首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
壬基酚聚氧乙烯醚(NEPOs)是全球应用量最大的非离子型表面活性剂之一,具有环境雌激素毒性。NPEOs的中间代谢产物种类多、难降解,且毒性远高于其母系化合物。为研究金属离子对功能微生物Sphingomonas sp. Y2降解NPEOs特性的影响,分析了金属离子的最低抑制浓度(MIC)、细菌形态、NPEOs降解效率及代谢产物组成等变化。结果显示,菌株Y2对多种金属离子具有耐受性,在重金属培养基中对Mn2+、Zn2+具有较高的耐受性,MIC分别为500、90 mg/L;在500 mg/L Mn2+胁迫下,菌株Y2对NPEOs降解率为100.00%(3 d);在90 mg/L Zn2+胁迫下,菌株Y2对NPEOs的降解率为20.62%(5 d);两种离子双重胁迫下NPEOs降解率为15.65%(5 d);Mn2+胁迫下菌株Y2细胞表面结构和形态发生明显变化,且改变了NPEOs代谢产物中组分的含量组成,其中短链NPEOs与短链壬基酚聚氧乙烯酸(NPECs)的比例为0.68,与对照相比,抑制/减缓了短链NPEOs的羧化反应。结果表明,菌株Sphingomonas sp. Y2对多种金属离子具有耐受性,Mn2+胁迫对细胞表面超微结构及NPEOs中间代谢产物组分组成产生显著影响。该研究将为表面活性剂类污染物的生物降解及相应代谢产物在环境中的毒性评价提供理论依据。  相似文献   

2.
Multiple ecto-phosphoproteins of the goat cauda-epididymal intact spermatozoa have been shown to undergo dephosphorylationin vitro by endogenous phosphoprotein phosphatase(s) located on the sperm outer surface. The major ecto-phosphoproteins that are dephosphorylated have molecular masses of 27, 40, 70, 116 and 205 kDa. The cell surface dephosphorylation reaction is not dependent on bivalent metal ions. Mg2+ (5 mM), Mn2+ (5 mM), orthovanadate (200ΜM) and cAMP (5 ΜM) have no effect on this surface reaction whereas it is inhibited nearly 50% by Co2+ or Zn2+ (1 mM). Spermidine (5 mM), or Ca2+ (1mM) inhibited to a small extent (approx. 25%) the cell surface dephosphorylation of proteins.  相似文献   

3.
A marine bacterial strain putatively identified asBacillus thuringiensis strain DM55, showed multiple heavy metal resistance and biosorption phenotypes. Electron microscopic studies revealed that DM55 cells are encased in anionic cell wall polymers that can immobilize discrete aggregates of cations. Factors affecting cell surface affinity for metal cations, monitored by means of Cd2+ binding capability, are investigated. The mechanisms of cadmium resistance and Cd2+ biosorption by the bacterium appeared to be inducible and coincident. Medium components affecting metal removal under cadmium-stressed growth conditions were explored based on the application of two sequential multi-factorial statistical designs. Concentrations of potassium phosphates and peptone were the most significant variables. Optimized culture conditions allowed DM55 cells grown in the presence of 0.25 mM CdCl2 to remove about 79% of the metal ions within 24 h with a specific biosorption capacity of 21.57 mg g–1 of biomass. Both fresh and dry cells of DM55 prepared under cadmium-free optimal nutrient condition were also able to biosorb Cd2+. In addition to the concentration of phosphate in the medium, KinA, a major phosphate provider in the phosphorelay of Bacillus cells, was also demonstrated to regulate the magnitude of cell surface affinity for cadmium ions.  相似文献   

4.
To increase the level of adsorption of heavy metal ions in surface-engineered yeasts, a yeast metallothionein (YMT) was tandemly fused and displayed by means of an α-agglutinin-based display system. The display of the YMT and its tandem repeats was examined by immunofluorescent labeling. The adsorption and recovery of Cd2+ on the cell surface was increasingly enhanced with increasing number of tandem repeats. All Cd2+-binding sites in the YMT tandem repeats were suggested to be completely occupied. To investigate the relationship between cell-surface adsorption and protection against heavy metal ion toxicity, the tolerance of these surface-engineered yeasts to Cd2+ was examined by growing in Cd2+-containing liquid medium. The rate of growth was found to be dependent on the number of displayed tandem repeats of YMT. These results suggest that the characteristics of surface-engineered yeasts as a bioadsorbent were dependent on the ability of the displayed proteins to bind metal ions, and the adsorption of heavy metal ions on the cell surface plays a major role in the ability of the cells to resist the toxic effects of metal ions.  相似文献   

5.
Melafen stimulating effect on cell growth of cyanobacteria Synechococcus sp. PCC 6301 cultures amounted to 30–45% at 1000 lx illumination. The melafen effect decreased when cell cultures were exposed at the illumination of the saturation range (4000 lx). Growth rate and biomass increase of Anabaena variabilis, as well as the observed melafen stimulating effect, were higher on nitrogen-free medium compared to a nitrogen-containing one by 20–25%. We conclude that melafen activates photosynthetic processes and, probably, stimulates fixation of the atmospheric nitrogen in the cells. Opposite to the stimulating effect of melafen, ions of the heavy metal Cd2+ inhibited both biomass increase and the average number of the cells in the cyanobacteria A. variabilis colonies. The melafen added to the medium together with the Cd2+ ions decreased their negative effect. The other heavy metal ions, Cu2+, inhibited the growth of the cyanobacteria Synechococcus sp. PCC 6301 and green microalgae Chlorella vulgaris but had a stimulation effect on carbohydrate excretion by the cell cultures. Again, the melafen decreased the toxic effect of Cu2+ in this case. We suppose that melafen has an antistress activity at heavy metal ions presence and reduces their toxic effect on growth of phototrophic microorganisms.  相似文献   

6.
C Zimmer  G Luck  H Triebel 《Biopolymers》1974,13(3):425-453
The effects of metal ions of the first-row transition and of alkaline earth metals on the DNA helix conformation have been studied by uv difference spectra, circular dichroism, and sedimentation measurements. At low ionic strength (10?3 M NaClO4) DNA shows a maximum in the difference absorption spectra in the presence of Zn2+, Mn2+, Co2+, Cd2+, and Ni2+ but not with Mg2+ or Ca2+. The amplitude of this maximum is dependent on GC content as revealed by detailed studies of the DNA-Zn2+ complex of eight different DNA's. Pronounced changes also occur in the CD spectra of DNA transition metal complexes. A transition appears up to a total ratio of approximately 1 Zn2+ per DNA phosphate at 10?3 M NaClO4; then no further change was observed up to high concentrations. The characteristic CD changes are strongly dependent on the double-helical structure of DNA and on the GC content of DNA. Differences were also observed in hydrodynamic properties of DNA metal complexes as revealed by the greater increase of the sedimentation coefficient of native DNA in the presence of transition metal ions. Spectrophotometric acid titration experiments and CD measurements at acidic pH clearly indicate the suppression of protonation of GC base-pair regions on the addition of transition metal ions to DNA. Similar effects were not observed with DNA complexes with alkaline earth metal ions such as Mg2+ or Ca2+. The data are interpreted in terms of a preferential interaction of Zn2+ and of other transition metal ions with GC sites by chelation to the N-7 of guanine and to the phosphate residue. The binding of Zn2+ to DNA disappears between 0.5 M and 1 M NaClO4, but complex formation with DNA is observable again in the presence of highly concentrated solutions of NaClO4 (3?7.2 M NaClO4) or at 0.5 to 2 M Mn2+. At relatively high cation concentration Mg2+ is also effective in changing the DNA comformation. These structural alterations probably result from both the shielding of negatively charged phosphate groups and the breakdown of the water structure along the DNA helix. Differential effects in CD are also observed between Mn2+, Zn2+ on one hand and Mg2+ on the other hand under these conditions. The greater sensitivity of the double-helical conformation of DNA to the action of transition metal ions is due to the affinity of the latter to electron donating sites of the bases resulting from the d electronic configuration of the metal ions. An order of the relative phosphate binding ability to base-site binding ability in native DNA is obtained as follows: Mg2+, Ba2+, < Ca2+ < Fe2+, Ni2+, Co2+ < Mn2+, Zn2+ < Cd2+ < Cu2+. The metal-ion induced conformational changes of the DNA are explained by alternation of the winding angle between base pairs as occurs in the transition from B to C conformation. These findings are used for a tentative molecular interpretation of some effects of Zn2+ and Mn2+ in DNA synthesis reported in the literature.  相似文献   

7.
Naphthazarin esters (C1–C4) isolated from the roots of Arnebia euchroma are found as skilled dual chemosensors for Ni2+ and Cu2+ among Pb2+, Na2+, K2+, Hg2+, Mg2+, and Ca2+ metal ions. C1–C4 esters exhibited a red shift of 54 nm with Ni2+ and 30 nm with Cu2+ metal ions in absorption. There is a formation of red-shifted bands between 517 and 613 nm in the absorption spectrum of C1–C4 sensors on binding with Ni2+ and Cu2+ ions. The addition of Ni2+ and Cu2+ ions to sensors C1–C4 stimulates a remarkable color change from reddish pink to purple and light blue, respectively. These color changes can be identified with the naked eye. The significant downfield shifts of CO and OH peaks in nuclear magnetic resonance (NMR) spectrum confirm the chelation as binding mechanism. With ultraviolet–visble and NMR studies, it is found that C1–C4 esters possessed notable selectivity and sensitivity toward Ni2+ and Cu2+ over other metal ions.  相似文献   

8.
Possible roles of cell wall and cytoplasmic peptides in the tolerance of cells to Cu2+ and Cd2+ ions were studied in suspension-cultured cells of tomato (Lycopersicon esculentum L. cv. Palace). Cu2+ and Cd2+ ions inhibited growth of wild type cells at concentrations more than 100 and 200 μM, respectively. Tomato cells readily developed tolerance to Cd2+ ions up to 1 mM but not to Cu2+ ions, after repeated subculturings in the presence of the respective ions. Such a metal-specific adaptation of cells was not due to the difference in the total uptakes between Cd2+ and Cu2+ ions by cells. Wild-type cells accumulated Cd2+ preferentially into the cytoplasmic peptide fraction and Cu2+ into the cell-wall fraction, when grown under the subtoxic metal conditions. Under excess metal conditions, Cd-tolerant cells produced greater amounts of Cd-binding peptides in the cytoplasm and retained lesser amounts of Cd2+ ions in the cell wall than did wild-type cells. In contrast, tomato cells grown in the presence of Cu2+ ions synthesized no detectable amounts of Cu-binding peptides in the cytoplasm and retained most of the Cu2+ in the cell-wall fraction, irrespective of cell lines. These results suggested that the cytoplasmic peptides rather than cell wall properties have a primary role in the response of tomato cells to excess metal environments.  相似文献   

9.
31P-nmr has been used to investigate the specific interaction of three divalent metal ions, Mg2+, Mn2+, and Co+2, with the phosphate groups of DNA. Mg2+ is found to have no significant effect on any of the 31P-nmr parameters (chemical shift, line-width, T1, T2, and NOE) over a concentration range extending from 20 to 160 mM. The two paramagnetic ions, Mn2+ and Co2+, on the other hand, significantly change the 31P relaxation rates even at very low levels. From an analysis of the paramagnetic contributions to the spin–lattice and spin–spin relaxation rates, the effective internuclear metal–phosphorus distances are found to be 4.5 ± 0.5 and 4.1 ± 0.5 Å for Mn2+ and Co2+, respectively, corresponding to only 15 ± 5% of the total bound Mn2+ and Co2+ being directly coordinated to the phosphate groups (inner-sphere complexes). This result is independent of any assumptions regarding the location of the remaining metal ions which may be bound either as outer-sphere complexes relative to the phosphate groups or elsewhere on the DNA, possibly to the bases. Studies of the temperature effects on the 31P relaxation rates of DNA in the absence and presence of Mn2+ and Co2+ yielded kinetic and thermodynamic parameters which characterize the association and dissociation of the metal ions from the phosphate groups. A two-step model was used in the analysis of the kinetic data. The lifetimes of the inner-sphere complexes are 3 × 10?7 and 1.4 × 10?5 s for Mn2+ and Co2+, respectively. The rates of formation of the inner-sphere complexes with the phosphate are found to be about two orders of magnitude slower than the rate of the exchange of the water of hydration of the metal ions, suggesting that expulsion of water is not the rate-determining step in the formation of the inner-sphere complexes. Competition experiments demonstrate that the binding of Mg2+ ions is 3–4 times weaker than the binding of either Mn2+ or Co2+. Since the contribution from direct phosphate coordination to the total binding strength of these metal ion complexes is small (~15%), the higher binding strength of Mn2+ and Co2+ may be attributed either to base binding or to formation of stronger outer-sphere metal–phosphate complexes. At high levels of divalent metal ions, and when the metal ion concentration exceeds the DNA–phosphate concentration, the fraction of inner-sphere phosphate binding increases. In the presence of very high levels of Mg2+ (e.g., 3.1M), the inner-sphere ? outer-sphere equilibrium is shifted toward ~100% inner-sphere binding. A comparison of our DNA results and previous results obtained with tRNA indicates that tRNA and DNA have very similar divalent metal ion binding properties. A comparison of the present results with the predictions of polyelectrolyte theories is presented.  相似文献   

10.
Summary Conductometry, circular dichroism and fluorescence spectroscopy are the techniques employed to investigate the effect of added calcium ions and other monovalent and divalent metal ions on aqueous solutions of nonionic peptide aggregates, Boc-Leu-Asn-OEt (1). It is observed that among all the metal ions studied, Ca2+ ions facilitate the aggregation of the peptide. The interior dielectric constant of the micelles (ε) was found to depend upon the proportion of Ca2+ complexed peptide with the peptide mononers in the micelles. When Ca2+ ion becomes 1/4th of the peptide concentration, there is a structural transition leading to drastic change in the interior of the micro dielectric constant (ɛ m).  相似文献   

11.
The interaction of cobalt (Co2+) and nickel (Ni2+) ions with whole cells of the photosynthetic purple bacterium Rhodobacter sphaeroides strain R26 was investigated. Active and passive uptakes were examined in cells grown in the presence of increasing amounts of Co2+ and Ni2+. Inductively coupled plasma atomic emission spectroscopy (ICP-AES), pH titration, and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy were used to assess the role of cell envelope and metabolism in accumulating the two heavy metals. The chosen microorganism was able to uptake cobalt and nickel up to 2.2 and 0.25 mg per gram of dried cells respectively, with the largest part found bound to the cell surface. Carboxylate groups lying on the cell wall of this Gram-negative bacterium proved to be the major candidates for binding protons and metal cations. Co2+ was found to interfere with Mg2+ extracellular immobilization and transport across the membrane, indicating that these ions share binding sites on the cell envelope and ion transport systems. According to the presence of a competition mechanism, bacterial growth experiments showed that high Mg2+ concentrations are able to rescue R. sphaeroides from Co2+ toxicity.  相似文献   

12.
AtMHX is a vacuolar transporter encoded by a single gene in Arabidopsis. Electrophysiological analysis showed that it exchanges protons with Mg2+, Zn2+, and Fe2+ ions. The physiological impact of AtMHX was examined so far only in tissue-culture grown seedlings of tobacco plants overexpressing this transporter. Here we investigated the impact of AtMHX on growth, response to different metals, and metal accumulation of mature tobacco plants, as well as Arabidopsis plants in which we overexpressed this transporter. The analyses were carried out in hydroponic growth-systems, in which the mineral composition could be effectively controlled, and the metal content of roots could be examined. Transformed tobacco plants showed necrotic lesions and apical burnings upon growth with increased levels of Mg2+, Zn2+, and Cd2+ ions. This suggested that AtMHX can carry in planta not only Mg2+ and Zn2+ ions, as previously deduced based on observations in tissue-culture, but also Cd2+ ions. Transformed plants of both tobacco and Arabidopsis showed a reduction in plant size. However, the overall response of Arabidopsis to AtMHX overexpression was minor. No change was detected in the mineral content of any organ of the transgenic tobacco or Arabidopsis plants. The necrotic lesions in tobacco resembled those seen in plants with perturbed proton balancing, raising the assumption that AtMHX can affect the proton homeostasis of cells. In agreement with this assumption, the transformed tobacco plants had increased expression and activity of the vacuolar H+-ATPase. The relative significance of AtMHX for metal and proton homeostasis still has to be elucidated.  相似文献   

13.
为研究金属离子诱导下感受态细胞形成的机理及揭示转化发生的机制,分别用Ca~(2+)和Sr~(2+)(0~140mmol/L)制备大肠埃希菌感受态细胞并转化。研究结果表明,不同浓度的Ca~(2+)和Sr~(2+)诱导的感受态细胞的效价不同,两种金属离子对大肠埃希菌细胞内外膜的通透性均有较大影响,但细胞内外膜的改变程度与转化率无直接关系;电镜结果显示,未处理的细胞呈簇聚集发生粘连现象,感受态细胞整体呈分散状态,局部发生聚集,而转化后的细胞独立存在,边缘异常清晰。  相似文献   

14.
Alkali extracted mycelial biomass from Aspergillus niger, referred to as Biosorb, was found to sequester metal ions (Cd2+, Cu2+, Zn2+, Ni2+ and Co2+) efficiently both from dilute and concentrated solutions upto 10% of its weight (w/w). Sequestration of metal ions from a mixture was also efficient but with attendant antagonisms. The kinetics of metal binding by Biosorb indicated that it is a rapid process and about 70–80% of the metal is removed from solution in 5 min followed by a slower rate. The mechanism of metal binding is shown to be due to exchange of calcium and magnesium ions of the Biosorb during which equimolar concentrations of both the ions were released into the medium. Following this an efficient procedure for the regeneration and reuse of Biosorb was standardized by washing the biosorbent with calcium and magnesium solution (0.1 m). Biosorbents prepared from Neurospora, Fusarium and Penicillium also exhibited similar mechanisms for metal ion binding, though they had a lower metal binding capacity when compared with Biosorb. Chemical modification of carboxylic acid functional groups of the Biosorb resulted in loss of 90% of metal binding capacity which could not be restored even on regeneration. The significance of this finding on the metal sequestration mechanisms of microbial biosorbents is discussed.  相似文献   

15.
A tetradecapeptide from ginseng (Panax ginseng) root showing anti-lipolytic activity in an isolated rat fat cell assay was chemically synthesized for analysis of metal binding activities in vitro. Binding activities against several metal ions were analysed by measuring mobility shifts during capillary zone electrophoresis experiments. The ginseng polypeptide (GPP) showed the greatest increase in effective molecular electrophoretic mobility in the presence of Mg2+. Mobility was also affected in the presence of La3+, Mn2+, Ca2+ and Zn2+ ions. Analysis with the dye Stains-all revealed GPP to possess a cation binding site similar to those in Ca2+-binding proteins. GPP thus appears to be a metal binding peptide. The results of this analysis suggested that GPP may perform its anti-lipolytic activities through an ability to modulate the level of free cellular Mg2+ and Mn2+ ions.  相似文献   

16.
The heavy metal resistant ciliate, Stylonychia mytilus, isolated from industrial wastewater has been shown to be potential bioremediator of contaminated wastewater. The ciliate showed tolerance against Zn2+ (30 μg/mL), Hg2+ (16 μg/mL) and Ni2+ (16 μg/mL). The metal ions slowed down the growth of the ciliate as compared with the culture grown without metal stress. The reduction in cell population was 46% for Cd2+, 38% for Hg2+, 23% for Zn2+, 39% for Cu2+ and 51% for Ni2+ after 8 days of metal stress. S. mytilus reduced 91% of Cd2+, 90% of Hg2+ and 98% of Zn2+ from the medium after 96 h of incubation in a culture medium containing 10 μg/mL of the respective metal ions. Besides this, the ciliate could also remove 88% of Cu2+ and 73% Ni2+ from the medium containing 5 μg/mL of each metal after 96 h. The ability of Stylonychia to take up variety of heavy metals from the medium could be exploited for metal detoxification and environmental clean-up operations.  相似文献   

17.
The voltage-gated proton channel Hv1 functions as a dimer, in which the intracellular C-terminal domain of the protein is responsible for the dimeric architecture and regulates proton permeability. Although it is well known that divalent metal ions have effect on the proton channel activity, the interaction of divalent metal ions with the channel in detail is not well elucidated. Herein, we investigated the interaction of divalent metal ions with the C-terminal domain of human Hv1 by CD spectra and fluorescence spectroscopy. The divalent metal ions binding induced an obvious conformational change at pH 7 and a pH-sensitive reduction of thermostability in the C-terminal domain. The interactions were further estimated by fluorescence spectroscopy experiments. There are at least two binding sites for divalent metal ions binding to the C-terminal domain of Hv1, either of which is close to His244 or His266 residue. The binding of Zn2+ to the two sites both enhanced the fluorescence of the protein at pH 7, whereas the binding of other divalent metal ions to the two sites all resulted fluorescence quenching. The orders of the strength of divalent metal ions binding to the two sites from strong to weak are both Co2+, Ca2+, Ni2+, Mg2+, and Mn2+. The strength of Ca2+, Co2+, Mg2+, Mn2+ and Ni2+ binding to the site close to His244 is stronger than that of these divalent metal ions binding to the site close to His266.  相似文献   

18.
Abstract

The base modified nucleoside dBP, carrying a non-hydrogen-bonding non-shape complementary base was incorporated into oligonucleotides (Brotschi, C.; Häberli, A.; Leumann C.J. Angew. Chem. Int. Ed. 2001, 40, 3012–3014). This base was designed to coordinate transition metal ions into well defined positions within a DNA double helix. Melting experiments revealed that the stability of a dBP: dBP base couple in a DNA duplex is similar to a dG: dC base pair even in the absence of transition metal ions. In the presence of transition metal ions, melting experiments revealed a decrease in duplex stability which is on a similar order for all metal ions (Mn2+, Cu2+, Zn2+, Ni2+) tested.  相似文献   

19.
目的在于研究钠、钾、钙、镁这几种金属离子对模拟脂筏表面形貌结构和稳定性的影响。钠、钾、钙、镁离子在生物体中普遍存在,在生物体的各种生理活动中起着重要的作用。用LB膜技术在一定温度下测量脂筏成分在不同亚相上的表面压与平均分子面积(π-A)等温线,分析其热力学性质;并且用原子力显微镜(AFM)对其表面形貌进行观察。实验表明金属离子对脂筏的形成、尺度和表面形貌都有影响。  相似文献   

20.
The first step in attachment of Rhizobiaceae cells to plant root hair tips is mediated by a Ca2+-dependent, Ca2+-binding protein, rhicadhesin. The possible role of Ca2+ in synthesis, anchoring and activity of rhicadhesin was investigated. Growth of Rhizobium leguminosarum biovar viciae cells under Ca2+-limitation was found to result in loss of attachment ability. Under these conditions, rhicadhesin could not be usolated from the bacterial cell surface, but was found to be excreted in the growth medium. Divalent ions appeared to be essential for the ability of purified rhicadhesin to inhibit attachment of R. leguminosarum biovar viciae cells to pea root hair tips. Calcium ions were found not to be involved in binding of rhicadhesin to the plant surface, but appeared to be involved in anchoring of the adhesin to the bacterial cell surface. A model for the role of Ca2+ in activity of rhicadhesin is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号