-80 and GP-55, of Mr 80000 and 55000, respectively. Comparison of guinea-pig xanthine oxidase and butyrophilin with proteins from bovine MFGM by peptide mapping procedures, showed that the two proteins in both species were similar, but not identical. GP-55 may also be related to glycoproteins of Mr 45000 and 48000 in the bovine membrane. The integral and peripheral components of guinea-pig MFGM were identified by treating membrane preparations with sodium carbonate solutions at high pH and by partitioning the membrane proteins in solutions of Triton X-114. By these criteria xanthine oxidase and GP-55 appeared to be peripheral components and GP-80 an integral protein of the membrane. PAS-I and butyrophilin displayed hydrophilic properties in Triton X-114 solutions, but could not be removed from membrane preparations with sodium carbonate. Possible reasons for these ambiguous data are discussed. The observed similarity between several of the proteins of guinea-pig and bovine MFGM implies that these proteins may have specific functions related to milk secretion in mammary tissue, e.g. in the budding of milk-fat globules or the exocytosis of milk protein and lactose at the apical surface.  相似文献   

2.
A large acidic glycoprotein, PAS-I, was purified from the fat-globule membrane of guinea-pig milk. Threonine and serine accounted for over 30 mol% of the amino acids, and galactose, N-acetylgalactosamine, N-acetylglucosamine, mannose and sialic acid were the principal sugars detected. On a molar basis, sialic acid accounted for over 60% of the total sugar. Removal of sialic acid by treatment with neuraminidase revealed the presence of binding sites for peanut (Arachis hypogaea) agglutinin, a lectin specific for the sugar sequence beta-D-Gal-(beta 1----3)-D-GalNac (the T antigen). The distribution of PAS-I-related epitopes, defined by five monoclonal antibodies, was determined in the mammary gland and in other guinea-pig tissues. PAS-I was maximally expressed on the apical surfaces of secretory cells in lactating mammary tissue and was either absent, or present in much lower amounts, in the glands of virgin or pregnant animals. PAS-I epitopes were not detected in liver, heart, spleen, pancreas, ovary, uterus, lung or intestine, either by immunofluorescence microscopy or by immunoblotting techniques. Several of the PAS-I-specific antibodies bound to mucins of high Mr in human fat-globule membrane, and similarities and differences between PAS-I and the human mucins are discussed. PAS-I and epitopes of this glycoprotein will be useful as indicators of differentiation in mammary cells and of markers of the apical surface of these cells during lactation.  相似文献   

3.
Milk lipid globules of various species are surrounded by a membrane structure that is separated from the triglyceride core of the globule by a densely staining fuzzy coat layer of 10- to 50-nm thickness. This internal coat structure remains attached to the membrane during isolation and extraction with low- and high-salt buffers, is insoluble in nondenaturing detergents, and is enriched in an acidic glycoprotein (butyrophilin) with an apparent Mr of 67,000. Guinea pig antibodies against this protein, which show cross-reaction with the corresponding protein in some (goat) but not other (human, rat) species, have been used for localization of butyrophilin on frozen sections of various tissues from cow by immunofluorescence and electron microscopy. Significant reaction is found only in milk-secreting epithelial cells and not in other cell types of mammary gland and various epithelial tissues. In milk-secreting cells, the staining is restricted to the apical cell surface, including budding milk lipid globules, and to the periphery of the milk lipid globules contained in the alveolar lumina. These findings indicate that butyrophilin, which is constitutively secreted by surface budding in coordination with milk lipid production, is located at the apical surface and is not detected at basolateral surfaces, in endoplasmic reticulum, and in Golgi apparatus. This protein structure represents an example of a cell type-specific cytoskeletal component in a cell apex. It is suggested that this antigen provides a specific marker for the apical surface of milk- secreting cells and that butyrophilin is involved in the vectorial discharge of milk lipid globules.  相似文献   

4.
The major glycoprotein of pancreatic zymogen granule membranes (GP-2) was detected in the medium of acinar cell suspensions from rat pancreas. Its release from the cells was studied in pulse-chase metabolic labeling experiments with radioactive methionine. GP-2 (apparent Mr = 80 000) was found to be processed to a form of slightly lower apparent Mr (75 000) after about 4 h chase. At about the same time this smaller form of GP-2 appeared in the medium. These results are in accordance with earlier findings in vivo. At different chase times acinar cells were extracted with Triton X-114 to separate water-soluble proteins from membrane-associated (hydrophobic) proteins. This experiment showed that GP-2 is slowly converted from a membrane-bound glycoprotein to a soluble glycoprotein after its reduction in apparent molecular mass, causing its detachment from the membrane. Further analysis indicated that the detachment process may occur at the zymogen granule membrane as well as the plasma membrane. Immunocytochemistry on ultrathin cryosections of pancreatic tissue showed that GP-2 is localized on zymogen granule membranes, plasma membranes and in the acinar lumen. Although in much smaller quantities, GP-2 is also present in the granule content. Thus, in summary, GP-2 is synthesized as a true membrane glycoprotein which is gradually processed to a soluble species and is found in the secretion.  相似文献   

5.
Casein micelles and fat globules are essential components of milk and are both secreted at the apical side of mammary epithelial cells during lactation. Milk fat globules are excreted by budding, being enwrapped by the apical plasma membrane, while caseins contained in transport vesicles are released by exocytosis. Nevertheless, the molecular mechanisms governing casein exocytosis are, to date, not fully deciphered. SNARE proteins are known to take part in cellular membrane trafficking and in exocytosis events in many cell types and we therefore attempted to identify those relevant to casein secretion. With this aim, we performed a detailed analysis of their expression by RT-PCR in both whole mouse mammary gland and in purified mammary acini at various physiological stages, as well as in the HC11 cell line. The expression of some regulatory proteins involved in SNARE complex formation such as Munc-13, Munc-18 and complexins was also explored. The amount of certain SNAREs appeared to be regulated depending on the physiological stage of the mammary gland. Co-immunoprecipitation experiments indicated that SNAP-23 interacted with syntaxin-6, -7 and -12, as well as with VAMP-3, -4 and -8 in mammary epithelial cells during lactation. Finally, the subcellular localisation of candidate SNAREs in these cells was determined both by indirect immunofluorescence and immunogold labelling. The present work provides important new data concerning SNARE proteins in mammary epithelial cells and points to SNAP-23 as a potential central player for the coupling of casein and milk fat globule secretion during lactation.  相似文献   

6.
The main sulphated proteins secreted by rat mammary gland tissue have Mr of approximately 32 000, 27 000 and 25 000 Da. In addition, there are high Mr components which have a diffuse electrophoretic mobility (Mr > 200 000) and most likely corresponded to proteoglycans. The sulphate groups in the proteins with discrete Mr are most likely all linked to carbohydrates. These sulphated molecules were partially purified and identified to isoforms of rat alpha-lactalbumin for the 25-27 kDa bands and to kappa-casein for the 32 kDa band. This pattern of protein sulphation is, as far as we know, quite specific to rat mammary epithelial cells.  相似文献   

7.
Mammary gland and epithelial cells are unique to mammals and are under the control of lactogenic hormones such as prolactin. Recent findings indicated that major components of milk fat globule membrane (MFGM) are under the control of lactogenic hormones, and that the major components butyrophilin and xanthine oxidoreductase are indispensable for milk fat secretion. Further, prolactin signaling is negatively controlled by two highly related protein tyrosine phosphatases, PTP1B and TC-PTP. Milk fat globule EGF factor 8 (MFG-E8) is one of the major components of MFGM and is upregulated during lactation. MFG-E8 is further upregulated in the involuting mammary gland. MFG-E8 on exosome-like membrane vesicles in the milk recovered from post-weaning but not lactating mammary glands exhibits higher binding activity to phosphatidylserine and apoptotic mammary epithelial cells, and serves as a link between apoptotic mammary epithelial cells and phagocytes. Recent reports using MFG-E8 deficient mice support the view that MFG-E8 is indispensable for eliminating apoptotic mammary epithelial cells during involution.  相似文献   

8.
The development of the mouse mammary gland was studied immunohistochemically using monoclonal antibodies against cell surface and basement membrane proteins and a polyclonal antibody against keratin. We have identified three basic cell types: basal, myoepithelial, and epithelial cells. The epithelial cells can be subdivided into three immunologically related cell types: luminal type I, luminal type II, and alveolar cells. These five cell types appear at different stages of mammary gland development and have either acquired or lost one of the antibody-defined antigens. The cytoplasmic distribution of several of these antigens varied according to the location of the cells within the mammary gland. Epithelial cells which did not line the lumen expressed antigens throughout the cytoplasm. These antigens were demonstrated on the apical site in situations where the cells lined the lumen. One antigen became increasingly basolateral as the cells became attached to the basement membrane. The basal cells synthesize laminin and deposit it at the cell base. They are present in endbuds and ducts and are probably the stem cells of the mammary gland. Transitional forms have been demonstrated which developmentally link these cells with both myoepithelial and (luminal) epithelial cells.  相似文献   

9.
Primary cell cultures of African Green monkey kidney (AGMK) contain polarized epithelial cells in which influenza virus matures predominantly at the apical surfaces above tight junctions. Influenza virus glycoproteins were found to be localized at the same membrane domain from which the virus budded. When polarized primary AGMK cells were infected with recombinant SV40 viruses containing DNA coding for either an influenza virus H1 or H2 subtype hemagglutinin (HA), the HA proteins were preferentially expressed at the apical surface in a manner identical to that observed in influenza virus-infected cells. Thus, cellular mechanisms for sorting membrane glycoproteins recognize some structural feature of the HA glycoprotein itself, and other viral proteins are not necessary for this process.  相似文献   

10.
Two glycoproteins, GP-1 and GP-2, have been isolated from an extracellular membrane synthesized in cell culture by an embryonal carcinoma-derived cell line. The amino acid and carbohydrate compositions have been determined. Both proteins are rich in half-cystine residues and contain approximately 12-15% carbohydrate. Antibodies have been obtained against one of the glycoproteins, GP-2, in rabbits. The antibody reacts with basement membranes from adult mouse and human kidney glomeruli and tubules, and all basement membranes tested from mouse embryonic tissues. The molecular properties of GP-2 are superficially similar to LETS protein; however, immunological and other criteria show that they are distinct proteins. The presence of LETS protein and GP-2 in basement membranes suggests that there are subtle interactions which are important in adhesion of epithelial cells to basement membranes.  相似文献   

11.
Glucose plays a major role in mammary gland function during lactation as it is used both as a fuel and as a precursor of milk components. In rats, previous studies have shown that the facilitative glucose transporter GLUT1 is expressed in mammary epithelial cells. We have used confocal immunofluorescence to localise GLUT1 and GLUT12, a recently identified member of the sugar transporter family, in pregnant and lactating rat mammary gland. GLUT12 staining was observed in the cytoplasm of mammary epithelial cells at day 20 of pregnancy, and at 1 and 6 days postpartum. Furthermore, GLUT12 staining was present at the apical plasma membrane of epithelial cells during lactation. In contrast, GLUT1 protein localised to the cytoplasm and basolateral surface of mammary epithelial cells. Forced weaning resulted in decreased cytoplasmic GLUT1 staining intensity, but no change in GLUT12 staining. The results suggest a possible role for GLUT12 in the metabolism of mammary epithelial cells during pregnancy and lactation.  相似文献   

12.
The extracellular matrix (ECM) is an important regulator of mammary epithelial cell function both in vivo and in culture. Substantial remodeling of ECM accompanies the structural changes in the mammary gland during gestation, lactation and involution. However, little is known about the nature of the enzymes and the processes involved. We have characterized and studied the regulation of cell-associated and secreted mammary gland proteinases active at neutral pH that may be involved in degradation of the ECM during the different stages of mammary development. Mammary tissue extracts from virgin and pregnant CD-1 mice resolved by zymography contained three major proteinases of 60K (K = 10(3) Mr), 68K and 70K that degraded denatured collagen. These three gelatinases were completely inhibited by the tissue inhibitor of metalloproteinases. Proteolytic activity was lowest during lactation especially for the 60K gelatinase which was shown to be the activated form of the 68K gelatinase. The activated 60K form decreased prior to parturition but increased markedly after the first two days of involution. An additional gelatin-degrading proteinase of 130K was expressed during the first three days of involution and differed from the other gelatinases by its lack of inhibition by the tissue inhibitor of metalloproteinases. The activity of the casein-degrading proteinases was lowest during lactation. Three caseinolytic activities were detected in mammary tissue extracts. A novel 26K cell-associated caseinase--a serine arginine-esterase--was modulated at different stages of mammary development. The other caseinases, at 92K and a larger than 100K, were not developmentally regulated. To find out which cell type produced the proteinases in the mammary gland, we isolated and cultured mouse mammary epithelial cells. Cells cultured on different substrata produced the full spectrum of gelatinases and caseinases seen in the whole gland thus implicating the epithelial cells as a major source of these enzymes. Analysis of proteinases secreted by cells grown on a reconstituted basement membrane showed that gelatinases were secreted preferentially in the direction of the basement membrane. The temporal pattern of expression of these proteinases and the basal secretion of gelatinases by epithelial cells suggest their involvement in the remodelling of the extracellular matrix during the different stages of mammary development and thus modulation of mammary cell function.  相似文献   

13.
D E Greenwalt  K W Watt  O Y So  N Jiwani 《Biochemistry》1990,29(30):7054-7059
PAS IV is a 78-kDa (bovine) to 80-kDa (human) integral membrane glycoprotein of unknown function which is found in mammary epithelial cells. We now report the purification of human PAS IV and native bovine PAS IV from the milk fat globule membrane (MFGM), a preparation of apical plasmalemma from epithelial cells of lactating mammary tissue. N-Terminal sequence analyses of human and bovine PAS IV revealed homology to the N-terminal sequence of the 88-kDa human endothelial and platelet glycoprotein CD36. The similarity of MFGM PAS IV to platelet CD36 was further established by immunoblots of purified platelet CD36 and MFGM PAS IV with MFGM PAS IV specific antiserum. The removal of N-linked oligosaccharides from PAS IV and CD36 by treatment with endoglycosidase F reduced the apparent Mr of both proteins to approximately 57,000. These data suggest that PAS IV and CD36 are similar if not identical polypeptides that undergo cell type specific glycosylation.  相似文献   

14.
Human umbilical vein endothelial (HUVE) and bovine aortic endothelial (BAE) cells in culture were examined to determine whether membrane proteins similar to human platelet glycoproteins (GP) IIb and IIIa were present. The HUVE and BAE cells were either 125I-surface labeled or metabolically labeled. Triton X-100 lysates of labeled cells were immunoprecipitated with polyclonal antibodies prepared against purified human platelet GP IIb-IIIa complex. Two membrane proteins were detected on both HUVE (Mr = 130,000 and 110,000) and BAE (Mr = 135,000 and 105,000) cells, which were similar to human platelet GP IIb (Mr = 125,000) and GP IIIa (Mr = 108,000). The two membrane proteins from HUVE cells and the two from BAE cells cosedimented in sucrose gradients, indicating that they exist as a complex. Unlike the human platelet GP IIb-IIIa complex, the HUVE and BAE membrane protein complexes were not dissociated by chelation of Ca2+. Platelet GP IIb and GP IIIa and the related membrane proteins on both HUVE and BAE cells showed similar changes in electrophoretic mobility upon disulfide reduction. These data demonstrate that human and bovine endothelial cells synthesize membrane proteins that have properties similar to the platelet membrane GP IIb-IIIa complex.  相似文献   

15.
The distribution along the polypeptide of the carbohydrate units of two major calf thyroid cell surface glycoproteins, GP-1 and GP-3, was obtained from a study of their glycopeptides obtained after Pronase digestion. The GP-3 molecule (Mr = 20,000) yielded two large glycopeptides (Mr = 9,500 and 7,000) in equimolar amounts which each consisted of one N-linked (Mr = 5,400) and several small O-linked oligosaccharides accounting for a total of nine carbohydrate attachment sites in a 27-amino acid residue segment of the peptide chain. The Pronase treatment of GP-1 (Mr = 100,000) revealed the presence of a large protease-resistant fragment (Mr = 50,000) which contained 34 carbohydrate units (eight N-linked and 26 O-linked) in a segment of 105 amino acids. In addition to these densely glycosylated peptides (one glycosylation site/3 amino acid residues), small glycopeptides with polymannose saccharide units were found in the digests of both proteins. The occurrence of repeating N-acetyllactosamine sequences in the N-linked carbohydrate units of GP-1 and GP-3 was suggested by the composition and size of the oligosaccharides released by hydrazinolysis and was demonstrated by endo-beta-galactosidase treatment. The cleavage products from digestion with this enzyme were identified as NeuAc alpha 2----6Gal beta 1----4GlcNAc beta 1----3Gal, Gal alpha 1----3Gal beta 1----4GlcNAc beta 1----3Gal, Gal beta 1----4GlcNAc beta 1----3Gal, and GlcNAc beta 1----3Gal with the tetrasaccharides constituting the predominant species. The terminal alpha-D-Gal residues accounted for the binding of GP-1 and GP-3 glycopeptides to Bandeiraea simplicifolia I-agarose; concanavalin A-Sepharose affinity chromatography indicated that most of the N-linked carbohydrate units of both glycoproteins contained more than two branches. Difference in the branching on the poly-N-acetyllactosamine sequences of GP-1 and GP-3 was suggested by the finding that only the latter glycoprotein, as well as its glycopeptides, reacted with anti-blood group I antibodies; neither glycoprotein demonstrated blood group i antigenicity. Examination of cultured thyroid follicular cells revealed that both I and i determinants were present at the cell surface.  相似文献   

16.
An essential feature of mammary gland differentiation during pregnancy is the formation of alveoli composed of polarized epithelial cells, which, under the influence of lactogenic hormones, secrete vectorially and sequester milk proteins. Previous culture studies have described either organization of cells polarized towards lumina containing little or no demonstrable tissue-specific protein, or establishment of functional secretory cells exhibiting little or no glandular architecture. In this paper, we report that tissue-specific vectorial secretion coincides with the formation of functional alveoli-like structures by primary mammary epithelial cells cultured on a reconstituted basement membrane matrix (derived from Engelbreth-Holm-Swarm murine tumour). Morphogenesis of these unique three-dimensional structures was initiated by cell-directed remodelling of the exogenous matrix leading to reorganization of cells into matrix-ensheathed aggregates by 24 h after plating. The aggregates subsequently cavitated, so that by day 6 the cells were organized into hollow spheres in which apical cell surfaces faced lumina sealed by tight junctions and basal surfaces were surrounded by a distinct basal lamina. The profiles of proteins secreted into the apical (luminal) and basal (medium) compartments indicated that these alveoli-like structures were capable of an appreciable amount of vectorial secretion. Immunoprecipitation with a broad spectrum milk antiserum showed that more than 80% of caseins were secreted into the lumina, whereas iron-binding proteins (both lactoferrin and transferrin) were present in comparable amounts in each compartment. Thus, these mammary cells established protein targeting pathways directing milk-specific proteins to the luminal compartment. A time course monitoring secretory activity demonstrated that establishment of tissue-specific vectorial secretion and increased total and milk protein secretion coincided with functional alveolar-like multicellular architecture. This culture system is unique among models of epithelial cell polarity in that it demonstrates several aspects of epithelial cell polarization: vectorial secretion, apical junctions, a sequestered compartment and formation of a basal lamina. These lumina-containing structures therefore reproduce the dual role of mammary epithelia to secrete vectorially and to sequester milk proteins. Thus, in addition to maintaining tissue-specific cytodifferentiation and function, a basement membrane promotes the expression of tissue-like morphogenesis.  相似文献   

17.
A Gut  F Kappeler  N Hyka  M S Balda  H P Hauri    K Matter 《The EMBO journal》1998,17(7):1919-1929
Polarized expression of most epithelial plasma membrane proteins is achieved by selective transport from the Golgi apparatus or from endosomes to a specific cell surface domain. In Madin-Darby canine kidney (MDCK) cells, basolateral sorting generally depends on distinct cytoplasmic targeting determinants. Inactivation of these signals often resulted in apical expression, suggesting that apical transport of transmembrane proteins occurs either by default or is mediated by widely distributed characteristics of membrane glycoproteins. We tested the hypothesis of N-linked carbohydrates acting as apical targeting signals using three different membrane proteins. The first two are normally not glycosylated and the third one is a glycoprotein. In all three cases, N-linked carbohydrates were clearly able to mediate apical targeting and transport. Cell surface transport of proteins containing cytoplasmic basolateral targeting determinants was not significantly affected by N-linked sugars. In the absence of glycosylation and a basolateral sorting signal, the reporter proteins accumulated in the Golgi complex of MDCK as well as CHO cells, indicating that efficient transport from the Golgi apparatus to the cell surface is signal-mediated in polarized and non-polarized cells.  相似文献   

18.
A Mr 95,000 matrix metalloproteinase (MMP) produced by rat mammary carcinoma cells has been isolated and characterized. The MMP was secreted in a proteolytically inactive form that was free from bound tissue inhibitor of metalloproteinases. The enzyme was highly glycosylated as evident from an apparent drop of Mr from 95,000 to 83,000 after treatment with N-glycanase. Rotary shadowing electron micrographs of purified proenzyme preparations revealed a uniform set of ellipsoidal molecules. Treatment of the proenzyme with 1% SDS resulted in generation of catalytic activity and exposed a cryptic unpaired Cys residue. The latent proenzyme may be activated in at least three additional ways: either spontaneously upon storage, by treatment with organomercurials, or by limited proteolysis by trypsin. Each mode of activation yielded a distinct pattern of cleavage of the enzyme. The activated enzyme cleaved gelatin (denatured type I collagen) and native type IV and V collagen at 30-37 degrees C. Noncollagenous proteins including alpha 1-proteinase inhibitor, casein, and fibrinogen also were cleaved. The rat mammary carcinoma cell line that produces the Mr 95,000 MMP is composed of two distinct (epithelial- and myoepithelial-like) cell types. The enzyme is expressed constitutively by the epithelial cells. This suggests that expression of the Mr 95,000 MMP is regulated differently from that of interstitial collagenase, which is produced by the epithelial cells only in response to specific inductive factor(s) from the myoepithelial-like cells. Monoclonal antibodies raised against the purified latent Mr 95,000 form of the enzyme bind specifically to the Mr 95,000 MMP and have been used to localize the enzyme to the Golgi region and cytoplasmic granules of the epithelial cells.  相似文献   

19.
Mucins: structure, function, and associations with malignancy.   总被引:15,自引:0,他引:15  
Mucins are a family of high molecular weight, highly glycosylated glycoproteins found in the apical cell membrane of human epithelial cells from the mammary gland, salivary gland, digestive tract, respiratory tract, kidney, bladder, prostate, uterus and rete testis. Increased synthesis of the core protein and alterations in the carbohydrates attached to these glycoproteins are believed to play important roles in the function and proliferation of tumour cells. Aberrant glycosylation leads not only to the production of novel carbohydrate structures, but also to the exposure of the core peptide. These novel epitopes may be candidates for diagnosis or therapy, by using either synthetic mucin fragments as vaccines, or monoclonal antibody-based reagents which detect these structures.  相似文献   

20.
The goat was chosen as the model system for investigating mammary gland development in the ruminant. Histological and immunocytochemical staining of goat mammary tissue at key stages of development was performed to characterize the histogenesis of the ruminant mammary gland. The mammary gland of the virgin adult goat consisted of a ductal system terminating in lobules of ductules. Lobuloalveolar development of ductules occurred during pregnancy and lactation which was followed by the regression of secretory alveoli at involution. The ductal system was separated from the surrounding stroma by a basement membrane which was defined by antisera raised against laminin and Type IV collagen. Vimentin, smooth-muscle actin and myosin monoclonal antisera as well as antisera to cytokeratin 18 and multiple cytokeratins stained a layer of myoepithelial cells which surround the ductal epithelium. Staining of luminal epithelial cells by monoclonal antibodies to cytokeratins was dependent on their location along the ductal system, from intense staining in ducts to variable staining in ductules. The staining of epithelial cells by monoclonals to cytokeratins also varied according to the developmental status of the goat, being maximal in virgin and involuting glands, lowest at lactation and intermediate during gestation. In addition, cuboidal cells, situated perpendicular to myoepithelial cells and adjacent to alveolar cells in secretory alveoli, were also stained by cytokeratin monoclonal antibodies and antisera to the receptor protein, erbB-2, in similar fashion to luminal epithelial cells. These results demonstrate that caprine mammary epithelial cell differentiation along the alveolar pathway is associated with the loss of certain types of cytokeratins and that undifferentiated and secretory alveolar epithelial cells are present within lactating goat mammary alveoli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号