首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The effects of stress shocks on the freeze-drying viability, malolactic activity and membrane fatty acid composition of the Oenococcus oeni SD-2a cells were studied. O. oeni SD-2a cells after 2 h of stress exposure exhibited better freeze-drying viability and malolactic fermentation ability. A decrease in unsaturated fatty acids/saturated fatty acids (UFA/SFA) ratio and in the C18:1 relative concentration, and an increase in cyclopropane fatty acids (CFA) content mainly due to the increase in C19cyc11 relative concentration were observed in all stress shocked cells. There was a significant negative correlation between C19cyc11 and C18:lcis11, C16:0 in all stress shocks. The freeze-drying viability exhibited a significant positive correlation with the levels of C19cyc11 in cold and acid shocks. The only significant positive correlation between the ability of O. oeni SD-2a to conduct malic acid degradation and membrane composition existed with C14:0 in ethanol shocks. In general, freeze-drying viabilities were maximum for cells with low UFA/SFA ratio and high CFA levels, and, consequently, with low membrane fluidity. Moreover, CFA formation played a major role in protecting stress shocked cells from lyophilization. However, changes observed in membrane fatty acid composition are not enough to explain the greater freeze-drying viability of cells shocked at 8% ethanol. Thus, other mechanisms could be responsible for this increase in the bacterial resistance to lyophilization.  相似文献   

3.
Growth of Synechococcus 6311 in the presence of 0.5 molar NaCl is accompanied by significant changes in membrane lipid composition. Upon transfer of the cells from a `low salt' (0.015 molar NaCl) to `high salt' (0.5 molar NaCl) growth medium at different stages of growth, a rapid decrease in palmitoleic acid (C16:1Δ9) content was accompanied by a concomitant increase in the amount of the two C18:1 acids (C18:1Δ9, C18:1Δ11), with the higher increase in oleic acid C18:1Δ9 content. These changes began to occur within the first hour after the sudden elevation of NaCl and progressed for about 72 hours. The percentage of palmitic acid (C16:0) and stearic acid (C18:0) remained almost unchanged in the same conditions. High salt-dependent changes within ratios of polar lipid classes also occurred within the first 72 hours of growth. The amount of monogalactosyl diacylglycerol (bilayer-destabilizing lipid) decreased and that of the digalactosyl diacylglycerol (bilayer-stabilizing lipid) increased. Consequently, in the three day old cells, the ratio of monogalactosyl diacylglycerol to digalactosyl diacylglycerol in the membranes of high salt-grown cells was about half of that in the membranes of low salt-grown cells. The total content of anionic lipids (phosphatidylglycerol and sulfoquinovosyl diacylglycerol) was always higher in the isolated membranes and the whole cells from high salt-grown cultures compared to that in the cells and membranes from low salt-grown cultures. All the observed rearrangements in the lipid environment occurred in both thylakoid and cytoplasmic membranes. Similar lipid composition changes, however, to a much lesser extent, were also observed in the aging, low salt-grown cultures. The observed changes in membrane fatty acids and lipids composition correlate with the alterations in electron and ion transport activities, and it is concluded that the rearrangement of the membrane lipid environment is an essential part of the process by which cells control membrane function and stability.  相似文献   

4.
The desaturation of [1-(14)C] 18:3n-3 to docosahexaenoic acid (DHA; 22:6n-3) is enhanced in an essential fatty acid deficient cell line (EPC-EFAD) in comparison with the parent cell line (EPC) from carp. In the present study, the effects of DHA on lipid and fatty acid compositions, and the metabolism of [1-(14)C]18:3n-3 were investigated in EPC-EFAD cells in comparison with EPC cells. DHA supplementation had only relatively minor effects on lipid content and lipid class compositions in both EPC and EPC-EFAD cells, but significantly increased the amount of DHA, 22:5n-3, eicosapentaenoic acid (EPA; 20:5n-3), total n-3 polyunsaturated fatty acids (PUFA), total PUFA and saturated fatty acids in total lipid and total polar lipid in both cell lines. Retroconversion of supplemental DHA to EPA was significantly greater in EPC cells. Monounsaturated fatty acids, n-9 and n-6PUFA were all decreased in total lipid and total polar lipid in both cell lines by DHA supplementation. The incorporation of [1-(14)C]18:3n-3 was greater into EPC-EFAD compared to EPC cells but DHA had no effect on the incorporation of [1-(14)C]18:3n-3 in either cell line. In contrast, the conversion of [1-(14)C]18:3n-3 to tetraenes, pentaenes and total desaturation products was similar in the two cell lines and was significantly reduced by DHA supplementation in both cell lines. However, the production of DHA from [1-(14)C]18:3n-3 was significantly greater in EPC-EFAD cells compared to EPC cells and, whereas DHA supplementation had no effect on the production of DHA from [1-(14)C]18:3n-3 in EPC cells, DHA supplementation significantly reduced the production of DHA from [1-(14)C] 18:3n-3 in EPC-EFAD cells. Greater production of DHA in EPC-EFAD cells could be a direct result of significantly lower levels of end-product DHA in these cells' lipids compared to EPC cells. Consistent with this, the suppression of DHA production upon DHA supplementation was associated with increased cellular and membrane DHA concentrations in EPC-EFAD cells. However, an increase in cellular DHA content to similar levels failed to suppress DHA production in DHA-supplemented EPC cells. A possible explanation is that greatly increased levels of EPA, derived from retroconversion of the added DHA, acts to offset the suppression of the pathway by DHA by stimulating conversion of EPA to DHA in DHA-supplemented EPC cells.  相似文献   

5.
The substitution of trans- for half of the cis-monounsaturated fatty acids in the diet of Macaca fasicularis monkeys resulted in alterations in erythrocyte fatty acid composition and insulin receptor properties but not in membrane fluidity. Both cis and trans diets contained 10% fat and similar fatty acid compositions, except that approximately 50% of the cis-octadecenoate (c-18:1) in the cis diet was replaced with trans-octadecenoate isomers (t-18:1) in the trans diet. Compared with the cis diet, the trans diet resulted in the incorporation of approximately 11% t-18:1, an approximately 50% decrease in c-18:1, an approximately 16% decrease in total saturated fatty acids, and an approximately 20% increase in 18:2(n-6) in erythrocyte membrane lipids. The increase in 18:2(n-6) may reflect on homeostatic mechanisms designed to maintain overall membrane fluidity, as no diet-related changes in fluidity were observed with diphenylhexatriene steady state fluorescence polarization. Values observed for insulin binding and insulin receptor number were higher and binding affinity was lower in monkeys fed the cis diet. In the absence of an effect on overall membrane fluidity, altered receptor activity suggests that insulin receptor activity is dynamic, requiring specific fluid membrane subdomains or highly specific fatty acid-protein interactions.  相似文献   

6.
The addition of 0.4-3 mM of cis-unsaturated fatty acids such as oleic acid (18:1) or linoleic acid (18:2) to intact rat adipocytes stimulated lipogenesis at 37 degrees C. Saturated or trans-unsaturated fatty acids were ineffective. Fluorescence photobleaching recovery studies performed under similar conditions indicated that the cis-unsaturated fatty acids do not alter lateral mobility of either a lipid probe or a general protein marker in the plasma membrane. A high concentration (7 mM) of Ca2+, which by itself has some stimulatory effect on lipogenesis, significantly potentiated the effect of oleic acid on this insulin-like activity. Measurement of 45Ca2+ binding by fat cells has indicated that cis-unsaturated (but not saturated) fatty acids increased 12- to 20-fold the amount of Ca2+ associated with the cells. The dependence of this effect on the fatty acid concentration correlates well with the effect of the fatty acid on the induction of lipogenesis. Our results suggest that cis-unsaturated fatty acids affect membrane organization in a manner which induces a significant increase in membrane associated or intracellular Ca2+. This increase may be responsible for inducing exocytotic-like processes which facilitate translocation of glucose transport activity from storage sites to the plasma membrane and thus produce an insulin-like effect.  相似文献   

7.
The alteration of the degree of unsaturated fatty acids in membrane lipids has been shown to be a key mechanism in the tolerance to temperature stress of living organisms. The step that most influences the physiology of membranes has been proposed to be the amount of di-unsaturated fatty acids in membrane lipids. In this study, we found that the desaturation of fatty acid to yield the di-unsaturated fatty acid 18:2(9,12), in Spirulina platensis strain C1, was not regulated by temperature. As shown by the fatty acid composition and gene expression patterns, the levels of 18:1(9) and 18:2(9,12) remained almost constant either when the cells were grown at 35 degrees C (normal growth temperature) or 22 and 40 degrees C. The expression of desC (Delta9) and desA (Delta12) genes, which are responsible for the introduction of first and second double bonds into fatty acids, respectively, was not affected by the temperature shift from 35 to 22 degrees C or to 40 degrees C. Only the expression and mRNA stability of the desD gene (Delta6) that is responsible for the introduction of a third double bond into fatty acids were enhanced by a temperature shift from 35 to 22 degrees C, but not the shift from 35 to 40 degrees C. The increase in the level of desD mRNA elevated the desaturation of fatty acid from 18:2(9,12) to 18:3(6,9,12) at 22 degrees C. However, the increased level of 18:3(6,9,12) was observed after 36 h of incubation at 22 degrees C, indicating a slow response to temperature of fatty acid desaturation in this cyanobacterium. These findings suggest that the desaturation of fatty acids might not be a key mechanism in the response to the temperature change of S. platensis strain C1.  相似文献   

8.
The visual transduction system was used as a model to investigate the effects of membrane lipid composition on receptor-G protein coupling. Rhodopsin was reconstituted into large, unilamellar phospholipid vesicles with varying acyl chain unsaturation, with and without cholesterol. The association constant (K(a)) for metarhodopsin II (MII) and transducin (G(t)) binding was determined by monitoring MII-G(t) complex formation spectrophotometrically. At 20 degrees C, in pH 7.5 isotonic buffer, the strongest MII-G(t) binding was observed in 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0,22:6PC), whereas the weakest binding was in 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (18:0,18:1PC) with 30 mol% cholesterol. Increasing acyl chain unsaturation from 18:0,18:1PC to 18:0,22:6PC resulted in a 3-fold increase in K(a). The inclusion of 30 mol% cholesterol in the membrane reduced K(a) in both 18:0,22:6PC and 18:0,18:1PC. These findings demonstrate that membrane compositions can alter the signaling cascade by changing protein-protein interactions occurring predominantly in the hydrophilic region of the proteins, external to the lipid bilayer. These findings, if extended to other members of the superfamily of G protein-coupled receptors, suggest that a loss in efficiency of receptor-G protein binding is a contributing factor to the loss of cognitive skills, odor and spatial discrimination, and visual function associated with n-3 fatty acid deficiency.  相似文献   

9.
Attempts to manipulate the level of C16:1 fatty acids in membrane phospholipids were made by using Bacillus subtilis and its protonophore-resistant mutants to test the hypothesis that C16:1 fatty acid levels relate to the bioenergetic properties of the mutant strains. Growth of the three mutants in the presence of palmitoleic acid restored the level of C16:1 fatty acids in the membrane lipids to somewhat above those found in the wild type. The palmitoleic acid was preferentially incorporated into diphosphatidylglycerol (cardiolipin) and phosphatidylethanolamine and was associated with increased levels of these phospholipids. These membrane preparations showed no increase in the levels of free fatty acids. The increase in C16:1 fatty acids achieved by growth in the presence of palmitoleic acid was accompanied by secondary changes in membrane lipids as well as a pronounced diminution in the protonophore resistance of growth and ATP synthesis. Other membrane-associated properties that had been observed in these mutants, e.g., elevated ATPase levels, were not altered coordinately with protonophore resistance and C16:1 fatty acid levels. Growth of the wild type in the presence of palmitic acid caused a modest elevation of the C16:0 of the membrane lipids and a modest increase in the protonophore resistance of growth and ATP synthesis. Growth of the wild type at elevated temperatures, in the absence of fatty acid supplementation, also enhanced its resistance to protonophores. The results support the hypothesis that specific changes in membrane lipid composition underlie the bioenergetic changes associated with protonophore resistance.  相似文献   

10.
We examined physiological adaptations which allow the psychrotroph Rhodococcus sp. strain Q15 to assimilate alkanes at a low temperature (alkanes are contaminants which are generally insoluble and/or solid at low temperatures). During growth at 5 degrees C on hexadecane or diesel fuel, strain Q15 produced a cell surface-associated biosurfactant(s) and, compared to glucose-acetate-grown cells, exhibited increased cell surface hydrophobicity. A transmission electron microscopy examination of strain Q15 grown at 5 degrees C revealed the presence of intracellular electron-transparent inclusions and flocs of cells connected by an extracellular polymeric substance (EPS) when cells were grown on a hydrocarbon and morphological differences between the EPS of glucose-acetate-grown and diesel fuel-grown cells. A lectin binding analysis performed by using confocal scanning laser microscopy (CSLM) showed that the EPS contained a complex mixture of glycoconjugates, depending on both the growth temperature and the carbon source. Two glycoconjugates [beta-D-Gal-(1-3)-D-GlcNAc and alpha-L-fucose] were detected only on the surfaces of cells grown on diesel fuel at 5 degrees C. Using scanning electron microscopy, we observed strain Q15 cells on the surfaces of octacosane crystals, and using CSLM, we observed strain Q15 cells covering the surfaces of diesel fuel microdroplets; these findings indicate that this organism assimilates both solid and liquid alkane substrates at a low temperature by adhering to the alkane phase. Membrane fatty acid analysis demonstrated that strain Q15 adapted to growth at a low temperature by decreasing the degree of saturation of membrane lipid fatty acids, but it did so to a lesser extent when it was grown on hydrocarbons at 5 degrees C; these findings suggest that strain Q15 modulates membrane fluidity in response to the counteracting influences of low temperature and hydrocarbon toxicity.  相似文献   

11.
I examined whether the phorbol ester-mediated inhibition of glycerol 3-phosphate dehydrogenase (GPDH) induction could be mimicked by raising the cellular diacylglycerol levels. Phorbol ester tumor promoters and diacylglycerols activate protein kinase C. An increase in radiolabeled diacylglycerol levels in C6 rat glioma cells was observed when cells were prelabeled overnight with [3H]arachidonic acid and treated with either phospholipase C (Clostridium perfringens) or 2-bromooctanoate. The increase was dose dependent. The diacylglycerols competed with [20-3H]phorbol 12,13-dibutyrate in binding to the phorbol ester receptor. A Scatchard analysis of the binding of cells treated with 0.1 unit/ml of phospholipase C demonstrated that the inhibition was mainly due to a decrease in binding affinity and not in the total number of binding sites. 2-Bromooctanoate and phospholipase C, but not the synthetic diacylglycerol 1-oleoyl 2-acetyl glycerol, inhibited the glucocorticoid induction of GPDH levels. Boiled phospholipase C, phospholipase A2, or phospholipase D was ineffective in inhibiting induction, a result suggesting that the inhibition was not due to nonspecific membrane perturbation. Thus, inhibition of the glucocorticoid-mediated increase in GPDH induction is most likely mediated by protein kinase C, and not by an alternate phorbol ester receptor.  相似文献   

12.
Ergosterol and cholesterol supplementation resulted in a significant increase (1·5-fold) in the sterol content while phospholipid remained unaffected inMicrosporum gypseum. The levels of phosphatidylethanolamine and phosphatidylcholine increased in ergosterol supplemented cells. However, a decrease in phosphatidylcholine and an increase in phosphatidylethanolamine was observed in cholesterol grown cells. The ratio of unsaturated to saturated fatty acids decreased on ergosterol/cholesterol supplementation. The uptake of amino acids (lysine, glycine and aspartic acid) decreased in sterol supplemented cells. Studies with fluorescent probe l-anilinonaphthalene-8-sulfonate showed structural changes in membrane organisation as evident by increased number of binding sites in such cells.  相似文献   

13.
Ultraprofound hypothermia (< 5 degrees C) induces changes to cell membranes such as liquid-to-gel lipid transitions and oxidative stress that have a negative effect on membrane function and cell survival. We hypothesized that fatty acid substitution of endothelial cell lipids and alterations in their unsaturation would modify cell survival at 0 degrees C, a temperature commonly used during storage and transportation of isolated cells or tissues and organs used in transplantation. Confluent bovine aortic endothelial cells were treated with 18-carbon fatty acids (C18:0, C18:1n-9, C18:2n-6, or C18:3n-3), C20:5n-3 or C22:6n-3 (DHA), and then stored at 0 degrees C without fatty acid supplements. Storage of control cells caused the release of lactate dehydrogenase (LDH) and a threefold increase in lipid peroxidation (LPO) when compared to control cells not exposed to cold. Pre-treating cells with C18:0 decreased the unsaturation of cell lipids and reduced LDH release at 0 degrees C by 50%, but all mono- or poly-unsaturated fatty acids increased injury in a concentration-dependent manner and as the extent of fatty acid unsaturation increased. DHA-treatment increased cell fatty acid unsaturation and caused maximal injury at 0 degrees C, which was prevented by lipophilic antioxidants BHT or vitamin E, the iron chelator deferoxamine, and to a lesser extent by vitamin C. Furthermore, the cold-induced increase in LPO was reduced by C18:0, vitamin E, or DFO but enhanced by DHA. In conclusion, the findings implicate iron catalyzed free radicals and LPO as a predominant mechanism of endothelial cell injury at 0 degrees C, which may be reduced by increasing lipid saturation or treating cells with antioxidants.  相似文献   

14.
To help understand the tolerances of desert succulents to extremely high temperatures (above 60°C), the effect of growth temperature on fatty acid composition of various membrane fractions from three species was investigated. When maintained at day/night air temperatures of 30°C/20°C, their chlorenchyma fatty acid compositions were similar to one another and to those of mesophytic leaves, except that desert succulents had appreciably less linolenic acid (18:3) and more oleic acid (18:1) and hence greater fatty acid saturation. The differences were observed in the chloroplast, mitochondrial and microsomal fractions and were more apparent in the nonpolar lipids than the total lipids. For all membrane fractions of Ferocactus acanthodes, a shift to 50°C/40°C resulted in a decrease in 18:3 and an increase in 18:1 and hence an increase in fatty acid saturation level. For Agave deserti and Carnegiea gigantea, however, increasing the day/night air temperatures did not result in increased fatty acid saturation, although their high-temperature tolerances increase about as much as that of F. acanthodes as the air temperature is increased. Thus, acquisition of high-temperature tolerance need not be accompanied by marked changes in fatty acid saturation or composition.  相似文献   

15.
The membrane lipid aliphatic chains of Clostridium acetobutylicum ATCC 4259 have been extensively modified by growth in biotin-free medium containing vitamin-free casein hydrolysate supplemented with either elaidic acid, oleic acid, or mixtures of palmitic and oleic acids. Growth with elaidic acid resulted in polar lipids containing 88.6% 18:1 acyl chains and 94.5% 18:1 ether-linked chains. Growth with oleic acid resulted in comparable levels of enrichment of the lipids with 18:1 chains and C19 chains containing cyclopropane rings. When cells were grown with mixtures of palmitic and oleic acids, the ether-linked chains of the plasmalogens were greater than or equal to 64% 18:1 plus C19 chains containing cyclopropane rings at all ratios of oleic to palmitic acid in the medium. The acyl chains reflected the palmitic acid content of the medium more closely. Marked changes were observed in both phospholipid and glycosyldiglyceride compositions as the lipid acyl and ether-linked chains became more enriched with unsaturated and cyclopropane chains. The ratio of the glycerol acetal of plasmenylethanolamine to phosphatidylethanolamine increased, the ratio of cardiolipin to phosphatidylglycerol decreased, and the ratio of diglycosyldiglyceride to monoglycosyldiglyceride increased. However, the monoglycosyldiglyceride/diglycosyldiglyceride ratio was lower for cells grown on 100% oleic acid than for cells grown on 60 or 80% oleic acid. In the membranes of cells grown on 100% oleic acid, the ratio of glycolipids to phospholipids was lower than that found in cells grown on 60% oleic acid. These results indicate that C. acetobutylicum regulates its polar lipid composition in a complex manner involving phospholipids and glycosyldiglycerides. These changes can affect the equilibria between those lipids that form bilayers and those lipids that tend to form nonlamellar phases when enriched with unsaturated aliphatic chains. Phosphoglycolipids of unknown structure were also observed in cells grown either with biotin or with fatty acids. The content of the most abundant phosphoglycolipid also varied with the degree of unsaturation of the cellular lipids.  相似文献   

16.
The effect of a sub-inhibitory concentration of chlorhexidine on lipid and sterol composition of Candida albicans was investigated. The total lipid content of this yeast grown in the presence of chlorhexidine was reduced whilst the total sterol content was increased compared with control-grown cells. Lipids and sterol analyses of this yeast grown in the presence and absence of chlorhexidine are presented. Chlorhexidine-grown yeast had a higher level of phosphatidylethanolamine, phosphatidylcholine and monogalactosyldiacylglycerol. Lower proportions of phosphatidylinositol plus phosphatidylserine, phosphatidic acid and cardiolipin were found in C. albicans grown in the presence of the drug when compared with control-grown yeast. The major fatty acids in control-grown cells were C16 and C18. Drug grown-cells had higher proportions of palmitic acid (16 : 0) and stearic acid (18 : 0), but lower proportions of palmitoleic acid (16 : 1) and oleic acid (18 : 1). Chlorhexidine also decreased the unsaturated-to-saturated fatty acid ratio, while the C16/C18 ratios increased compared to control-grown cells. Differences in the fatty acid composition of major phospholipids and neutral lipids between drug and control-grown yeast were also detected. Sterol analysis of control-grown cells showed that the major sterol present was ergosterol (55.4% wt). A significant increase in ergosterol and obtusifoliol was observed in chlorhexidine-treated cells and a significant decrease in squalene and lanosterol. Our results suggested that chlorhexidine affected the lipid and sterol composition of C. albicans. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
The thermotropic transitions of the plasma membrane and tonoplastfrom cultured cells of chilling-sensitive (CS) and chilling-insensitive(CI) strains of rice (Oryza sativa L.) were analyzed by monitoringthe fluorescence polarization of an embedded fluorophore, 1,6-diphenyl-1,3,5-hexatriene(DPH), and their relationship to the degree of unsaturationof fatty acids in phospholipids was examined. Polarization values (P) for the tonoplast from cultured cellsof CI rice, in contrast to those from CS rice, exceeded thosefor the plasma membrane. The values for the tonoplast and plasmamembrane from CI cells were somewhat higher than those fromCS cell. Thus, the tonoplast of CI cells has the lowest fluidity,while the fluidity of the tonoplast and plasma membrane of CIcells shows greater dependence on temperature. Arrhenius plotsof the fluorescence anisotropy parameter {(ro/r)–1}–1of DPH in the plasma membrane and tonoplast from CI cells gavea slope that was virtually linear throughout the entire rangeof temperatures from 50°C to 10°C. However, in the caseof CS cells, a discontinuity was sometimes noted in the curvebetween 35°C and 30°C for tonoplast membranes. The activationenergy (Ea) of the anisotropy parameter of DPH in both the plasmamembrane and tonoplast from CI cells was greater than that fromCS cells. Ea in both cases for CS cells increased with increasingduration of exposure to low tempera ture (5°C), becomingnearly the same as that for CI cells. The proportion of unsaturated fatty acids, such as linoleicacid (18:2) and linolenic acid (18:3), in the total phospholipidsof the plasma membrane and tonoplast from CI cells was muchhigher than that from CS cells. In membranes from CS cells,this proportion also increased with increasing duration of exposureto low temperature and reached the value for membranes fromCI cells. In particular, in CS cells, the most dramatic changewas the change in PE and PC that in volved a sharp decreasein levels of 18:1, accompanied by an increase in 18:3. The proportionof unsaturated fatty acids was increased by exposure to lowtemperature, with an accompanying in crease in values of Ea. (Received April 10, 1991; Accepted May 9, 1992)  相似文献   

18.
The characteristics of fusion of respiratory syncytial virus (RSV) with HEp-2 cells were studied by the R18 fluorescence dequenching assay of membrane fusion. A gradual increase in fluorescence intensity indicative of virion-cell fusion was observed when R18-labeled RSV was incubated with HEp-2 cells. Approximately 35% dequenching of the probe fluorescence was observed in 1 h at 37 degrees C. Fusion showed a temperature dependence, with significant dequenching occurring above 18 degrees C. The dequenching was also dependent on the relative concentration of target membrane. Thus, increasing the concentration of target membrane resulted in increased levels of dequenching. In addition, viral glycoproteins were shown to be involved in this interaction, since dequenching was significantly reduced by pretreatment of labeled virus at 70 degrees C for 5 min or by trypsinization of R18-labeled virions prior to incubation with HEp-2 cells at 37 degrees C. The fusion of RSV with HEp-2 cells was unaffected over a pH range of 5.5 to 8.5, with some increase seen at lower pH values. Treatment of HEp-2 cells with ammonium chloride (20 and 10 mM), a lysosomotropic agent, during early stages of infection did not inhibit syncytium formation or progeny virion production by RSV. At the same concentrations of ammonium chloride, the production of vesicular stomatitis virus was reduced approximately 4 log10 units. These results suggest that fusion of the virus with the cell surface plasma membrane is the principal route of entry.  相似文献   

19.
The Arabidopsis thaliana delta-12 fatty acid desaturase gene (FAD2) was overexpressed in Saccharomyces cerevisiae by using the GAL1 promoter. S. cerevisiae harboring the FAD2 gene was capable of forming hexadecadienoyl (16:2) and linoleoyl (18:2) residues in the membrane lipid when cultured in medium containing galactose. Gas-liquid chromatography analysis of total lipids indicated that the transformed S. cerevisiae accumulated these dienoic fatty acyl residues and that they accounted for approximately 50% of the total fatty acyl residues. Phospholipid analysis of this strain indicated that the oleoyl (18:1) residue binding phosphatidylcholine (PC) was mostly converted to the 18:2 residue binding PC, whereas 50% of the palmitoleoyl (16:1) residue binding PC was converted to the 16:2 residue binding PC. A marked effect on the unsaturation of 16:1 and 18:1 was observed when S. cerevisiae harboring the FAD2 gene was cultured at 8 degrees C. To assess the ethanol tolerance of S. cerevisiae producing polyunsaturated fatty acids, the cell viability of this strain in the presence of ethanol was examined. The results indicated that S. cerevisiae cells overexpressing the FAD2 gene had greater resistance to 15% (vol/vol) ethanol than did the control cells.  相似文献   

20.
Membrane-associated and soluble forms of folate binding protein (FBP) have been identified in mammalian tissues and biological fluids. Despite their solubility differences, these two forms are functionally similar, immunologically cross-reacting, and have the same apparent molecular weights. In this study we demonstrate, for the first time, that the membrane FBP of cultured human KB cells contains a glycosyl-phosphatidylinositol (GPI) tail which is responsible for its hydrophobic properties and distinguishes it from the soluble FBP released into the medium. Treatment of the purified membrane FBP with phospholipase C specific for phosphatidylinositol (PI-PLC) removed the GPI tail and converted it to the soluble form without a change in apparent Mr by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In addition, virtually all of the folate binding sites on the plasma membrane of the intact cells were released as soluble, functional FBP following treatment with PI-PLC. The GPI tail contained 1-O-alkyl-2-O-acylglycerol as a mixture of fatty alcohols in ether linkage at C1 of the glycerol backbone and almost exclusively docosanoic acid (22:0) as the fatty acid on C2. The inositol also contained a mixture of fatty acids (16:0, 18:0, 18:1, 20:4, 22:0) located on a site other than the C2 position since the FBP was susceptible to PI-PLC cleavage. After nitrous acid deamination, the aqueous portion of the FBP contained covalently bound fatty acids, predominantly palmitate (16:0) and stearate (18:0), indicating the presence of additional acyl groups attached to the peptide in the form of amide, ester, or thioester linkage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号