首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Desferrioxamine (DFO), a siderophore initially isolated from Streptomyces pilosus, possesses extraordinary metal binding properties with wide biomedical applications that include chelation therapy, nuclear imaging, and antiproliferation. In this work, we prepared a novel multifunctional agent consisting of (i) a near-infrared (NIR) fluorescent probe-cypate; (ii) an integrin alpha vbeta3 receptor (ABIR)-avid cyclic RGD peptide, and (iii) a DFO moiety, DFO-cypate-cyclo[RGDfK(approximately)] (1, with approximately representing the cypate conjugation site at the side chain of lysine; f is d-phenylalanine). Compound 1 and two control compounds, cypate-cyclo[RGDfK(approximately)] ( 2) and cypate-DFO ( 3), were synthesized by modular assembly of the corresponding protected RGD peptide cyclo[R(Pbf)GD(OBut)fK] and DFO on the dicarboxylic acid-containing cypate scaffold in solution. The three compounds exhibited similar UV-vis and emission spectral properties. Metal binding analysis shows that DFO as well as 1 and 3 exhibited relatively high binding affinity with Fe(III), Al(III), and Ga(III). In contrast to Ga(III), the binding of Fe to 1 and 3 quenched the fluorescence emission of cypate significantly, suggesting an efficient metal-mediated approach to perturb the spectral properties of NIR fluorescent carbocyanine probes. In vitro, 1 showed a high ABIR binding affinity (10 (-7) M) comparable to that of 2 and the reference peptide cyclo(RGDfV), indicating that both DFO and cypate motifs did not interfere significantly with the molecular recognition of the cyclic RGD motif with ABIR. Fluorescence microscopy showed that internalization of 1 and 2 in ABIR-positive A549 cells at 1 h postincubation was higher than 3 and cypate alone, demonstrating that incorporating ABIR-targeting RGD motif could improve cellular internalization of DFO analogues. The ensemble of these findings demonstrate the use of multifunctional NIR fluorescent ABIR-targeting DFO analogues to modulate the spectral properties of the NIR fluorescent probe by the chelating properties of DFO and visualize intracellular delivery of DFO by receptor-specific peptides. These features provide a strategy to explore the potential of 1 in tumor imaging and treatment as well as some molecular recognition processes mediated by metal ions.  相似文献   

2.
Rapid detection of multifocal cancer without the use of complex imaging schemes will improve treatment outcomes. In this study, dynamic fluorescence imaging was used to harness differences in the perfusion kinetics of near‐infrared (NIR) fluorescent dyes to visualize structural characteristics of different tissues. Using the hydrophobic nontumor‐selective NIR dye cypate, and the hydrophilic dye LS288, a high tumor‐to‐background contrast was achieved, allowing the delineation of diverse tissue types while maintaining short imaging times. By clustering tissue types with similar perfusion properties, the dynamic fluorescence imaging method identified secondary tumor locations when only the primary tumor position was known, with a respective sensitivity and specificity of 0.97 and 0.75 for cypate, and 0.85 and 0.81 for LS288. Histological analysis suggests that the vasculature in the connective tissue that directly surrounds the tumor was a major factor for tumor identification through perfusion imaging. Although the hydrophobic dye showed higher specificity than the hydrophilic probe, use of other dyes with different physical and biological properties could further improve the accuracy of the dynamic imaging platform to identify multifocal tumors for potential use in real‐time intraoperative procedures.   相似文献   

3.
We demonstrate that the structure of carbocyanine dyes, which are commonly used to label small peptides for molecular imaging and not the bound peptide, controls the rate of extravasation from blood vessels to tissue. By examining several near-infrared (NIR) carbocyanine fluorophores, we demonstrate a quantitative correlation between the binding of a dye to albumin, a model plasma protein, and the rate of extravasation of the probe into tissue. Binding of the dyes was measured by fluorescence quenching of the tryptophans in albumin and was found to be inversely proportional to the rate of extravasation. The rate of extravasation, determined by kurtosis from longitudinal imaging studies using rodent ear models, provided a basis for quantitative measurements. Structure-activity studies aimed at evaluating a representative library of NIR fluorescent cyanine probes showed that hydrophilic dyes with binding constants several orders of magnitude lower than their hydrophobic counterparts have much faster extravasation rate, establishing a foundation for rational probe design. The correlation provides a guideline for dye selection in optical imaging and a method to verify if a certain dye is optimal for a specific molecular imaging application.  相似文献   

4.
Recent years have seen tremendous progress in the design and study of molecular imaging geared towards biological and biomedical applications. The expression or activity of specific enzymes including proteases can be monitored by cutting edge molecular imaging techniques. Cathepsin B plays key roles in tumor progression via controlled degradation of extracellular matrix. Consequently, this protease has been attracting significant attention in cancer research, and many imaging probes targeting its activity have been developed. Here, we describe the design, synthesis and evaluation of two novel near infrared (NIR) fluorescent probes for detection of cathepsin B activity with different turn-ON mechanisms. One probe is based on an ICT activation mechanism of a donor-two-acceptor π-electron dye system, while the other is based on the FRET mechanism obtained by a fluorescent dye and a quencher. The two probes exhibit significant fluorescent turn-ON response upon cleavage by cathepsin B. The NIR fluorescence of the ICT probe in its OFF state was significantly lower than that of the FRET-based probe. This effect results in a higher signal-to-noise ratio and consequently increased sensitivity and better image contrast.  相似文献   

5.
Aiming at the design of highly brilliant NIR emissive optical probes, e.g., for in vivo near-infrared fluorescence imaging (NIRF), we studied the absorption and fluorescence properties of the asymmetric cyanines Dy678, Dy681, Dy682, and Dy676 conjugated to the model antibody IgG. The ultimate goal was here to derive general structure-property relationships for suitable NIR fluorescent labels. These Dy dyes that spectrally match Cy5 and Cy5.5, respectively, were chosen to differ in chromophore structure, i.e., in the substitution pattern of the benzopyrylium end group and in the number of sulfonic acid groups. Spectroscopic studies of the free and IgG-bound fluorophores revealed a dependence of the obtained dye-to-protein ratios on dye hydrophilicity and control of the fluorescence quantum yields (Φ(f)) of the IgG conjugates by the interplay of different fluorescence reduction pathways like dye aggregation and fluorescence resonance energy transfer (FRET). Based upon aggregation studies with these dyes, the amount of dye dimers in the IgG conjugates was determined pointing to dye hydrophilicity as major parameter controlling aggregation. To gain further insight into the exact mechanism of dye dimerization at the protein, labeling experiments at different reaction conditions but constant dye-to-protein ratios in the reaction solution were performed. With Dy682 that displays a Φ(f) of 0.20 in PBS and 0.10 for moderate dye-to-protein ratio of 2.5, a low aggregation tendency, and a superior reactivity in IgG labeling, we identified a promising diagnostic tool for the design of NIR fluorescent probes and protein conjugates.  相似文献   

6.
A new near-infrared fluorescent compound containing two cyclic RGD motifs, cypate-[c(RGDfK)](2) (1), was synthesized based on a carbocyanine fluorophore bearing two carboxylic acid groups (cypate) for integrin α(v)β(3)-targeting. Compared with its monovalent counterpart cypate-c(RGDfK) (2), 1 exhibited remarkable improvements in integrin α(v)β(3) binding affinity and tumor uptake in nude mice of A549. The results suggest that cypate-linked divalent ligands can serve as an important molecular platform for exploring receptor-targeted optical imaging and treatment of various diseases.  相似文献   

7.
Diagnosis of diseases by different imaging methods can provide complementary information about the functional status of diseased tissues or organs. To overcome the current difficulties in coregistering images from different imaging modalities with a high degree of accuracy, we prepared near-infrared (NIR) monomolecular multimodal imaging agents (MOMIAs) consisting of a heptamethine carbocyanine and 111In-DOTA chelate that served as antennae for optical and scintigraphic imaging, respectively. Their spectral properties clearly show that coordination of indium to MOMIA increased the fluorescence intensity of the compounds. The MOMIAs are exceptionally stable in biological media and serum up to 24 h at 37 degrees C. Biodistribution of the compounds in mice obtained by fluorescence photon and gamma-counts demonstrated a similar distribution trend of the molecular probe in different tissues, suggesting that the detected fluorescence and gamma-emissions emanated from the same source (MOMIA). At 24 h postinjection, the MOMIAs were excreted by the renal and hepatobiliary systems and the blood level of a representative MOMIA was very low, thereby reducing background noise caused by circulating molecular probes. These findings demonstrate the feasibility of preparing single molecules with the capacity to emit discernible and diagnostic fluorescent and gamma-radiations for optical and nuclear imaging of living organisms.  相似文献   

8.
Fluorescence optical imaging technologies are currently being developed to image specific molecular targets in vivo. Detection technologies range from those providing microscopic detail to whole body imaging systems with potential clinical use. A number of target-specific near-infrared imaging probes have recently been developed to image receptors, antigens, and enzymes. The goal of the current study was to evaluate a new near-infrared (NIR) folate receptor (FR)-targeted imaging probe for its ability to improve detection of FR-positive cancers. We hypothesized that modification of folate would retain receptor affinity in vivo, despite the bulkier NIR fluorochrome, NIR2 (em = 682 nm). Cellular uptake of the NIR conjugates was significantly higher in FR-positive nasopharyngeal epidermoid carcinoma, KB cells, compared to FR-negative human fibrosarcoma, HT1080 cells. When tumors were implanted in vivo, equal-sized KB tumors showed a 2.4-fold higher signal intensity compared to HT1080 tumors (24 h). The maximum signal-to-background ratio (3-fold) was observed at 24 h in KB tumor. Injection of the unmodified NIR2 fluorochrome did not result in persistent contrast increases under similar conditions. Furthermore, tumor enhancement with the NIR2-folate probe persisted over 48 h and was inhibitable in vivo by administration of unlabeled folate. These results indicate that folate-modified NIR fluorochrome conjugate can be used for improved detection of FR-positive tumors.  相似文献   

9.
The polarity of biological mediums controls a host of physiological processes such as digestion, signaling, transportation, metabolism, and excretion. With the recent widespread use of near-infrared (NIR) fluorescent dyes for biological imaging of cells and living organisms, reporting medium polarity with these dyes would provide invaluable functional information in addition to conventional optical imaging parameters. Here, we report a new approach to determine polarities of macro- and microsystems for in vitro and potential in vivo applications using NIR polymethine molecular probes. Unlike the poor solvatochromic response of NIR dyes in solvents with diverse polarity, their fluorescence lifetimes are highly sensitive, increasing by a factor of up to 8 on moving from polar to nonpolar mediums. We also established a correlation between fluorescence lifetime and solvent orientation polarizability and developed a lifetime polarity index for determining the polarity of complex systems, including micelles and albumin binding sites. Because of the importance of medium polarity in molecular, cellular, and biochemical processes and the significance of reduced autofluorescence and deep tissue penetration of light in the NIR region, the findings reported herein represent an important advance toward using NIR molecular probes to measure the polarity of complex biological systems in vitro and in vivo.  相似文献   

10.
The role of the multivalent effect has been well recognized in the design of molecular imaging probes toward the desired imaging signal amplification. Recently, we reported a bifunctional chelator (BFC) scaffold design, which provides a simple and versatile approach to impart multivalency to radiometal based nuclear imaging probes. In this work, we report a series of BFC scaffolds ((t)Bu(3)-1-COOH, (t)Bu(3)-2-(COOH)(2), and (t)Bu(3)-3-(COOH)(3)) constructed on the framework of 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) for (68)Ga-based PET probe design and signal amplification via the multivalent effect. For proof of principle, a known integrin α(v)β(3) specific ligand (c(RGDyK)) was used to build the corresponding NOTA conjugates (H(3)1, H(3)2, and H(3)3), which present 1-3 copies of c(RGDyK) peptide, respectively, in a systematic manner. Using the integrin α(v)β(3) binding affinities (IC(50) values), enhanced specific binding was observed for multivalent conjugates (H(3)2: 43.9 ± 16.1 nM; H(3)3: 14.7 ± 5.0 nM) as compared to their monovalent counterpart (H(3)1: 171 ± 60 nM) and the intact c(RGDyK) peptide (204 ± 76 nM). The obtained conjugates were efficiently labeled with (68)Ga(3+) within 30 min at room temperature in high radiochemical yields (>95%). The in vivo evaluation of the labeled conjugates, (68)Ga-1, (68)Ga-2, and (68)Ga-3, was performed using male severe combined immunodeficiency (SCID) mice bearing integrin α(v)β(3) positive PC-3 tumor xenografts (n = 3). All (68)Ga-labeled conjugates showed high in vivo stability with no detectable metabolites found by radio-HPLC within 2 h postinjection (p.i.). The PET signal amplification in PC-3 tumor by the multivalent effect was clearly displayed by the tumor uptake of the (68)Ga-labeled conjugates ((68)Ga-3: 2.55 ± 0.50%ID/g; (68)Ga-2: 1.90 ± 0.10%ID/g; (68)Ga-1: 1.66 ± 0.15%ID/g) at 2 h p.i. In summary, we have designed and synthesized a series of NOTA-based BFC scaffolds with signal amplification properties, which may find potential applications as diagnostic gallium radiopharmaceuticals.  相似文献   

11.
Highly tumor selective near-infrared (NIR) pH-activatable probe was developed by conjugating pH-sensitive cyanine dye to a cyclic arginine-glycine-aspartic acid (cRGD) peptide targeting α(v)β(3) integrin (ABIR), a protein that is highly overexpressed in endothelial cells during tumor angiogenesis. The NIR pH-sensitive dye used to construct the probe exhibits high spectral sensitivity with pH changes. It has negligible fluorescence above pH 6 but becomes highly fluorescent below pH 5, with a pK(a) of 4.7. This probe is ideal for imaging acidic cell organelles such as tumor lysosomes or late endosomes. Cell microscopy data demonstrate that binding of the cRGD probe to ABIR facilitated the endocytosis-mediated lysosomal accumulation and subsequent fluorescence enhancement of the NIR pH-activatable dye in tumor cells (MDA-MB-435 and 4T1/luc). A similar fluorescence enhancement mechanism was observed in vivo, where the tumors were evident within 4 h post injection. Moreover, lung metastases were also visualized in an orthotopic tumor mouse model using this probe, which was further confirmed by histologic analysis. These results demonstrate the potential of using the new integrin-targeted pH-sensitive probe for the detection of primary and metastatic cancer.  相似文献   

12.
Fibroblast activation protein-alpha (FAPα) is a cell surface glycoprotein which is selectively expressed by tumor-associated fibroblasts in malignant tumors but rarely on normal tissues. FAPα has also been reported to promote tumor growth and invasion and therefore has been of increasing interest as a promising target for designing tumor-targeted drugs and imaging agents. Although medicinal study on FAPα inhibitors has led to the discovery of many FAPα-targeting inhibitors including a drug candidate in a phase II clinical trial, the development of imaging probes to monitor the expression and activity of FAPα in vivo has largely lagged behind. Herein, we report an activatable near-infrared (NIR) fluorescent probe (ANP(FAP)) for in vivo optical imaging of FAPα. The ANP(FAP) consists of a NIR dye (Cy5.5) and a quencher dye (QSY21) which are linked together by a short peptide sequence (KGPGPNQC) specific for FAPα cleavage. Because of the efficient fluorescence resonance energy transfer (FRET) between Cy5.5 and QSY21 in ANP(FAP), high contrast on the NIR fluorescence signal can be achieved after the cleavage of the peptide sequence by FAPα both in vitro and in vivo. In vitro assay on ANP(FAP) indicated the specificity of the probe to FAPα. The in vivo optical imaging using ANP(FAP) showed fast tumor uptake as well as high tumor to background contrast on U87MG tumor models with FAPα expression, while much lower signal and tumor contrast were observed in the C6 tumor without FAPα expression, demonstrating the in vivo targeting specificity of the ANP(FAP). Ex vivo imaging also demonstrated ANP(FAP) had high tumor uptake at 4 h post injection. Collectively, these results indicated that ANP(FAP) could serve as a useful NIR optical probe for early detection of FAPα expressing tumors.  相似文献   

13.
E Fluhler  V G Burnham  L M Loew 《Biochemistry》1985,24(21):5749-5755
The properties of a series of new potentiometric membrane probes have been explored. The probes all contain an (aminostyryl)pyridinium chromophore or a more highly conjugated analogue. The spectral properties of the dyes are discussed in terms of the excitation-induced charge shift from the pyridine to the aniline; this charge shift also provides the basis for the voltage dependence of the spectra according to an electrochromic mechanism. The spectral responses to a membrane potential on a hemispherical bilayer have been obtained and, grossly, are quite similar for all probes tested. The more subtle variations from dye to dye can be partially rationalized by consideration of binding parameters, the depth within the membrane, and structural factors. The most potential sensitive dye in this collection has been designated di-4-ANEPPS and has a 6-amino-2-naphthyl group in place of the p-anilino on the parent chromophore. Both the relative fluorescence emission and excitation responses have maxima of 8% per 100 mV, and these two spectra display a striking symmetry.  相似文献   

14.
Here we introduce diffusion molecular retention (DMR) tumor targeting, a technique that employs PEG-fluorochrome shielded probes that, after a peritumoral (PT) injection, undergo slow vascular uptake and extensive interstitial diffusion, with tumor retention only through integrin molecular recognition. To demonstrate DMR, RGD (integrin binding) and RAD (control) probes were synthesized bearing DOTA (for 111 In3+), a NIR fluorochrome, and 5 kDa PEG that endows probes with a protein-like volume of 25 kDa and decreases non-specific interactions. With a GFP-BT-20 breast carcinoma model, tumor targeting by the DMR or IV methods was assessed by surface fluorescence, biodistribution of [111In] RGD and [111In] RAD probes, and whole animal SPECT. After a PT injection, both probes rapidly diffused through the normal and tumor interstitium, with retention of the RGD probe due to integrin interactions. With PT injection and the [111In] RGD probe, SPECT indicated a highly tumor specific uptake at 24 h post injection, with 352%ID/g tumor obtained by DMR (vs 4.14%ID/g by IV). The high efficiency molecular targeting of DMR employed low probe doses (e.g. 25 ng as RGD peptide), which minimizes toxicity risks and facilitates clinical translation. DMR applications include the delivery of fluorochromes for intraoperative tumor margin delineation, the delivery of radioisotopes (e.g. toxic, short range alpha emitters) for radiotherapy, or the delivery of photosensitizers to tumors accessible to light.  相似文献   

15.
The partial modification of carboxylic acid terminated polyamidoamine (PAMAM) dendrimers with glucosamine has been reported to give dendrimer glucosamine conjugates novel immuno-modulatory and anti-angiogenic properties. Experimental analysis of these glycosylated dendrimers showed that, on average, eight glucosamine molecules were covalently bound to each dendrimer. In order to better understand the surface loading and distribution of these glucosamine molecules, molecular reactivity was determined by evaluation of electronic properties using frontier molecular orbital theory (FMOT) and molecular dynamics simulations. It was shown that the surface loading and distribution of zero length amide bond-conjugated glucosamine molecules was determined by both electronic effects and by the different dynamic conformations adopted by the modified dendrimer during the incremental addition of glucosamine. Importantly, the structural features and the dynamic behavior of the partially glycosylated generation 3.5 PAMAM dendrimer showed that its flexibility and polarity changed with the incremental addition of glucosamine. These peripheral glucosamine molecules remained available on the dendrimer’s surface for interaction with the biological target.  相似文献   

16.
Chemical and biological labeling is fundamental for the elucidation of the function of proteins within biochemical cellular networks. In particular, fluorescent probes allow detection of molecular interactions, mobility and conformational changes of proteins in live cells with high temporal and spatial resolution. We present a generic method to label proteins in vivo selectively, rapidly (seconds) and reversibly, with small molecular probes that can have a wide variety of properties. These probes comprise a chromophore and a metal-ion-chelating nitrilotriacetate (NTA) moiety, which binds reversibly and specifically to engineered oligohistidine sequences in proteins of interest. We demonstrate the feasibility of the approach by binding NTA-chromophore conjugates to a representative ligand-gated ion channel and G protein-coupled receptor, each containing a polyhistidine sequence. We investigated the ionotropic 5HT(3) serotonin receptor by fluorescence measurements to characterize in vivo the probe-receptor interactions, yielding information on structure and plasma membrane distribution of the receptor.  相似文献   

17.
We developed a convenient method for the synthesis of dextran-based multivalent probes containing N-linked oligosaccharides which is efficient even in a small scale. Oligosaccharides were derivatized with succinic dihydrazide and dimethylamine borane under a mild acidic condition. The derivatized oligosaccharides were then conjugated in a good yield to periodate-oxidized dextran (500 kDa). Thus, the conjugates containing 120 to 140 oligosaccharide chains per dextran molecule were successfully synthesized. Their practical advantage was shown by the example that the asialofetuin oligosaccharide-dextran conjugate has much higher affinity to Ricinus communis agglutinin (RCA-I) than asialofetuin oligosaccharide itself or asialofetuin. The conjugates were further labeled with fluorescent reagent or biotinylation reagent containing a hydrazino group by the use of the unreacted aldehyde groups of the oxidized dextran, yielding probes with similar densities of fluorophores or biotin groups. Direct binding of the biotinylated asialofetuin oligosaccharide-dextran probe to RCA-I coated on the titer plate at a concentration of 50 ng/50 microl was easily detected using 50 fmol (as oligosaccharides) of the probe. The method for the synthesis of dextran-based oligosaccharide probes will facilitate the investigation of carbohydrate-mediated molecular interactions based on the native oligosaccharide structures.  相似文献   

18.
Abstract

A novel technique developed in the laboratories of Bradley D. Smith and David Piwnica-Worms for imaging bacterial infections in intact living nude mice using a novel fluorescent dye, a conjugate of a NIR carbocyanine dye and two zinc(II) dipicolylamine units, allows relatively deep imaging of bacterial infection in real time. The behavior of the mice indicated good tolerance of the probe. The probe's water-octanol partition coefficient calculated by Hansch and Leo's procedure demonstrates that it is slightly lipophilic and therefore could enter mouse cells. Extant values of the physicochemical and spectroscopic parameters relevant to practical use are tabulated.  相似文献   

19.
A two-photon absorbing (2PA) and aggregation-enhanced near-infrared (NIR) emitting pyran derivative, encapsulated in and stabilized by silica nanoparticles (SiNPs), is reported as a nanoprobe for two-photon fluorescence microscopy (2PFM) bioimaging that overcomes the fluorescence quenching associated with high chromophore loading. The new SiNP probe exhibited aggregate-enhanced emission producing nearly twice as strong a signal as the unaggregated dye, a 3-fold increase in two-photon absorption relative to the DFP in solution, and approximately 4-fold increase in photostability. The surface of the nanoparticles was functionalized with a folic acid (FA) derivative for folate-mediated delivery of the nanoprobe for 2PFM bioimaging. Surface modification of SiNPs with the FA derivative was supported by zeta potential variation and (1)H NMR spectral characterization of the SiNPs as a function of surface modification. In vitro studies using HeLa cells expressing a folate receptor (FR) indicated specific cellular uptake of the functionalized nanoparticles. The nanoprobe was demonstrated for FR-targeted one-photon in vivo imaging of HeLa tumor xenograft in mice upon intravenous injection of the probe. The FR-targeting nanoprobe not only exhibited highly selective tumor targeting but also readily extravasated from tumor vessels, penetrated into the tumor parenchyma, and was internalized by the tumor cells. Two-photon fluorescence microscopy bioimaging provided three-dimensional (3D) cellular-level resolution imaging up to 350 μm deep in the HeLa tumor.  相似文献   

20.
Imaging probes targeting type 2 cannabinoid receptor (CB2R) overexpressed in pancreatic duct adenocarcinoma (PDAC) tissue have the potential to improve early detection and surgical outcome of PDAC. The aim of our study was to evaluate the molecular imaging potential of a CB2R-targeted near-infrared (NIR) fluorescent probe (NIR760-XLP6) for PDAC. CB2R overexpression was observed in both PDAC patient tissues and various pancreatic cancer cell lines. In vitro fluorescence imaging indicated specific binding of NIR760-XLP6 to CB2R in human PDAC PANC-1 cells. In a xenograft mouse tumor model, NIR760-XLP6 showed remarkable 50- (ex vivo) and 3.2-fold (in vivo) tumor to normal contrast enhancement with minimal liver and kidney uptake. In a PDAC lymph node metastasis model, significant signal contrast was observed in bilateral axillary lymph nodes with PDAC metastasis after injection of the probe. In conclusion, NIR760-XLP6 exhibits promising characteristics for imaging PDAC, and CB2R appears to be an attractive target for PDAC imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号