首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lin ES  Chen YH 《Bioresource technology》2007,98(13):2511-2517
Submerged cultures were used to identify growth-limiting nutrients by Antrodia cinnamomea strains. The mycelial biomass and EPS production by A. cinnamomea BCRC 35396 were markedly higher than other A. cinnamomea strains. A relatively high C/N ratio was favorable for both the mycelial growth (5.41 g/l) and EPS production (0.55 g/l); the optimum ratio was 40. The glucose was available utilized preferentially for mycelial growth, rather than for EPS production. Flushing the culture medium with nitrogen had a stimulating effect on both mycelial growth and EPS production. In addition, peptone, yeast extract and malt extract appeared to be important and significant component for EPS production. Phosphate ion, magnesium ion and thiamine were probably not essential for mycelial growth. By optimizing the effects of additional nutrition, the results showed that 5% (w/v) glucose, 0.8% (w/v) peptone, 0.8% (w/v) yeast extract, 0.8% (w/v) malt extract, 0.03% (w/v) KH2PO4, 0.1% (w/v) MgSO4 .7H2O and 0.1% (w/v) thiamine could lead to the maximum production of EPS (1.36 g/l).  相似文献   

2.
Summary Investigations have been carried out on lactic acid production by Lactobacillus helveticus CNRZ 303 in whey ultrafiltrate. Addition of beet molasses was investigated with good results, although yeast extract proved to be more effective. The size of inoculum and the preculture medium also played a significant role in determining the amount of lactic acid produced during the fermentation process. High lactose consumption (94.09%), together with good lactic acid production (26.09 g/l) and yield (0.90%), were obtained in whey ultrafiltrate supplemented with 1% (w/v) beet molasses (WUM), with a 10% (w/v) inoculum and peptonized milk as preculture medium. Although these results were similar to those obtained when yeast extract was used as supplement, the maximum volumetric productivities proved to be quite different, and were definitely higher with yeast extract. Offprint requests to: L. Chiarini  相似文献   

3.
The enantioselectivity of the enzymes responsible for reduction of prochiral compound 3-phenylthiopropan-2-one was dependent on the concentration of yeast extract and glucose in the growth medium. Low concentrations of yeast extract (0.1-0.9% w/v) favored the formation of S-enantiomer (62% ee at 0.1% w/v yeast extract) of 3-phenylthiopropan-2-ol. However, R-enantiomer of the reduced product was formed when MSM was supplemented with yeast extract at a concentration of 1% (w/v) or more with a maximum ee of 85% at 2.0% (w/v) yeast extract supplement in the growth medium.  相似文献   

4.
Summary Ethanol concentration and fermentation productivity using Saccharomyces cerevisiae were substantially increased in shake flask cultures with a normal inoculum by combining 3 methods: (a) by making nutrient additions to the standard medium for ethanol production, (b) by immobilizing the cells in alginate beads and (c) by using a glucose step-feeding batch process. Ethanol concentration by free yeast was improved from 5.9% (w/w) to 9.6% (w/w) when a further 0.8% yeast extract and 1% animal peptone were added to the standard 30% (w/v) glucose nutrient medium. This was further increased to 12.8% (w/w) by using alginate immobilized yeast. The ethanol concentration was increased again, to 15.0% (w/w) by using the glucose step-feeding batch process.  相似文献   

5.
The bioleaching rate of pyrite (FeS2) by the acidophilic thermophile Acidianus brierleyi was studied at 65 degrees C and pH 1.5 with leach solutions supplemented with yeast extract. In the absence of yeast extract supplementation, A. brierleyi could grow autotrophically on pyrite, and the leaching percentage of pyrite particles (25-44 μm) reached 25% for 7 d. The bacterial growth and consequent pyrite oxidation were enhanced by the addition of yeast extract between 0.005 and 0.25% w/v: the pyrite particles were completely solubilized within 6 d. The bioleaching rate was enhanced by a factor of 1.5 when the yeast extract concentration was changed from 0.005 to 0.05% w/v. However, there was only a slight effect on the leaching rate at the yeast extract concentrations of 0.05 to 0. 25% w/v, suggesting that the organic supplement level was in large excess in the pyrite bioleaching. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

6.
Concentrations of Mg2+, glycine, yeast extract, biotin, acetaldehyde and peptone were optimized by a uniform design process for ethanol production by Saccharomyces cerevisiae. Using non-linear step-wise regression analysis, a predictive mathematical model was established. Concentrations of Mg2+ and peptone were identified as the critical factors: 50 mM Mg2+ and 1.5% (w/v) peptone in the medium increased the final ethanol titre from 14.2% (v/v) to 17% (v/v) in 48 h.  相似文献   

7.
Salicylate monooxygenase (EC: 1.14.13.1) has been produced and purified from Pseudomonas cepacia ATCC 29351 which has the ability to utilise salicylate as a sole carbon source. The bacterium was grown on a defined medium containing 2% (w/v) casamino acids and 0.15% (w/v) yeast extract at 25 degrees C; salicylate monooxygenase production was induced by the presence of up to 0.7% (w/v) sodium salicylate, to a level of approximately 2% of the soluble cell protein. The enzyme was purified over 50-fold, with a recovery of about 40%, by a combination of ion exchange and hydrophobic interaction chromatography. The purified enzyme had a specific activity of 14-15 U mg-1 protein and was essentially homogeneous.  相似文献   

8.
The cell-free supernatant containing bacteriocin ST13BR, produced by Lactobacillus plantarum ST13BR, inhibits the growth of L. casei, Pseudomonas aeruginosa, Enterococcus faecalis, Klebsiella pneumoniae and Escherichia coli. Based on tricine-SDS-PAGE, bacteriocin ST13BR is 10 kDa in size. Complete inactivation or significant reduction in bacteriocin activity was observed after treatment with Proteinase K, trypsin and pronase, but not with catalase or alpha-amylase. Low bacteriocin activity (200 AU/ml) was recorded in BHI medium, M17 broth, 10% (w/v) soy milk, and 2% and 10% (w/v) molasses, despite good growth. Maximal bacteriocin activity (6,400 AU/ml) was recorded after 23 h in MRS broth, but only at 30 degrees C. Tween 80 in MRS broth increased bacteriocin production by more than 50%. Meat extract or yeast extract as sole nitrogen source, or a combination of the two (1 : 1) in MRS broth, stimulated bacteriocin production (6,400 AU/ml). Only 50% activity (3,200 AU/ml) was recorded with tryptone as sole nitrogen source, whereas a combination of tryptone, meat extract and yeast extract yielded 6,400 AU/ml. Bacteriocin production was not stimulated by the addition of glucose at 2.0% w/v (3,200 AU/ml), nor 2% (w/v) fructose, sucrose, lactose or mannose, respectively (800 AU/ml). Activity levels less than 200 AU/ml were recorded in the presence of 0.05% to 0.5% (w/v) maltose. Maximal bacteriocin production (6,400 AU/ml) was recorded in the presence of 2% (w/v) maltose. Maltose at 4.0% (w/v) led to a 50% reduction of bacteriocin activity. The presence of 1.0% (w/v) and higher KH(2)PO(4), or glycerol at 0.2% (w/v) suppressed bacteriocin production.  相似文献   

9.
Lactobacillus pentosus ST151BR, isolated from home-brewed beer, produces a 3.0 kDa antibacterial peptide (bacteriocin ST151BR) active against Lactobacillus casei, Lactobacillus sakei, Pseudomonas aeruginosa, Enterococcus faecalis and Escherichia coli. Treatment with Proteinase K or Pronase resulted in loss of activity. Bacteriocin levels of 6400 AU/ml were recorded in MRSbb (De Man-Rogosa-Sharpe broth without Tween 80) at pH 5.5, 6.0 and 6.5. The same growth conditions at pH 4.5 yielded only 1600 AU/ml bacteriocin. Inclusion of Tween 80 in the growth medium reduced bacteriocin production by more than 50%. Growth in the presence of tryptone or tryptone plus meat extract stimulated bacteriocin production, whereas much lower activity was recorded when the bacteria were grown in the presence of meat extract, yeast extract, tryptone plus yeast extract, meat extract plus yeast extract, or a combination of tryptone, meat extract and yeast extract. MRSbb supplemented with maltose, lactose or mannose (2.0%, w/v) yielded bacteriocin levels of 6400 AU/ml. Sucrose or fructose at these concentrations reduced the activity by 50 and 75%, respectively. Growth in the presence of 4.0%(w/v) glucose resulted in 50% activity loss. Glycerol levels as low as 0.1%(w/v) repressed bacteriocin production. Addition of cyanocobalamin, ascorbic acid, thiamine and thioctic acid (1.0 mg/l) to the growth medium did not lead to an increase in bacteriocin production. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Summary Final biomass yields of Chlorella vulgaris cultured heterotrophically in bristol medium amended with 0.1% (w/v) yeast extract (Difco) or 0.5% glucose (w/v) were 26 and 58 times higher, respectively, than yields obtained for autotrophically grown cells in the light. Similarly, final biomass increases were 35 and 138 fold for these organic substrates in the dark. The mixture of 0.1% yeast extract and 0.5% glucose was optimal and produced increases in final biomass of 70 and 140 times in the light and dark, respectively.  相似文献   

11.
Marine yeast strain 1, isolated from the surface of a marine alga, was found to secrete a large amount of inulinase into the medium. This marine yeast was identified as a strain of Pichia guilliermondii according to the results of routine yeast identification and molecular methods. The crude inulinase produced by this marine yeast worked optimally at pH 6.0 and 60°C. The optimal medium for inulinase production was seawater containing 4.0% (w/v) inulin and 0.5% (w/v) yeast extract, while the optimal cultivation conditions for inulinase production were pH 8.0, 28°C and 170 rpm. Under the optimal conditions, over 60 U ml−1 of inulinase activity was produced within 48 h of fermentation in shake flasks. A large amount of monosaccharides and a trace amount of oligosaccharides were detected after the hydrolysis, indicating that the crude inulinase had a high exoinulinase activity.  相似文献   

12.
The suitability of using a simple brewer's yeast extract (BYE), prepared by autolysis of complete beer slurry, for growth and sporulation of Bacillus thuringiensis kurstaki was studied in baffled shake flasks. In a standard buffered medium with 2.5% (w/v) glucose and 1% (w/v) brewer's yeast extract, growth of B. t. kurstaki resulted in a low biomass production with considerable byproduct formation, including organic acids and a concomitant low medium pH, incomplete glucose utilization and marginal sporulation, whereas growth in the same medium with a commercial laboratory-grade yeast extract (Difco) resulted in a high biomass concentration, complete glucose utilization, relatively low levels of byproducts and complete sporulation (2.6 × 109 spores/ml). When glucose was left out of the medium, however, growth parameters and sporulation were comparable for BYE and commercial yeast extract, but absolute biomass levels and spore counts were low. Iron was subsequently identified as a limiting factor in BYE. After addition of 3 mg iron sulphate/l, biomass formation in BYE-medium more than doubled, low byproduct formation was observed, and complete sporulation occurred (2.8 × 109spores/ml). These data were slightly lower than those obtained in media with commercial yeast extract (3.6 × 109spores/ml), which also benefited, but to a smaller extent, from addition of iron.  相似文献   

13.
Bi D  Chu D  Zhu P  Lu C  Fan C  Zhang J  Bao J 《Biotechnology letters》2011,33(2):273-276
Dry distiller’s grain and solubles (DDGS) is a major by-product of corn-based ethanol production and is usually used as animal feed. Here, it was added to the simultaneous saccharification and ethanol fermentation (SSF) carried out at high solids loading of steam explosion pretreated corn stover using a mutant strain Saccharomyces cerevisiae DQ1. The performance of SSF process with DDGS was comparable to those using the expensive yeast extract supplementation. With 30% (w/w) solids plus the addition of cellulase and 1 g DDGS l−1, the final ethanol reached 55 g l−1 (7% v/v). The results indicated that the expensive supplement of yeast extract could be replaced by DDGS.  相似文献   

14.
Studies of mutacins have always been hampered by the difficulties in obtaining active liquid preparations of these substances. In order to be commercially produced, good mutacin yields have to be obtained, preferably in inexpensive media. The results presented here indicate that mutacins can be produced in supplemented cheese whey permeate. The influence of carbon and nitrogen supplements on mutacin production varied according to the producer strain. The use of CaCO3 as a buffer in batch cultures resulted in improved yields of mutacin in the supernatants. Antimicrobial activity assays were improve by acidification of the diluent (pH 2) and were less variable in peptone water (0.5%). The culture medium consisting of cheese whey permeate (6% w/v), yeast extract (2% w/v) and CaCO3 (1% w/v) was found to be an inexpensive medium for the efficient production of mutacins.  相似文献   

15.
The production of penicillic acid by Aspergillus sclerotiorum CGF for the biocontrol of Phytophthora disease was investigated in submerged fermentation using media composed of different nutrients. Soluble starch was found to be the most effective substrate among the carbon sources used, and produced the highest penicillic acid concentration of 2.98 mg ml(-1). When organic nitrogen sources were used, pharmamedia, yeast extract, and polypeptone-S were found to be suitable organic nitrogen sources (2.46-2.71 mg ml(-1)). The production of penicillic acid was not detected in when inorganic nitrogen sources were used. Only Na2HPO4, among the metal ions and phosphate salts tested, increased the production of penicillic acid (approximately 20%). When A. sclerotiorum CGF was cultured in optimal medium [8.0% (w/v) soluble starch, 0.6% (w/v) yeast extract, and 0.3% (w/v) Na2HPO4], maximum penicillic acid concentration (approximately 9.40 mg ml(-1)) and cell mass (approximately 17.4 g l(-1)) were obtained after 12 days.  相似文献   

16.
Conidia of Helminthosporium teres had negligible difference in germination and germ tube length between the decolorized and non-decolorized host leaves. Appressoria, penetration and colonization were less on decolorized host leaves, but addition of exogenous nutrients stimulated these stages. Leached conidia had reduced germination on decolorized host leaves, while appressoria formation, penetration and colonization were negligible. The addition of nutrients in the external environment, however, enabled some of the leached conidia to penetrate and colonize. Stimulation by the exogenous nutrients in decreasing order were: sucrose > glucose > yeast extract > leaf leachates. Optimum levels for various nutrients tested were 2% (w/v) each of sucrose and glucose, and 0.1% (w/v) yeast extract. Higher concentrations inhibited these stages of infection. Leached conidia and decolorized leaves had smaller amounts of carbohydrates than non-leached conidia and non-decolorized leaves, respectively. Depletion of host carbohydrates reduced appressoria formation, penetration and colonization and loss of carbohydrates from spores reduced germination.  相似文献   

17.
All 20 yeast strains of 17 species tested survived 75 days (the length of the experimental period) in liquid nitrogen at-196 C. The components of the more protective of the two freezing media used were (w/v) malt extract 2.5 %, yeast extract 0.25 %, peptone 0.5 %, calf serum 15 % (v/v) and dimethyl sulfoxide 10 % (v/v). Viability of the cells in this medium after rapid uncontrolled freezing and thawing in sealed plastic ampoules ranged from 2 % to 98 % (average 67 %) compared with the viability of the cultures before freezing. In only 4 strains was survival lower than 50 %. (90 references).  相似文献   

18.
In this work, fermentation and formulation aspects of the nematophagous fungus Hirsutella rhossiliensis BBA were investigated. When incubated in 2% (w/w) glucose and 0.5% (w/w) yeast extract medium in a 1-L Erlenmeyer flask without baffles, heavy pellet formation was observed. Only 40% of the mycelium had a size less than 500 μm. When a flask with three baffles was used, the portion of mycelium <500 μm rose to 95%. In the next step, the influence of aeration rate and stirrer speed on production of finely dispersed mycelium in a stirred tank reactor was investigated. The best fermentation results were obtained at 0.4 vvm and 400 rpm stirrer speed with 90% mycelium <500 μm and 5 g/L biomass. Then, mycelium was microencapsulated in hollow beads based on sulfoethylcellulose (SEC). Experiments on the capsule nutrient reservoir showed that 15% (w/w) corn gluten and 0.5% (w/w) yeast extract could be replaced with 3% (w/w) autoclaved baker's yeast which was never used as capsule additive before. Radial growth of mycelium out of dried hollow beads containing 1% (w/w) biomass and 3% (w/w) baker's yeast was faster than for alginate beads containing equivalent amounts of biomass and yeast indicating a higher bio-control potential.  相似文献   

19.
Summary Living Lactobacillus delbrueckii cells were entrapped in calcium alginate gel beads and employed both in recycle batch and continuous column reactors to produce l-lactic acid from glucose. The substrate contained l% (w/v) yeast extract as nutrient and 4.8% (w/v) solid calcium carbonate as buffer. The maxiumum lactic acid yield obtained was 97%, of which more than 90% was l-lactic acid. The biocatalyst activity half-life in continuous operation was about 100 d, and only about 10% of the activity was lost during intermittent storage of the bioreactor at +7°C for about 5 months.  相似文献   

20.
Bifidobacterium pseudocatenulatum G4, a wild strain isolated from infant stools that has previously exhibited probiotic characteristics, was used in this study. The aim of this research was to improve the growth potential of this strain in milk-based medium. An initial screening study using a 23 full factorial design was carried out to identify the impact on biomass production of the various components of the medium which were skim milk, yeast extract, and glucose. Statistical analysis suggested that yeast extract had a significant positive effect on viable cell count whereas glucose had a negative effect. Response surface methodology (RSM) was then applied to optimize the use of skim milk and yeast extract. A quadratic model was derived using a 32 face-centered central composite design to represent cell mass as a function of the two variables. The optimized medium composition was found to be 2.8% skim milk and 2.2% yeast extract, w/v. The optimized medium allowed a maximum biomass of 9.129 log10 cfu/mL, 3.329 log units higher than that achieved with 10% skim milk, which is the amount commonly used. The application of RSM resulted in an improvement in the biomass production of this strain in a more cost-effective milk medium, in which skim milk use was reduced by 71.8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号