首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine pulmonary artery endothelial cells (BPAEC) are extremely sensitive to oxygen, mediated by superoxide production. Ionizing radiation is known to generate superoxide in oxygenated aqueous media; however, at systemic oxygen levels (3%), no oxygen enhancement is observed after irradiation. A number of markers (cell growth, alamarBlue, mitochondrial membrane polarization) for metabolic activity indicate that BPAEC maintained under 20% oxygen grow and metabolize more slowly than cells maintained under 3% oxygen. BPAEC cultured in 20% oxygen grow better when they are transiently transfected with either manganese superoxide dismutase (MnSOD) or copper zinc superoxide dismutase (CuZnSOD) and exhibit improved survival after irradiation (0.5-10 Gy). Furthermore, X irradiation of BPAEC grown in 20% oxygen results in very diffuse colony formation, which is completely ameliorated by either growth in 3% oxygen or overexpression of MnSOD. However, MnSOD overexpression in BPAEC grown in 3% oxygen provides no further radioprotection, as judged by clonogenic survival curves. Radiation does not increase apoptosis in BPAEC but inhibits cell growth and up-regulates p53 and p21 at either 3% or 20% oxygen.  相似文献   

2.
3.
The manganese superoxide dismutase (MnSOD) ala16val polymorphism has been associated with various diseases including breast cancer. In the present study, we investigated levels of MnSOD protein, enzymatic activity, and mRNA with respect to MnSOD genotype in several human breast carcinoma cell lines and in mouse embryonic fibroblasts (MEF), developed from the MnSOD knockout mouse, stably expressing human MnSOD-ala and MnSOD-val. In human breast cell lines, the MnSOD-ala allele was associated with increased levels of MnSOD protein and MnSOD protein per unit mRNA. In the MEF transformants, MnSOD activity correlated fairly well with MnSOD protein levels. MnSOD mRNA expression was significantly lower in MnSOD-ala versus MnSOD-val lines. MnSOD protein and activity levels were not related to MnSOD genotype in the transformed MEF, although, as observed in the human breast cell lines, the MEF human MnSOD-ala lines produced significantly more human MnSOD protein per unit mRNA than the human MnSOD-val lines. This suggests that there is more efficient production of MnSOD-ala protein compared to MnSOD-val protein. Examination of several indicators of reactive oxygen species levels, including superoxide and hydrogen peroxide, in wild-type MEF and in MEF expressing similar elevated amounts of MnSOD-ala or val activity did not show differences related to the levels of MnSOD protein expression. In conclusion, in both human breast carcinoma cell lines and MEF cell lines stably transfected with human MnSOD, the MnSOD-ala allele was associated with increased production of MnSOD protein per unit mRNA indicating a possible imbalance in MnSOD protein production from the MnSOD-val mRNA.  相似文献   

4.
Prolonged exposure to supraphysiological oxygen concentrations results in the generation of reactive oxygen species, which can cause significant lung injury in critically ill patients. Supplementation with human recombinant antioxidant enzymes (AOE) may mitigate hyperoxic lung injury, but it is unclear which combination and concentration will optimally protect pulmonary epithelial cells. First, stable cell lines were generated in alveolar epithelial cells (MLE12) overexpressing one or more of the following AOE: Mn superoxide dismutase (MnSOD), CuZnSOD, or glutathione peroxidase 1. Next, A549 cells were transduced with 50-300 particles/cell of recombinant adenovirus containing either LacZ or each of the three AOE (alone or in combination). Cells were then exposed to 95% O(2) for up to 3 days, with cell number and viability determined daily. Overexpression of either MnSOD (primarily mitochondrial) or CuZnSOD (primarily cytosolic) reversed the growth inhibitory effects of hyperoxia within the first 48 h of exposure, resulting in a significant increase in viable cells (P < 0.05), with 1.5- to 3-fold increases in activity providing optimal protection. Protection from mitochondrial oxidation was confirmed by assessing aconitase activity, which was significantly improved in cells overexpressing MnSOD (P < 0.05). Data indicate that optimal protection from hyperoxic injury occurs in cells coexpressing MnSOD and glutathione peroxidase 1, with prevention of mitochondrial oxidation being a critical factor. This has important implications for clinical trials in preterm infants receiving SOD supplementation to prevent acute and chronic lung injury.  相似文献   

5.
Several studies indicate that active oxygen species play an important role in the development of pulmonary disease (asbestosis and silicosis) after exposure to mineral dust. The present study was conducted to determine if inhaled fibrogenic minerals induced changes in gene expression and activities of antioxidant enzymes (AOE) in rat lung. Two different fibrogenic minerals were compared, crocidolite, an amphibole asbestos fiber, and cristobalite, a crystalline silicon dioxide particle. Steady-state mRNA levels, immunoreactive protein, and activities of selected AOE were measured in lungs 1-10 days after initiation of exposure and at 14 days after cessation of a 10-day exposure period. Exposure to asbestos resulted in significant increases in steady-state mRNA levels of manganese-containing superoxide dismutase (MnSOD) at 3 and 9 days and of glutathione peroxidase at 6 and 9 days. An increase in steady-state mRNA levels of copper, zinc-containing superoxide dismutase (CuZnSOD), was observed at 6 days. Exposure to asbestos also resulted in overall increased enzyme activities of catalase, glutathione peroxidase and total superoxide dismutase in lung. In contrast, silica caused a dramatic increase in steady-state levels of MnSOD mRNA at all time periods and an increase in glutathione peroxidase mRNA levels at 9 days. Activities of AOE remained unchanged in silica-exposed lungs. In both models, increases in gene expression of MnSOD correlated with increased amounts of MnSOD immunoreactive protein in lung and the pattern and extent of inflammation. These data indicate that the profiles of AOE are dissimilar during the development of experimental asbestosis or silicosis and suggest different mechanisms of lung defense in response to these minerals.  相似文献   

6.
MnCl2 induced manganese-containing superoxide dismutase (MnSOD) expression (mRNA, immunoreactive protein, and enzyme activity) in human breast cancer Hs578T cells. The induction of MnSOD immunoreactive protein in Hs578T cells was inhibited by tiron (a metal chelator and superoxide scavenger), pyruvate (a hydrogen peroxide scavenger), or 2-deoxy-d-glucose (DG, an inhibitor of glycolysis and the hexose monophosphate shunt), but not by 5,5-dimethyl-1-pyrroline-1-oxide (a superoxide scavenger), N-acetyl cysteine (a scavenger for reactive oxygen species and precursor of glutathione), diphenylene iodonium (an inhibitor of flavoproteins such as NADPH oxidase and nitric oxide synthase), or SOD (a superoxide scavenger). Northern blotting demonstrated that tiron or DG affected at the mRNA level, while pyruvate affected Mn-induced MnSOD expression at both the mRNA and protein levels. These results demonstrate that Mn can induce MnSOD expression in cultured human breast cancer cells. Mn also induced apoptosis and necrosis in these cells. Since inhibitors of Mn-induced MnSOD induction did not affect cell viability, MnSOD induction is probably not the cause of the Mn-induced cell killing.  相似文献   

7.
8.
Antioxidants have been shown to be effective in attenuating acute lung injury. In this study, we determine the effects of various antioxidants by different mechanisms on the lipopolysaccharide (LPS)-induced changes. LPS was administered intravenously at a dose of 10 mg/kg to anesthetized rats. LPS induced a significant decrease in blood pressure (P < 0.01) and increased exhaled nitric oxide (NO) from 3.60+/-0.18 to 35.53+/-3.23 ppb (P < 0.01) during an observation period of 4 h. Plasma nitrate concentrations also increased from 0.61+/-0.06 to 1.54+/-0.22 micromol/l (P < 0.05). LPS-induced oxygen radical release from white blood cells isolated from rat peripheral blood also increased significantly (P < 0.001). After the experiment, the lung weight was obtained and lung tissues were taken for the determination of mRNA expression of inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta) and manganese superoxide dismutase (MnSOD). Histological examination of the lungs was also performed. In the control group injected with saline solution, mRNA expressions of iNOS, IL-1beta, TNF-alpha and MnSOD were absent. Four hours after LPS administration, mRNA expressions of iNOS, IL-1beta, and MnSOD were significantly enhanced, but TNF-alpha was not discernibly expressed. LPS also caused a twofold increase in lung weight. Pathological examination revealed endothelial cell damage and interstitial edema. Various antioxidants were given 1 h after LPS administration. These agents include SOD, catalase (CAT), SOD + CAT or vitamin C (ascorbic acid). These antioxidants effectively reversed the systemic hypotension, reduced the quantity of exhaled NO and plasma nitrate concentration, and prevented acute lung injury. Administration of various antioxidants also significantly attenuated LPS-induced oxygen radical release by rat white blood cells. LPS induced mRNA expressions of MnSOD and iNOS were significantly depressed by these antioxidants. However, only SOD + CAT and vitamin C inhibited the mRNA expression of IL-1beta. These results suggest that oxygen radicals are responsible for LPS-induced lung injury. Antioxidants can attenuate the lung injury by inhibiting mRNA expressions of iNOS and IL-1beta.  相似文献   

9.
Differential regulation of antioxidant enzymes in response to oxidants.   总被引:10,自引:0,他引:10  
We have demonstrated the selective induction of manganese superoxide dismutase (MnSOD) or catalase mRNA after exposure of tracheobronchial epithelial cells in vitro to different oxidant stresses. Addition of H2O2 caused a dose-dependent increase in catalase mRNA in both exponentially growing and confluent cells. A 3-fold induction of catalase mRNA was seen at a nontoxic dose of 250 microM H2O2. Increase in the steady-state mRNA levels of glutathione peroxidase (GPX) and MnSOD were less striking. Expression of catalase, MnSOD, and GPX mRNA was highest in confluent cells. In contrast, constitutive expression of copper and zinc SOD (CuZnSOD) mRNA was greatest in dividing cells and was unaffected by H2O2 in both exponentially growing and confluent cells. MnSOD mRNA was selectively induced in confluent epithelial cells exposed to the reactive oxygen species-generating system, xanthine/xanthine oxidase, while steady-state levels of GPX, catalase, and CuZnSOD mRNA remained unchanged. The 3-fold induction of MnSOD mRNA was dose-dependent, reaching a peak at 0.2 unit/ml xanthine oxidase. MnSOD mRNA increases were seen as early as 2 h and reached maximal induction at 24 h. Immunoreactive MnSOD protein was produced in a corresponding dose- and time-dependent manner. Induction of MnSOD gene expression was prevented by addition of actinomycin D and cycloheximide. These data indicate that epithelial cells of the respiratory tract respond to different oxidant insults by selective induction of certain antioxidant enzymes. Hence, gene expression of antioxidant enzymes does not appear to be coordinately regulated in these cell types.  相似文献   

10.
检测了不同分化的胃癌细胞株内MnSOD基因的表达及胞内活性氧限(ROS)的水平。同时通过基因转染观察上调或下调MnSOD基因表达对SGC790l胃癌细胞胞内ROS水平及增殖能力的影响。用电穿孔法将人反义和正义MnSOD cDNA真核表达载体pHβA—SOD(-)/pHβA—SOD( )转入790l细胞,用含G418的RPMIl640培养基筛选稳定表达克隆。然后用RT-PCR鉴定MnDSOD基因的表达。同时用RT-PCR方法检测正常胃粘膜组织及MKN-28、SGC790l、BGC823、HGC-27四株高、中、低、未分化胃癌细胞株内的MnSoD的mRNA表达。利用DCFH-DA荧光染色方法检测不同分化胃癌细胞株及790l转染细胞株内的ROS水平。四唑蓝比色法(MTT)绘制MKN-28、SGC790l、BGC823、HGC-27四株不同分化胃癌细胞及正义、反义、空载MnSOD转染790l细胞的生长曲线。发现不同分化胃癌细胞内的MnSOD普遍呈低表达且与分化程度平行,不同分化胃癌细胞株胞内ROS水平随着MnSOD表达的下调逐步上升,细胞增殖加快。较之MnSOD空载790l,正义、反义MnSOD转染的790l细胞中该基因的表达出现明显上调及下调,胞内ROS水平较对照细胞也相应有显著降低和升高。正义株增殖受抑,反义株增殖加快。表明胃癌细胞内MnSOD的表达与肿瘤的分化程度呈负相关。可通过改变胞内RoS水平改变MnSOD基因的表达,从而调节胃癌细胞的生长。  相似文献   

11.
Rotifers are useful model organisms for aging research, owing to their small body size (0.1–1 mm), short lifespan (6–14 days) and the relative easy in which aging and senescence phenotypes can be measured. Recent studies have shown that antioxidants can extend the lifespan of rotifers. In this paper, we analyzed changes in the mRNA expression level of genes encoding the antioxidants manganese superoxide dismutase (MnSOD), copper and zinc SOD (CuZnSOD) and catalase (CAT) during rotifer aging to clarify the function of these enzymes in this process. We also investigated the effects of common life-prolonging methods [dietary restriction (DR) and resveratrol] on the mRNA expression level of these genes. The results showed that the mRNA expression level of MnSOD decreased with aging, whereas that of CuZnSOD increased. The mRNA expression of CAT did not change significantly. This suggests that the ability to eliminate reactive oxygen species (ROS) in the mitochondria reduces with aging, thus aggravating the damaging effect of ROS on the mitochondria. DR significantly increased the mRNA expression level of MnSOD, CuZnSOD and CAT, which might explain why DR is able to extend rotifer lifespan. Although resveratrol also increased the mRNA expression level of MnSOD, it had significant inhibitory effects on the mRNA expression of CuZnSOD and CAT. In short, mRNA expression levels of CAT, MnSOD and CuZnSOD are likely to reflect the ability of mitochondria to eliminate ROS and delay the aging process.  相似文献   

12.
A mutant Escherichia coli lipopolysaccharide (LPS) lacking myristoyl fatty acid markedly stimulates the activity of manganese superoxide dismutase (MnSOD) without inducing tumor necrosis factor alpha (TNFalpha) production by human monocytes (Tian et al., 1998, Am J Physiol 275:C740.), suggesting that induction of MnSOD and TNFalpha by LPS are regulated through different signal transduction pathways. The protein tyrosine kinase (PTK)/mitogen-activated protein kinase (MAPK) pathway plays an important role in the LPS-induced TNFalpha production. In the current study, we determined the effects of PTK inhibitors, genistein and herbimycin A, on the induction of MnSOD and TNFalpha in human monocytes. Genistein (10 microg/ml) and herbimycin A (1 microg/ml) markedly inhibited LPS-induced protein tyrosine phosphorylation, phosphorylation and nuclear translocation of MAPK (p42 ERK, extracellular signal-regulated kinase), and increases in the steady state level of TNFalpha mRNA as well as TNFalpha production. In contrast, at similar concentrations, genistein and herbimycin A had no effect on the LPS-induced activation of nuclear factor kappaB (NFkappaB) and induction of MnSOD (mRNA and enzyme activity) in human monocytes. In addition, inhibition of NFkappaB activation by gliotoxin and pyrrodiline dithiocarbamate, inhibited LPS induction of TNFalpha and MnSOD mRNAs. These results suggest that (1) while PTK and MAPK are essential for the production of TNFalpha, they are not necessary for the induction of MnSOD by LPS, and (2) while activation of NFkappaB alone is insufficient for the induction of TNFalpha mRNA by LPS, it is necessary for the induction of TNFalpha as well as MnSOD mRNAs.  相似文献   

13.
14.
15.
Endothelial cells are primary targets for injury by reactive oxygen species. Endothelial catalase, copper-zinc superoxide dismutase (CuZnSOD), and manganous superoxide dismutase (MnSOD) provide potential antioxidant enzymatic defenses against oxidant-induced cellular damage. Previous studies in vivo and in vitro have demonstrated that in certain cell types exposure to oxidants may increase the expression of one or more of these antioxidant enzymes, thus providing greater intracellular potential to withstand oxidant-induced cell stress. To test whether endothelial antioxidant enzyme expression is influenced by similar oxidant-induced stresses in vitro, we have exposed endothelial cells to tumor necrosis factor-alpha (TNF-alpha) and have measured levels of catalase, CuZnSOD and MnSOD mRNA, and protein. Our results demonstrate a selective increase of MnSOD mRNA, with coordinate increases of both MnSOD protein and enzyme activity in endothelial cells treated for 24/h with TNF-alpha. In contrast, levels of catalase and CuZnSOD mRNA and protein remained unchanged in these cells after TNF-alpha treatment. These observations were made in microvessel endothelial cells derived from murine and bovine sources. Our results indicate that TNF-alpha can act specifically to increase enzymatic antioxidant potential in endothelial cells by induction of a particular antioxidant enzyme encoding mRNA species. These data demonstrate the capacity of endothelial cells to mount an antioxidant defense in response to exposure to an inducer of oxidative damage.  相似文献   

16.
The most important cellular protective mechanisms against oxidative stress are antioxidant enzymes. Their action is based on decomposal of reactive oxygen species (ROS) and their transformation to H2O2. Within the mitochondria manganese superoxide dismutase (MnSOD) affords the major defense against ROS. In this study we investigated tissue sections from 101 breast carcinomas for the immunohistochemical expression of MnSOD protein and these results were assessed in relation to various clinicopathological parameters, in order to clarify the prognostic value of this enzyme. The possible relationship to hormone receptor content, anti-apoptotic protein bcl-2, p53 and cell proliferation was also estimated. High expression levels were observed, as 79/101 (78,2%) cases expressed strong immunoreactivity. In this study MnSOD increased in a direct relationship with tumor grade and is therefore inversely correlated with differentiation (p=0.0004). Furthermore, there was a strong positive correlation between MnSOD expression and p53 protein immunoreactivity (p=0.0029). The prognostic impact of MnSOD expression in determining the risk of recurrence and overall survival with both univariate (long-rang test) and multivariate (Cox regression) methods of analysis was statistically not significant. These results indicate that neoplastic cells in breast carcinomas retain their capability to produce MnSOD and thus protected from the possible cellular damage provoked by reactive oxygen species. In addition, MnSOD content varies according to the degree of differentiation of breast carcinoma.  相似文献   

17.
The physiological significance of cardiac mitochondrial uncoupling protein 2 (UCP2)-mediated uncoupling respiration in exercise is unknown. In the current study, mitochondrial respiratory function, UCP2 mRNA level, UCP2-mediated respiration (UCR), and reactive oxygen species (ROS) generation, as well as manganese superoxide dismutase (MnSOD) activity were determined in rat heart with or without endurance training after an acute bout of exercise of different duration. In the untrained rats, state 4 respiration and UCR-independent respiration rates were progressively increased with exercise time and were 64 and 70% higher, respectively, than resting rate at 150 min, whereas UCR was elevated by 86% with no significant change in state 3 respiration. UCP2 mRNA level showed a 5- and 4-fold increase, respectively, after 45 and 90 min of exercise, but returned to resting level at 120 and 150 min. Mitochondrial ROS production and membrane potential (Deltapsi) increased progressively until 120 min, followed by a decrease to the resting level at 150 min. MnSOD mRNA abundance showed a 2-fold increase at 120 min but MnSOD activity did not change with exercise. Training significantly increased mitochondrial ATP synthetase activity, ADP to oxygen consumption (P/O) ratio, respiratory control ratio, and MnSOD activity, whereas exercise-induced state 4 respiration, UCR, ROS production, and Deltapsi were attenuated in the trained rats. We conclude that (1) UCP2 mRNA expression and activity in rat heart can be upregulated during prolonged exercise, which may reduce cross-membrane Deltapsi and thus ROS production; and (2) endurance training can blunt exercise-induced UCP2 and UCR, and improve mitochondrial efficiency of oxidative phosphorylation due to increased removal of ROS.  相似文献   

18.
Male Sprague Dawley rats were exposed to EMP irradiation of 100 kV/m peak-to-peak e-field intensity and different numbers of pulses. Rat sperm samples were prepared for analysis of sperm qualities; Testes were assessed by transmission electron microscopy and serum hormone concentrations were examined by radioimmunoassay; Enzymatic activities of Total-superoxide dismutase(T-SOD) and manganese-superoxide dismutase (MnSOD), the mRNA levels of MnSOD and cuprozinc-superoxide dismutase (CuZnSOD), and the density of malondialdehyde (MDA) were also determined. EMP irradiation did not affect spermatozoon morphology, micronucleus formation rate, sperm number or viability, but the acrosin reaction rate decreased at 24 h and 48 h and recovered by 72 h after irradiation as compared to the controls. The ultrastructure of rat testis displayed more serious damage at 24 h than at other time points (6 h, 12 h, 48 h). Serum levels of luteotrophic hormone (LH) and testosterone (T) were elevated in irradiated rats as compared to controls. After irradiation, enzymatic activities of T-SOD and MnSOD were reduced by 24 h, consistent with the changes observed in MnSOD mRNA expression; MDA content increased at 6 h in turn. These studies have quantified the morphological damage and dysfunction in the rat reproductive system induced by EMP. The mechanism of EMP induced damage may be associated with the inhibition of MnSOD expression.  相似文献   

19.
20.
Male Sprague Dawley rats were exposed to EMP irradiation of 100?kV/m peak-to-peak e-field intensity and different numbers of pulses. Rat sperm samples were prepared for analysis of sperm qualities; Testes were assessed by transmission electron microscopy and serum hormone concentrations were examined by radioimmunoassay; Enzymatic activities of Total-superoxide dismutase(T-SOD) and manganese-superoxide dismutase (MnSOD), the mRNA levels of MnSOD and cuprozinc-superoxide dismutase (CuZnSOD), and the density of malondialdehyde (MDA) were also determined. EMP irradiation did not affect spermatozoon morphology, micronucleus formation rate, sperm number or viability, but the acrosin reaction rate decreased at 24?h and 48?h and recovered by 72?h after irradiation as compared to the controls. The ultrastructure of rat testis displayed more serious damage at 24?h than at other time points (6?h, 12?h, 48?h). Serum levels of luteotrophic hormone (LH) and testosterone (T) were elevated in irradiated rats as compared to controls. After irradiation, enzymatic activities of T-SOD and MnSOD were reduced by 24?h, consistent with the changes observed in MnSOD mRNA expression; MDA content increased at 6?h in turn. These studies have quantified the morphological damage and dysfunction in the rat reproductive system induced by EMP. The mechanism of EMP induced damage may be associated with the inhibition of MnSOD expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号