首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dilute solutions of sulfhydryl enzymes (phosphoglyceraldehyde dehydrogenase, adenosinetriphosphatase, succinoxidase) showed reduced activity on irradiation by small amounts of x-rays. When the inhibition was partial the enzyme was reactivated on addition of glutathione. When the inhibition was more complete, reactivation was only partial. These observations are interpreted as being due to oxidation of the -SH groups of the protein by the products of water irradiation, the radicals OH and O(2)H, and H(2)O(2) and atomic oxygen. The irreversible inhibition which occurs when the dose of x-rays is increased is attributed to protein denaturation. Inhibition of the non-sulfhydryl enzymes trypsin, catalase, and ribonuclease, which required larger amounts of x-rays, is attributed to protein denaturation. These experiments are further evidence that inhibition of enzymes by ionizing radiations is due to the indirect action of the products of irradiated water rather than to direct ionization of the enzyme through collision with the ionizing radiation.  相似文献   

2.
Thiol compounds, such as glutathione, 2,3-dimercaptopropanol (BAL), propane-1,3-dithiol, and N-phenylaminopropanedithiol, were readily oxidized by x-rays, beta rays, and gamma rays. The ionic yield for this oxidation was about the same, 3 at pH 7, on irradiation with x-rays and with beta rays; it was 23 per cent less on irradiation with gamma rays. The ionic yield varied with the hydrogen ion concentration, increasing as the pH value increased. There was no reduction of oxidized glutathione on irradiation with dosages of x-rays and gamma rays which produced oxidation of the reduced compound. In the absence of oxygen, the oxidation of thiols by ionizing radiations was only 33 per cent of that obtained in the presence of dissolved oxygen. When the thiol solutions were irradiated in the presence of dissolved oxygen, catalase protected them from oxidation by 17 to 27 per cent.  相似文献   

3.
H Chung  J Fried  J Jarabak 《Prostaglandins》1987,33(3):391-402
Oxidation of glutathione disulfide by a mixture of performic and hydrochloric acids leads to the formation of several compounds that are stronger inhibitors than glutathione disulfide of the placental enzyme that possess both NADP-linked 15-hydroxyprostaglandin dehydrogenase and 9-ketoprostaglandin reductase activities. The only one of these inhibitors that has been identified is glutathione thiosulfonate. The others are unstable and may include glutathione sulfinyl sulfone and glutathione disulfone. Since the enzyme appears to have a glutathione binding site in close proximity to its active site and glutathione thiosulfonate reacts with free sulfhydryl groups, the effects of this thiosulfonate on the enzyme were examined in more detail. Glutathione thiosulfonate and methyl methanethiosulfonate cause a time-dependent irreversible inhibition of both the hydroxyprostaglandin dehydrogenase and the ketoprostaglandin reductase activities, presumably by reacting with a free sulfhydryl at the prostaglandin binding site. Experiments with PGA1-glutathione show that this sulfhydryl is not necessary for the catalytic activity of the enzyme as long as the substrate can bind at the glutathione site.  相似文献   

4.
Oxidation of glutathione disulfide by a mixture of performic and hydrochloric acids leads to the formation of several compounds that are stronger inhibitors than glutathione disulfide of the placental enzyme that posses both NADP-linked 15-hydroxypyrostaglandin dehydrogenase and 9-ketoprostaglandin reductase activities. The only one of these inhibitors that has been identified is glutathione thiosulfonate. The others are unstble and may include glutathione sulfinyl sulfone and glutathione disulfone. Since the enzyme appears to have a glutathione binding site in close proximity to its active site and glutathione thiosulfonate reacts with free sulfhydryl groups, the effects of this thiosulfonate on the enzyme were examined in more detail. Glutahione thiosulfonate and methyl methanethiosulfonate cause a time-dependent irreversible inhibition of both the hydroxyprostaglandin dehydrogenase and the ketoprostaglandin reductase activities, presumably by reacting with a free sulfhydryl at the prostaglandin binding site. Experiments with PGA-glutathione show that this sulfhydryl is not necessary for the catalytic activity of the enzyme as long as the substrate can bind at the glutahione site.  相似文献   

5.
An NADPH-dependent 7 alpha-hydroxysteroid dehydrogenase acting on 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid was partially purified 160-fold with a yield of 13% from rat liver microsomes using DEAE-cellulose, hydroxyapatite and Affi-Gel Blue column chromatography. The specific activity of the purified enzyme was 91.3 nmol chenodeoxycholic acid formed/min per mg of protein. The reaction was reversible, and the optimum pH of the enzyme for the oxidation was about 8.5, whereas that for the reduction was about 5.0 A molecular weight of the enzyme was estimated to be about 130,000 by Superose 6TM gel filtration chromatography. The apparent Km value for 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid was 35.7 microM and that for NADPH was 90.9 microM. The preferred substrate for the enzyme was 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid rather than 3 alpha,12 alpha-dihydroxy-7-keto-5 beta-cholanoic acid, a 7-keto-bile acid analogue. The enzyme also preferred the unconjugated form to the conjugated forms. The enzyme activity was inhibited by p-chloromercuribenzoate; however, the inhibition was prevented by addition of reduced form of glutathione to the reaction mixture, indicating that the enzyme requires a sulfhydryl group for activity.  相似文献   

6.
Plants of Boea hygroscopica F. Muell were subjected to dehydration for 25 days until the relative water content was 23%. The rate of water loss was very slow during the first 12 days of dehydration while it dramatically increased during the last 3 days of the treatment. On day 12 of dehydration total glutathione content was reduced to 24% of the control level and was mainly present in the oxidized form. At that time an oxidation of the sulfhydryl groups of soluble proteins was observed. A protection of glutathione against oxidation of the sulfhydryl groups of soluble proteins was established only after 22 days of desiccation, at the same time as glutathione began to accumulate. During the whole desiccation period enzyme activities related to glutathione utilization and regeneration and the activity of NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), which contains essential sulfhydryl groups, were maintained. The results of the present experiment suggest that during dehydration of Boea hygroscopica glutathione has above all, a primary role in the protection of the sulfhydryl groups of the thylakoid proteins, which were maintained in the reduced form during the whole dehydration period.  相似文献   

7.
The effects of K2PtCl4, cis-Pt(NH3)2Cl2, and trans-Pt(NH3)2Cl2 on the activities of glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate dehydrogenase, dihydrofolate reductase, fructose-1,6-bisphosphate aldolase, catalase, tyrosinase, and peroxidase have been investigated. All of the enzymes which are thought to have essential sulfhydryl groups (glyceraldehyde-3-phosphate dehydrogenase, aldolase, and glucose-6-phosphate dehydrogenase) were significantly inhibited by K2PtCl4. The other four enzymes studied are not known to have essential sulfhydryl groups, and were not significantly affected by the Pt compounds under the conditions employed. Glyceraldehyde-3-phosphate dehydrogenase was the only enzyme inhibited by all three Pt compounds tested, with K2PtCl4 being the most effective and cis-Pt(NH3)2Cl2 the least effective inhibitor. Semilogarithmic plots of residual activity versus inhibition time indicated that the inhibition reactions were not simple first-order processes, except for the inhibition of glucose-6-phosphate dehydrogenase by K2PtCl4 which appeared to be first-order with respect to enzyme concentration.  相似文献   

8.
We investigated the effect of dopa and dopamine on creatine kinase (CK) activity in the presence of ferrylmyoglobin (ferrylMb). CK was sharply inhibited by dopa and dopamine in the presence of ferrylMb. Dopa and dopamine markedly promoted the reduction of ferrylMb to metmyoglobin (metMb). The semiquinone from dopa and dopamine may be involved in CK inactivation. During inactivation of the enzyme, both kinetic parameters Vmax and Km changed. In addition, reduced glutathione restored the activity of CK at an early stage. These results suggest that inactivation of CK is dominantly due to oxidation of sulfhydryl (SH) groups of the enzyme. Other catechols, such as adrenaline and noradrenaline, little inactivated CK activity, whereas they promoted the reduction of ferrylMb to metMb. Other SH enzymes, including alcohol dehydrogenase (ADH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were inactivated to a lesser extent by dopa and dopamine in the presence of ferrylMb. Adrenaline and noradrenaline did not significantly prevent the inactivation of ADH and very slightly inhibited GAPDH. These results suggest that dopa and dopamine act as prooxidants to inactivate SH enzymes in the presence of ferrylMb.  相似文献   

9.
Organotellurium compounds are known for their toxicological effects. These effects may be associated with the chemical structure of these compounds and the oxidation state of the tellurium atom. In this context, 2-phenylethynyl-butyltellurium (PEBT) inhibits the activity of the sulfhydryl enzyme, δ-aminolevulinate dehydratase. The present study investigated on the importance of the tellurium atom in the PEBT ability to oxidize mono- and dithiols of low molecular weight and sulfhydryl enzymes in vitro. PEBT, at high micromolar concentrations, oxidized dithiothreitol (DTT) and inhibited cerebral Na+, K+-ATPase activity, but did not alter the lactate dehydrogenase activity. The inhibition of cerebral Na+, K+-ATPase activity was completely restored by DTT. By contrast, 2-phenylethynyl-butyl, a molecule without the tellurium atom, neither oxidized DTT nor altered the Na+, K+-ATPase activity. In conclusion, the tellurium atom of PEBT is crucial for the catalytic oxidation of sulfhydryl groups from thiols of low molecular weight and from Na+, K+-ATPase.  相似文献   

10.
Preincubation of horse liver alcohol dehydrogenase (HLADH) with the oxidative agent, tert-butyl hydroperoxide (tBOOH) results in a twofold stimulation of the ethanol dehydrogenase activity of this enzyme. This stimulation was dependent on tBOOH concentration up to 100 mM; above this concentration tBOOH did not further stimulate ethanol oxidation by HLADH. Active-site-directed reagents and classical ADH binary complexes were used to probe the possible mechanism of this activating effect. The rate and extent of stimulation by tBOOH is strongly reduced by binary complexes with NAD(+) or NADH, whose pyrophosphate groups bind to Arg-47 and Arg-369. In contrast stimulation by tBOOH was not prevented by AMP or the sulfhydryl reagents dithiothreitol and glutathione, suggesting, respectively, a lack of role for Lys-228 and sulfhydryl group oxidation in the stimulation by tBOOH. In contrast to the liver enzyme, treatment of yeast ADH (YADH) with tBOOH irreversibly inhibited its ethanol dehydrogenase activity. Inhibition of YADH by tBOOH approximated first-order rate kinetics with respect to enzyme at fixed concentrations of tBOOH between 0.5 to 300 mM. Four -SH groups per molecule of YADH were modified by tBOOH, whereas only two -SH groups were modified in HLADH. The stimulation of HLADH by tBOOH is suggested to be due to destabilization of the catalytic Zn-coordination sphere and amino acids associated with coenzyme binding in the active site, while inactivation of YADH appears to be associated with -SH group oxidation by the peroxide.  相似文献   

11.
Thioltransferase in human red blood cells: purification and properties   总被引:3,自引:0,他引:3  
Thioltransferase activity was identified and the enzyme purified to apparent homogeneity from human red blood cells. Activity was measured as glutathione-dependent reduction of the prototype substrate hydroxyethyl disulfide; formation of oxidized glutathione (GSSG) was coupled to NADPH oxidation by GSSG reductase (1 unit of activity = 1 mumol/min of NADPH oxidized). The thioltransferase-GSH-GSSG reductase system was shown also to catalyze the regeneration of hemoglobin from the mixed disulfide hemoglobin-S-S-glutathione (HbSSG) and to reactivate the metabolic control enzyme phosphofructokinase (PFK) after oxidation of its sulfhydryl groups. On a relative concentration basis, thioltransferase was about 1200 times more efficient than dithiothreitol in reactivation of phosphofructokinase; e.g., 500 microM DTT was required to effect the same extent of reactivation as that of 0.4 microM TTase. The GSH plus GSSG reductase system without thioltransferase was ineffective for reduction of HbSSG or reactivation of PFK. The average amount of thioltransferase in intact erythrocytes was calculated to be 4.6 units/g of Hb at 25 degrees C. This level of activity is about the same as those of other enzymes that participate in sulfhydryl maintenance in red blood cells, such as GSSG reductase and glucose-6-phosphate dehydrogenase. These results suggest a physiological role for the thioltransferase in erythrocyte sulfhydryl homeostasis. Certain properties of the human erythrocyte thioltransferase resemble those of other mammalian thioltransferase and glutaredoxin enzymes. Thus, the human erythrocyte enzyme, purified about 28,000-fold to apparent homogeneity, is a single polypeptide with a molecular weight of 11,300. Its N-terminus is blocked, it is heat stable, and it contains four cysteine residues per protein molecule. However, the human erythrocyte thioltransferase is a distinct protein based on its amino acid composition. For example, it contains no methionine residues; whereas the related mammalian enzymes described to date have at least one internal methionine residue in their largely homologous sequences.  相似文献   

12.
In their inhibition-inducing interactions with enzymes, quinones primarily utilize two mechanisms, arylation and oxidation of enzyme thiol groups. In this work, we investigated the interactions of 1,4-naphthoquinone with urease in an effort to estimate the contribution of the two mechanisms in the enzyme inhibition. Jack bean urease, a homohexamer, contains 15 thiols per enzyme subunit, six accessible under non-denaturing conditions, of which Cys592 proximal to the active site indirectly participates in the enzyme catalysis. Unlike by 1,4-benzoquinone, a thiol arylator, the inactivation of urease by 1,4-naphthoquinone under aerobic conditions was found to be biphasic, time- and concentration-dependent with a non-linear residual activity-modified thiols dependence. DTT protection studies and thiol titration with DTNB suggest that thiols are the sites of enzyme interactions with the quinone. The inactivated enzyme had approximately 40% of its activity restored by excess DTT supporting the presence of sulfenic acid resulting from the oxidation of enzyme thiols by ROS. Furthermore, the aerobic inactivation was prevented in approximately 30% by catalase, proving the involvement of hydrogen peroxide in the process. When H2O2 was directly applied to urease, the enzyme showed susceptibility to this inactivation in a time- and concentration-dependent manner with the inhibition constant of H2O2 Ki = 3.24 mM. Additionally, anaerobic inactivation of urease was performed and was found to be weaker than aerobic. The results obtained are consistent with a double mode of 1,4-naphthoquinone inhibitory action on urease, namely through the arylation of the enzyme thiol groups and ROS generation, notably H2O2, resulting in the oxidation of the groups.  相似文献   

13.
Among the three closely related enzymes, lipoamide dehydrogenase, mercuric reductase, and glutathione reductase only the latter is inhibited by 2,4,6-trinitrobenzenesulfonate (TNBS). On the other hand, all three enzymes exhibit high rates of TNBS-dependent NADPH oxidation. In the case of glutathione reductase and mercuric reductase this TNBS-dependent activity displays substrate inhibition by excess of NADPH and is strongly stimulated by NADP+. The stimulation is especially pronounced with mercuric reductase, 25-fold under some conditions. Neither substrate inhibition nor stimulation by NAD+ is observed with lipoamide dehydrogenase.  相似文献   

14.
25 strains of Clostridium perfringens were screened for hydroxysteroid dehydrogenase activity; 19 contained NADP-dependent 3alpha-hydroxysteroid dehydrogenase and eight contained NAD-dependent 12alpha-hydroxysteroid dehydrogenase active against conjugated and unconjugated bile salts. All strains containing 12alpha-hydroxysteroid dehydrogenase also contained 3alpha-hydroxysteroid dehydrogenase although 12alpha-hydroxysteroid dehydrogenase was invariably in lesser quantity than the 3alpha-hydroxysteroid dehydrogenase. In addition, 7alpha-hydroxysteroid dehydrogenase activity was evident only when 3alpha, 7alpha, 12alpha-trihydroxy-5beta-cholanoate was substrate but notably absent when 3alpha, 7alpha-dihydroxy-5beta-cholanoate was substrate. The oxidation product 12alpha-hydroxy-3, 7-diketo-5beta-cholanoate is rapidly further degraded to an unknown compound devoid of either 3alpha- or 7alpha-OH groups. Group specificity of these enzymes was confirmed by thin-layer chromatography studies of the oxidation products. These enzyme systems appear to be constitutive rather than inducible. In contrast to C. perfringens. Clostridium paraputrificum (five strains tested) contained no measurable hydroxysteroid dehydrogenase activity. pH studies of the C. perfringens enzymes revealed a sharp pH optimum at pH 11.3 and 10.5 for the 3alpha-OH- and 12alpha-OH-oriented activities, respectively. Kinetic studies gave Km estimates of approx. 5 X 10(-5) and 8 X 10(-4) M with 3alpha, 7a-dihydroxy-5beta-cholanoate and 3alpha, 12alpha-dihydroxy-5beta-cholanoate as substrates for two respective enzymes. 3alpha-hydroxysteroid dehydrogenase was active against 3alpha-OH-containing steroids such as androsterone regardless of the sterochemistry of the 5H (Both A/B cis and A/B trans steroides were substrates). There was no activity against 3beta-OH-containing steroids. The 3alpha- and 12alpha-hydroxysteroid dehydrogenase activities, although differing in cofactor requirements cannot be distinguished by their appearance in the growth curve, their mobility on disc gel electrophoresis, elution volume on passage through Sephadex G-200 or heat inactivation studies.  相似文献   

15.
Anaerobic degradation of hydrocarbons was discovered a decade ago, and ethylbenzene dehydrogenase was one of the first characterized enzymes involved. The structure of the soluble periplasmic 165 kDa enzyme was established at 1.88 A resolution. It is a heterotrimer. The alpha subunit contains the catalytic center with a molybdenum held by two molybdopterin-guanine dinucleotides, one with an open pyran ring, and an iron-sulfur cluster with a histidine ligand. During catalysis, electrons produced by substrate oxidation are transferred to a heme in the gamma subunit and then presumably to a separate cytochrome involved in nitrate respiration. The beta subunit contains four iron-sulfur clusters and is structurally related to ferredoxins. The gamma subunit is the first known protein with a methionine and a lysine as axial heme ligands. The catalytic product was modeled into the active center, showing the reaction geometry. A mechanism consistent with activity and inhibition data of ethylbenzene-related compounds is proposed.  相似文献   

16.
Warburganal, a unique dialdehyde sesquiterpene isolated from East African Warburgia plants, showed a strong antifungal activity. However, this growth inhibition in Saccharomyces cerevisiae was reversed with L-cysteine. In addition, warburganal inhibited the alcoholic fermentation of S. cerevisiae while L-cysteine reversed this inhibition. When alcohol dehydrogenase, a sulfhydryl enzyme, was incubated with warburganal, the enzyme activity decreased with time. The decrease was more rapid at alkaline pH. L-Cysteine prevented this enzyme inhibition by warburganal but could not restore the enzyme activity lost already due to warburganal. Warburganal lost its characteristic ultraviolet absorption spectrum in the presence of L-cysteine. The change in absorbance was favored at alkaline pH, indicating Michael reaction type addition of L-cysteine to warburganal. Based on these observations, a variety of physiological activities due to warburganal appear to result from its irreversible reactivity with sulfhydryl groups.  相似文献   

17.
The effect of cysteine and glutathione on mammalian melanogenesis has been studied. It has been shown that their action is mediated by two different mechanisms. (a) The reaction of the thiol groups with dopaquinone after the tyrosinase-catalyzed oxidation of tyrosine and dopa. This mechanism leads to the formation of sulfhydryl-dopa conjugates and finally sulfur-containing pigments, phaeomelanins instead of eumelanins. This fact might produce an inhibition of melanogenesis due to the slower rate of chemical reactions involved in the polymerization of such thiol-conjugates when compared to that of indoles. (b) The direct interaction between the sulfhydryl compounds and the tyrosinase active site. This interaction may regulate the activity of the enzyme. It is shown that Harding-Passey mouse melanoma tyrosinase is more sensitive to sulfhydryl compounds than mushroom tyrosinase. Cysteine always produces an inhibition of the tyrosinase hydroxylase and dopa oxidase activities of melanoma tyrosinase, this inhibition becoming greater as the cysteine concentration increases. On the other hand, glutathione produces an activation of the tyrosine hydroxylase activity below 3 mM and an inhibition at higher concentrations. The limit between the enzymatic activation and inhibition appears at glutathione concentrations similar to the physiological levels of this compound found in melanocytes. Although the switch from eumelanogenesis to phaeomelanogenesis occurs at much lower concentrations of glutathione, taking into account these data it is discussed that this sulfhydryl compound may regulate not only the type but also the amount of melanin formed inside melanocytes.  相似文献   

18.
Formaldehyde dehydrogenase from Pseudomonas putida C-83 was found to contain 7 halfcystine residues per subunit monomer, as checked by the method of performic acid oxidation. Approximately 7 sulfhydryl groups per subunit monomer were titrated with 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) after denaturation with 8 m urea. In the native enzyme, modification of three sulfhydryl groups per subunit with p-chloromercuribenzoate (PCMB) led to the complete loss of enzyme actiyities for both formaldehyde and n-butanol. Hydrogen-peroxide competitively inhibited the enzyme activity for formaldehyde, while it was only slightly inhibitory to the activity for n-butanol. Both formaldehyde and hydrogen-peroxide protected one sulfhydryl group per subunit monomer from modification with PCMB. Moreover, hydrogen-peroxide was hardly reactive to the enzyme which was preincubated with formaldehyde.

From these observations, we conclude that one of three PCMB-reactive sulfhydryl groups is essential for the binding of formaldehyde, and hydrogen-peroxide modifies this sulfhydryl group.  相似文献   

19.
Our earlier studies have shown that gossypol is a specific inhibitor of DNA synthesis in cultured cells at low doses. In an attempt to determine the mechanism for the inhibition of DNA synthesis by gossypol we observed that gossypol does not interact with DNA per se but may affect some of the enzymes involved in DNA replication. These studies indicated that gossypol inhibits both in vivo and in vitro the activity of DNA polymerase alpha (EC 2.7.7.7), a major enzyme involved in DNA replication, in a time- and dose-dependent manner. Kinetic analysis revealed that gossypol acts as a noncompetitive inhibitor of DNA polymerase alpha with respect to all four deoxynucleotide triphosphates and to the activated DNA template. Inhibition of DNA polymerase alpha does not appear to be due to either metal chelation or reduction of sulfhydryl groups on the enzyme. Gossypol also inhibited HeLa DNA polymerase beta in a dose-dependent manner, but had no effect on DNA polymerase gamma. These results suggest that inhibition of DNA polymerase alpha may account in part for the inhibition of DNA synthesis and the S-phase block caused by gossypol. The data also raise the possibility that gossypol may interfere with DNA repair processes as well.  相似文献   

20.
The purpose of this study was to quantify and to determine the distribution of DNA double-strand breaks (DSBs) in human cells irradiated in vitro and to evaluate the relative biological effectiveness (RBE) of the alpha-particle emitter (211)At for DSB induction. The influence of the irradiation temperature on the induction of DSBs was also investigated. Human fibroblasts were irradiated as intact cells with alpha particles from (211)At, (60)Co gamma rays and X rays. The numbers and distributions of DSBs were determined by pulsed-field gel electrophoresis with fragment analysis for separation of DNA fragments in sizes 10 kbp-5.7 Mbp. A non-random distribution was found for DSB induction after irradiation with alpha particles from (211)At, while irradiation with low-LET radiation led to more random distributions. The RBEs for DSB induction were 2.1 and 3.1 for (60)Co gamma rays and X rays as the reference radiation, respectively. In the experiments studying temperature effects, nuclear monolayers were irradiated with (211)At alpha particles or (60)Co gamma rays at 2 degrees C or 37 degrees C and intact cells were irradiated with (211)At alpha particles at the same temperatures. The dose-modifying factor (DMF(temp)) for irradiation of nuclear monolayers at 37 degrees C compared with 2 degrees C was 1.7 for (211)At alpha particles and 1.6 for (60)Co gamma rays. No temperature effect was observed for intact cells irradiated with (211)At. In conclusion, irradiation with alpha particles from (211)At induced two to three times more DSB than gamma rays and X rays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号