首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Anopheles gambiae genome sequence has been analyzed to find ATP-binding cassette protein genes based on deduced protein similarity to known family members. A nonredundant collection of 44 putative genes was identified including five genes not detected by the original Anopheles genome project machine annotation. These genes encode at least one member of all the human and Drosophila melanogaster ATP-binding protein subgroups. Like D. melanogaster, A. gambiae has subgroup ABCH genes encoding proteins different from the ABC proteins found in other complex organisms. The largest Anopheles subgroup is the ABCC genes which includes one member that can potentially encode ten different isoforms of the protein by differential splicing. As with Drosophila, the second largest Anopheles group is the ABCG subgroup with 12 genes compared to 15 genes in D. melanogaster, but only 5 genes in the human genome. In contrast, fewer ABCA and ABCB genes were identified in the mosquito genome than in the human or Drosophila genomes. Gene duplication is very evident in the Anopheles ABC genes with two groups of four genes, one group with three genes and three groups with two head to tail duplicated genes. These characteristics argue that the A. gambiae is actively using gene duplication as a mechanism to drive genetic variation in this important gene group.  相似文献   

2.
COMATOSE (CTS) encodes a peroxisomal ATP-binding cassette transporter required not only for beta-oxidation of storage lipids during germination and establishment, but also for biosynthesis of jasmonic acid and conversion of indole butyric acid to indole acetic acid. cts mutants exhibited reduced fertilization, which was rescued by genetic complementation, but not by exogenous application of jasmonic acid or indole acetic acid. Reduced fertilization was also observed in thiolase (kat2-1) and peroxisomal acyl-Coenzyme A synthetase mutants (lacs6-1,lacs7-1), indicating a general role for beta-oxidation in fertility. Genetic analysis revealed reduced male transmission of cts alleles and both cts pollen germination and tube growth in vitro were impaired in the absence of an exogenous carbon source. Aniline blue staining of pollinated pistils demonstrated that pollen tube growth was affected only when both parents bore the cts mutation, indicating that expression of CTS in either male or female tissues was sufficient to support pollen tube growth in vivo. Accordingly, abundant peroxisomes were detected in a range of maternal tissues. Although gamma-aminobutyric acid levels were reduced in flowers of cts mutants, they were unchanged in kat2-1, suggesting that alterations in gamma-aminobutyric acid catabolism do not contribute to the reduced fertility phenotype through altered pollen tube targeting. Taken together, our data support an important role for beta-oxidation in fertility in Arabidopsis (Arabidopsis thaliana) and suggest that this pathway could play a role in the mobilization of lipids in both pollen and female tissues.  相似文献   

3.
A gram-negative bacterium, Sphingomonas sp. strain A1, isolated as a producer of alginate lyase, has a characteristic cell envelope structure and forms a mouth-like pit on its surface. The pit is produced only when the cells have to incorporate and assimilate alginate. An alginate uptake-deficient mutant was derived from cells of strain A1. One open reading frame, algS (1,089 bp), exhibiting homology to the bacterial ATP-binding domain of an ABC transporter, was cloned as a fragment complementing the mutation. algS was followed by two open reading frames, algM1 (972 bp) and algM2 (879 bp), which exhibit homology with the transmembrane permeases of ABC transporters. Disruption of algS of strain A1 resulted in the failure to incorporate alginate and to form a pit. Hexahistidine-tagged AlgS protein (AlgS(His6)) overexpressed in Escherichia coli and purified by Ni(2+) affinity column chromatography showed ATPase activity. Based on these results, we propose the occurrence of a novel pit-dependent ABC transporter system that allows the uptake of macromolecules.  相似文献   

4.
The Saccharomyces cerevisiae vacuolar ATP-binding cassette transporter Ycf1p is involved in heavy metal detoxification by mediating the ATP-dependent transport of glutathione-metal conjugates to the vacuole. In the case of selenite toxicity, deletion of YCF1 was shown to confer increased resistance, rather than sensitivity, to selenite exposure [Pinson B, Sagot I & Daignan-Fornier B (2000) Mol Microbiol36, 679-687]. Here, we show that when Ycf1p is expressed from a multicopy plasmid, the toxicity of selenite is exacerbated. Using secretory vesicles isolated from a sec6-4 mutant transformed either with the plasmid harbouring YCF1 or the control plasmid, we establish that the glutathione-conjugate selenodigluthatione is a high-affinity substrate of this ATP-binding cassette transporter and that oxidized glutathione is also efficiently transported. Finally, we show that the presence of Ycf1p impairs the glutathione/oxidized glutathione ratio of cells subjected to a selenite stress. Possible mechanisms by which Ycf1p-mediated vacuolar uptake of selenodiglutathione and oxidized glutathione enhances selenite toxicity are discussed.  相似文献   

5.
ATP-binding cassette transporter A1 (ABCA1) is a membrane-bound protein that regulates the efflux of cholesterol derived from internalized lipoproteins. Using a mouse macrophage cell line, this report studied the impact of low-density lipoproteins (LDL) on ABCA1 expression and the signaling pathway responsible for lipoprotein-induced ABCA1 expression. Our data demonstrated that treatment of macrophages with LDL increased ABCA1 mRNA and protein levels 4.3- and 3.5-fold, respectively. LDL also induced an ~2-fold increase in macrophage surface expression of ABCA1 and a 14-fold-increase in apolipoprotein AI-mediated cholesterol efflux. In addition, LDL significantly increased the level of phosphorylated specificity protein 1 (Sp1) and the amount of Sp1 bound to the ABCA1 promoter without alteration in total Sp1 protein level. Mutation of the Sp1 binding site in the ABCA1 promoter and inhibition of Sp1 DNA binding with mithramycin A suppressed the ABCA1 promoter activity and reduced the ABCA1 expression level induced by LDL. LDL treatment also elevated protein kinase C-ζ (PKC-ζ) phosphorylation and induced PKC-ζ binding with Sp1. Inhibition of PKC-ζ with kinase inhibitors or overexpression of kinase-dead PKC-ζ attenuated Sp1 phosphorylation and ABCA1 expression induced by LDL. These results demonstrate for the first time that activation of the PKCζ-Sp1 signaling cascade is a mechanism for regulation of LDL-induced ABCA1 expression.  相似文献   

6.
The plasma membrane ATP-binding cassette (ABC) transporter Yor1p mediates oligomycin resistance in Saccharomyces cerevisiae. Its protein sequence places it in the multidrug resistance protein/cystic fibrosis transmembrane conductance regulator subfamily of ABC transporters. A key regulatory step in the biogenesis of this family of ABC transporter proteins is at the level of transport from the endoplasmic reticulum (ER) on through the secretory pathway. To explore the protein sequence requirements for Yor1p to move from the ER to its site of function at the plasma membrane, a series of truncation and alanine replacement mutations were constructed in Yor1p. This analysis detected two sequence motifs similar to the DXE element that has recently been found in other proteins that exit the ER. Loss of the N-terminal DXE element eliminated function of the protein, whereas loss of the C-terminal element only slightly reduced function of the resulting mutant Yor1p. Strikingly, although both of the single mutant proteins were stable, production of the double mutant caused dramatic destabilization of Yor1p. These data suggest that this large polytopic membrane protein requires multiple signals for normal forward trafficking, and elimination of this information may cause the mutant protein to be transferred to a degradative fate.  相似文献   

7.
Recently, a putative ATP-binding cassette (ABC) transport system was identified in Bifidobacterium longum NCC2705 that is highly up-regulated during growth on fructose as the sole carbon source. Cloning and expression of the corresponding ORFs (bl0033-0036) result in efficient fructose uptake by bacteria. Sequence analysis reveals high similarity to typical ABC transport systems and suggests that these genes are organized as an operon. Expression of FruE is induced by fructose, ribose, or xylose and is able to bind these sugars with fructose as the preferred substrate. Our data suggest that BL0033-0036 constitute a high affinity fructose-specific ABC transporter of B. longum NCC2705. We thus suggest to rename the coding genes to fruEKFG and the corresponding proteins to FruE (sugar-binding protein), FruK (ATPase subunit), FruF, and FruG (membrane permeases). Furthermore, protein-protein interactions between the components of the transporter complex were determined by GST pulldown and Western blot analysis. This revealed interactions between the membrane subunits FruF and FruG with FruE, which in vivo is located on the external side of the membrane, and with the cytoplasmatic ATPase FruK. This is in line with the proposed model for bacterial ABC sugar transporters.  相似文献   

8.
9.
Zhu MJ  Tang CS  Zhu Y 《生理科学进展》2005,36(4):337-340
ATP结合夹转录子A1(ATP-bind ing cassette transporter A1,ABCA1)是1999年发现的极其重要的脂质转运蛋白,它是一种将过量胆固醇从细胞内向细胞外输送到载脂蛋白并包装成高密度脂蛋白(HDL)的膜蛋白。由于增加ABCA1的表达,可促进胆固醇的逆转运,减少了动脉粥样硬化的发生。该蛋白的研究是近年来脂代谢领域的研究热点。本文结合作者实验室近年来的研究以及国外的研究现状,从作用机制、蛋白调节、转基因模型、病理生理学意义等方面对ABCA1的研究进展进行概要介绍。  相似文献   

10.
[目的]比较分析球孢白僵菌(Beauveria bassiana)BbT1和玫烟棒束孢(Isaria fumosorosea)IfT1两种结构相似的ATP结合匣转运蛋白的生物学功能.[方法]基于Bb2860野生株构建BbT1的敲除株和回补株,并将IFT1在BbT1敲除株中异源重组表达,比较各菌株的表型变化.[结果]与野生株、回补株及异源重组株相比,敲除株对20 - 40 mmol/L过氧化氢和2-8 mmoL/L甲萘醌氧化胁迫的抵抗力下降27% -2.1倍,对多菌灵、伊曲康唑、菌核净、放线菌酮、乙嘧酚和4-硝基喹啉N-氧化物等不同类型化学药物的抗药性下降28% -4.7倍,对斜纹夜蛾Spodoptera litura二龄幼虫的毒力下降20%左右,而野生株、回补株及异源重组株之间无任何表型的显著差异.[结论]BbT1和IfT1是结构相似且功能一致的转运蛋白,分别是两种生防真菌多药抗性的决定因子之一,因参与抗氧化反应而对毒力有所贡献.  相似文献   

11.
12.
13.
The symbiotic soil bacterium Sinorhizobium meliloti uses the compatible solutes glycine betaine and proline betaine for both protection against osmotic stress and, at low osmolarities, as an energy source. A PCR strategy based on conserved domains in components of the glycine betaine uptake systems from Escherichia coli (ProU) and Bacillus subtilis (OpuA and OpuC) allowed us to identify a highly homologous ATP-binding cassette (ABC) binding protein-dependent transporter in S. meliloti. This system was encoded by three genes (hutXWV) of an operon which also contained a fourth gene (hutH2) encoding a putative histidase, which is an enzyme involved in the first step of histidine catabolism. Site-directed mutagenesis of the gene encoding the periplasmic binding protein (hutX) and of the gene encoding the cytoplasmic ATPase (hutV) was done to study the substrate specificity of this transporter and its contribution in betaine uptake. These mutants showed a 50% reduction in high-affinity uptake of histidine, proline, and proline betaine and about a 30% reduction in low-affinity glycine betaine transport. When histidine was used as a nitrogen source, a 30% inhibition of growth was observed in hut mutants (hutX and hutH2). Expression analysis of the hut operon determined using a hutX-lacZ fusion revealed induction by histidine, but not by salt stress, suggesting this uptake system has a catabolic role rather than being involved in osmoprotection. To our knowledge, Hut is the first characterized histidine ABC transporter also involved in proline and betaine uptake.  相似文献   

14.
15.
16.
ATP-binding cassette (ABC) transporters are well known for their roles as multidrug resistance determinants but also play important roles in regulation of lipid levels. In the yeast Saccharomyces cerevisiae, the plasma membrane ABC transporter proteins Pdr5 and Yor1 are required for normal rates of transport of phosphatidyethanolamine to the surface of the cell. Loss of these ABC transporters causes a defect in phospholipid asymmetry across the plasma membrane and has been linked with slowed rates of trafficking of other membrane proteins. Four ABC transporter proteins are found on the limiting membrane of the yeast vacuole and loss of one of these vacuolar ABC transporters, Ybt1, caused a major defect in the normal delivery of the phosphatidylcholine (PC) analog NBD-PC (7-nitro-2,1,3-benzoxadiazol-PC) to the lumen of the vacuole. NBD-PC accumulates on cytosolic membranes in an ybt1Δ strain. We demonstrated that Ybt1 is required to import NBD-PC into vacuoles in the presence of ATP in vitro. Loss of Ybt1 prevented vacuolar remodeling of PC analogs. Turnover of Ybt1 was reduced under conditions in which function of this vacuolar remodeling pathway was required. Our data describe a novel vacuolar route for lipid remodeling and reutilization in addition to previously described enzymatic avenues in the cytoplasm.  相似文献   

17.
Stem cells are important in the maintenance and repair of adult tissues. A population of cells, termed side population (SP) cells, has stem cell characteristics as they have been shown to contribute to diverse lineages. In this study, we confirm that Abcg2 is a determinant of the SP cell phenotype. Therefore, we examined Abcg2 expression during murine embryogenesis and observed robust expression in the blood islands of the E8.5 yolk sac and in developing tissues including the heart. During the latter stages of embryogenesis, Abcg2 identifies a rare cell population in the developing organs. We further establish that the adult heart contains an Abcg2 expressing SP cell population and these progenitor cells are capable of proliferation and differentiation. We define the molecular signature of cardiac SP cells and compare it to embryonic stem cells and adult cardiomyocytes using emerging technologies. We propose that the cardiac SP cell population functions as a progenitor cell population for the development, maintenance, and repair of the heart.  相似文献   

18.
19.
A wild-type sasA locus is critical for Myxococcus xanthus multicellular development. Mutations in the sasA locus cause defective fruiting body formation, reduce sporulation, and restore developmental expression of the early A-signal-dependent gene 4521 in the absence of A signal. The wild-type sasA locus has been located on a 14-kb cloned fragment of the M. xanthus chromosome. The nucleotide sequence of a 7-kb region containing the complete sasA locus was determined. Three open reading frames encoded by the genes, designated rfbA, B and C were identified. The deduced amino acid sequences of rfbA and rfbB show identity to the integral membrane domains and ATPase domains, respectively, of the ATP-binding cassette (ABC) transporter family. The highest identities are to a set of predicted ABC transporters required for the biosynthesis of lipopolysaccharide O-antigen in certain gram-negative bacteria. The rfbC gene encodes a predicted protein of 1,276 amino acids. This predicted protein contains a region of 358 amino acids that is 33.8% identical to the Yersinia enterocolitica O3 rfbH gene product, which is also required for O-antigen biosynthesis. Immunoblot analysis revealed that the sasA1 mutant, which was found to encode a nonsense codon in the beginning of rfbA, produced less O-antigen than sasA+ strains. These data indicate that the sasA locus is required for the biosynthesis of O-antigen and, when mutated, results in A-signal-independent expression of 4521.  相似文献   

20.
Ycf1p is the prototypical member of the yeast multidrug resistance-associated protein (MRP) subfamily of ATP-binding cassette (ABC) transporters. Ycf1p resides in the vacuolar membrane and mediates glutathione-dependent transport processes that result in resistance to cadmium and other xenobiotics. A feature common to many MRP proteins that distinguishes them from other ABC transporters is the presence of a hydrophobic N-terminal extension (NTE), whose function is not clearly established. The NTE contains a membrane spanning domain (MSD0) with five transmembrane spans and a cytosolic linker region (L0). The goal of this study was to determine the functional significance of the NTE of Ycf1p by examining the localization and functional properties of Ycf1p partial molecules, expressed either singly or together. We show that MSD0 plays a critical role in the vacuolar membrane trafficking of Ycf1p, whereas L0 is dispensable for localization. On the other hand, L0 is required for transport function, as determined by monitoring cadmium resistance. We also examine an unusual aspect of Ycf1p biology, namely, the posttranslational proteolytic processing that occurs within a lumenal loop of Ycf1p. Processing is shown to be Pep4p dependent and thus serves as a convenient marker for proper vacuolar localization. The processed fragments associate with each other, suggesting that these natural cleavage products contribute together to Ycf1p function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号