首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well established that many genes on the male-specific Y chromosome of organisms such as mammals are involved in male reproduction and may evolve rapidly because of positive selection on male reproductive traits. In contrast, very little is known about the function and evolution of W-linked genes restricted to the female genome of organisms with female heterogamety. For birds (males ZZ, females ZW), only one W-linked gene (HINTW) is sufficiently different from its Z-linked homolog to indicate a female-specific function. Here, we report that HINTW shows evidence of adaptive molecular evolution, implying strong positive selection for new functional properties in female birds. Moreover, because HINTW is expressed in the gonads of female birds just before sexual differentiation and is thus a candidate for sex determination, it suggests adaptive evolution related to female development. This provides the first example of Darwinian evolution of a gene restricted to the female genome of any organism. Given that HINTW exists in multiple copies on W, similar to some testis-specific genes amplified on mammalian Y, avian HINTW may thus potentially represent a female parallel to the organization and evolution of Y chromosome genes involved in male reproduction and development.  相似文献   

2.
Previous studies on organisms with well-differentiated X and Y chromosomes, such as Drosophila and mammals, consistently detected an excess of genes moving out of the X chromosome and gaining testis-biased expression. Several selective evolutionary mechanisms were shown to be associated with this nonrandom gene traffic, which contributed to the evolution of the X chromosome and autosomes. If selection drives gene traffic, such traffic should also exist in species with Z and W chromosomes, where the females are the heterogametic sex. However, no previous studies on gene traffic in species with female heterogamety have found any nonrandom chromosomal gene movement. Here, we report an excess of retrogenes moving out of the Z chromosome in an organism with the ZW sex determination system, Bombyx mori. In addition, we showed that those "out of Z" retrogenes tended to have ovary-biased expression, which is consistent with the pattern of non-retrogene traffic recently reported in birds and symmetrical to the retrogene movement in mammals and fruit flies out of the X chromosome evolving testis functions. These properties of gene traffic in the ZW system suggest a general role for the heterogamety of sex chromosomes in determining the chromosomal locations and the evolution of sex-biased genes.  相似文献   

3.
The Z and W sex chromosomes of birds have evolved independently from the mammalian X and Y chromosomes [1]. Unlike mammals, female birds are heterogametic (ZW), while males are homogametic (ZZ). Therefore male birds, like female mammals, carry a double dose of sex-linked genes relative to the other sex. Other animals with nonhomologous sex chromosomes possess "dosage compensation" systems to equalize the expression of sex-linked genes. Dosage compensation occurs in animals as diverse as mammals, insects, and nematodes, although the mechanisms involved differ profoundly [2]. In birds, however, it is widely accepted that dosage compensation does not occur [3-5], and the differential expression of Z-linked genes has been suggested to underlie the avian sex-determination mechanism [6]. Here we show equivalent expression of at least six of nine Z chromosome genes in male and female chick embryos by using real-time quantitative PCR [7]. Only the Z-linked ScII gene, whose ortholog in Caenorhabditis elegans plays a crucial role in dosage compensation [8], escapes compensation by this assay. Our results imply that the majority of Z-linked genes in the chicken are dosage compensated.  相似文献   

4.
5.
Natural selection in avian protein-coding genes expressed in brain   总被引:3,自引:1,他引:2  
The evolution of birds from theropod dinosaurs took place approximately 150 million years ago, and was associated with a number of specific adaptations that are still evident among extant birds, including feathers, song and extravagant secondary sexual characteristics. Knowledge about the molecular evolutionary background to such adaptations is lacking. Here, we analyse the evolution of > 5000 protein-coding gene sequences expressed in zebra finch brain by comparison to orthologous sequences in chicken. Mean d N/ d S is 0.085 and genes with their maximal expression in the eye and central nervous system have the lowest mean d N/ d S value, while those expressed in digestive and reproductive tissues exhibit the highest. We find that fast-evolving genes (those which have higher than expected rate of nonsynonymous substitution, indicative of adaptive evolution) are enriched for biological functions such as fertilization, muscle contraction, defence response, response to stress, wounding and endogenous stimulus, and cell death. After alignment to mammalian orthologues, we identify a catalogue of 228 genes that show a significantly higher rate of protein evolution in the two bird lineages than in mammals. These accelerated bird genes, representing candidates for avian-specific adaptations, include genes implicated in vocal learning and other cognitive processes. Moreover, colouration genes evolve faster in birds than in mammals, which may have been driven by sexual selection for extravagant plumage characteristics.  相似文献   

6.
When the male is the heterogametic sex (XX♀-XY♂ or XX♀-XO♂), as inDrosophila, orthopteran insects, mammals andCaenorhabditis elegans, X-linked genes are subject to dosage compensation: the single X in the male is functionally equivalent to the two Xs in the female. However, when the female is heterogametic (ZZ♂-ZW♀), as in birds, butterflies and moths, Z-linked genes are apparently not dosage-compensated. This difference between X-linked and Z-linked genes raises fundamental questions about the role of dosage compensation. It is argued that (i) genes which require dosage compensation are primarily those that control morphogenesis and the prospective body plan; (ii) the products of these genes are required in disomic doses especially during oogenesis and early embryonic development; (iii) heterogametic females synthesize and store during oogenesis itself morphogenetically essential gene products - including those encoded by Z-linked genes — in large quantities; (iv) the abundance of these gene products in the egg and their persistence relatively late into embryogenesis enables heterogametic females to overcome the monosomic state of the Z chromosome in ZW embryos. Female heterogamety is predominant in birds, reptiles and amphibians, all of which have megalecithal eggs containing several thousand times more maternal RNA and other maternal messages than eggs of mammals,Caenorhabditis elegans, orDrosophila. This increase in egg size, yolk content and, concomitantly, the size of the maternal legacy to the embryo, may have facilitated female heterogamety and the absence of dosage compensation.  相似文献   

7.
《遗传学报》2022,49(2):109-119
Many paleognaths (ratites and tinamous) have a pair of homomorphic ZW sex chromosomes in contrast to the highly differentiated sex chromosomes of most other birds. To understand the evolutionary causes for the different tempos of sex chromosome evolution, we produced female genomes of 12 paleognathous species and reconstructed the phylogeny and the evolutionary history of paleognathous sex chromosomes. We uncovered that Palaeognathae sex chromosomes had undergone stepwise recombination suppression and formed a pattern of “evolutionary strata”. Nine of the 15 studied species' sex chromosomes have maintained homologous recombination in their long pseudoautosomal regions extending more than half of the entire chromosome length. We found that in the older strata, the W chromosome suffered more serious functional gene loss. Their homologous Z-linked regions, compared with other genomic regions, have produced an excess of species-specific autosomal duplicated genes that evolved female-specific expression, in contrast to their broadly expressed progenitors. We speculate such “defeminization” of Z chromosome with underrepresentation of female-biased genes and slow divergence of sex chromosomes of paleognaths might be related to their distinctive mode of sexual selection targeting females rather than males, which evolved in their common ancestors.  相似文献   

8.
Sex determination in major vertebrate groups appears to be very variable, including systems of male heterogamety, female heterogamety and a variety of genetic and environmental sex determining systems. Yet comparative studies of sex chromosomes and sex determining genes now suggest that these differences are more apparent than real. The sex chromosomes of even widely divergent groups now appear to have changed very little over the last 300+ million years, and even independently derived sex chromosomes seem to have followed the same set of evolutionary rules. The sex determining pathway seems to be extremely conserved, although the control of the genes in this pathway is vested in different elements. We present a scenario for the independent evolution of XY male heterogamety in mammals and ZW female heterogamety in birds and some reptiles. We suggest that sex determining genes can be made redundant, and replaced by control at another step of a conserved sex determining pathway, and how choice of a gene as a sex switch has led to the evolution of new sex chromosome systems. J. Exp. Zool. 290:449-462, 2001.  相似文献   

9.
Gamete-recognition proteins have been shown to evolve by positive selection in diverse organism groups, such as marine invertebrates and mammals, although underlying evolutionary mechanisms driving this rapid divergence are poorly understood. However, several hypotheses have been put forward to explain the observed pattern, including different forms of sexual conflict and sperm competition. Because female gametes require more energy to produce than male gametes, female organisms suffer more when fertilisation goes wrong. One process that results in a failed mammalian fertilisation is polyspermy, when >1 sperm fertilises the egg. However in birds, there is no such sexual conflict because multiple sperm typically bind and fuse with the egg. If sexual conflict driven by polyspermy avoidance is important for the evolution of gamete-recognition proteins in vertebrates, we expect to find positive selection in the genes to be less pronounced in birds. We therefore sequenced six genes (ZP1, ZP2, ZP4, ZPAX, CD9, and Acrosin) encoding gamete-recognition proteins in several bird species to test for positive selection. For comparison, we also analysed ortologous sequences in a set of mammalian species. We found no major differences in the occurrence of adaptive evolution and the strength of selection between bird and mammal orthologs. From this we conclude that polyspermy avoidance does not act as the main underlying evolutionary force shaping the rate of evolution in these genes. We discuss other possible processes that could explain positive selection of gamete-recognition proteins in birds and mammals, such as hybridisation avoidance, cryptic female choice, and postcopulatory sperm competition.  相似文献   

10.
The Y chromosome was once thought to be devoid of genetic information. However, recent work shows that it contains numerous genes related to sperm production and dimorphic traits (such as body size and tooth development). Among mammals, these traits influence a male's competitive ability in male-male contests and in sperm competition. Therefore, sexual selection could have favoured genes on the Y chromosome that enhance male fertilization success because they spread unaltered through the male line. In contrast, female heterogamety among birds makes it possible for genes that benefit females to spread through the female line, a mechanism that could explain the prevalence of female choice.  相似文献   

11.
Genes that have experienced accelerated evolutionary rates on the human lineage during recent evolution are candidates for involvement in human-specific adaptations. To determine the forces that cause increased evolutionary rates in certain genes, we analyzed alignments of 10,238 human genes to their orthologues in chimpanzee and macaque. Using a likelihood ratio test, we identified protein-coding sequences with an accelerated rate of base substitutions along the human lineage. Exons evolving at a fast rate in humans have a significant tendency to contain clusters of AT-to-GC (weak-to-strong) biased substitutions. This pattern is also observed in noncoding sequence flanking rapidly evolving exons. Accelerated exons occur in regions with elevated male recombination rates and exhibit an excess of nonsynonymous substitutions relative to the genomic average. We next analyzed genes with significantly elevated ratios of nonsynonymous to synonymous rates of base substitution (dN/dS) along the human lineage, and those with an excess of amino acid replacement substitutions relative to human polymorphism. These genes also show evidence of clusters of weak-to-strong biased substitutions. These findings indicate that a recombination-associated process, such as biased gene conversion (BGC), is driving fixation of GC alleles in the human genome. This process can lead to accelerated evolution in coding sequences and excess amino acid replacement substitutions, thereby generating significant results for tests of positive selection.  相似文献   

12.
Sex is determined genetically in all birds, but the underlying mechanism remains unknown. All species have a ZZ/ZW sex chromosome system characterised by female (ZW) heterogamety, but the chromosomes themselves can be heteromorphic (in most birds) or homomorphic (in the flightless ratites). Sex in birds might be determined by the dosage of a Z-linked gene (two in males, one in females) or by a dominant ovary-determining gene carried on the W sex chromosome, or both. Sex chromosome aneuploidy has not been conclusively documented in birds to differentiate between these possibilities. By definition, the sex chromosomes of birds must carry one or more sex-determining genes. In this review of avian sex determination, we ask what, when and where? What is the nature of the avian sex determinant? When should it be expressed in the developing embryo, and where is it expressed? The last two questions arise due to evidence suggesting that sex-determining genes in birds might be operating prior to overt sexual differentiation of the gonads into testes or ovaries, and in tissues other than the urogenital system.  相似文献   

13.
Dosage compensation, the process whereby expression of sex-linked genes remains similar between sexes (despite heterogamety) and balanced with autosomal expression, was long believed to be essential. However, recent research has shown that several lineages, including birds, butterflies, monotremes and sticklebacks, lack chromosome-wide dosage compensation mechanisms and do not completely balance the expression of sex-linked and autosomal genes. To obtain further understanding of avian sex-biased gene expression, we studied Z-linked gene expression in the brain of two songbirds of different genera (zebra finch, Taeniopygia guttata, and common whitethroat, Sylvia communis) using microarray technology. In both species, the male-bias in gene expression was significantly higher for Z than for autosomes, although the ratio of Z-linked to autosomal expression (Z:A) was relatively close to one in both sexes (range: 0.89–1.01). Interestingly, the Z-linked male-bias in gene expression increased with expression level, and genes with low expression showed the lowest degree of sex-bias. These results support the view that the heterogametic females have up-regulated their single Z-linked homologues to a high extent when the W-chromosome degraded and thereby managed to largely balance their Z:A expression with the exception of highly expressed genes. The male-bias in highly expressed genes points towards male-driven selection on Z-linked loci, and this and other possible hypotheses are discussed.  相似文献   

14.
Are all sex chromosomes created equal?   总被引:1,自引:0,他引:1  
Three principal types of chromosomal sex determination are found in nature: male heterogamety (XY systems, as in mammals), female heterogamety (ZW systems, as in birds), and haploid phase determination (UV systems, as in some algae and bryophytes). Although these systems share many common features, there are important biological differences between them that have broad evolutionary and genomic implications. Here we combine theoretical predictions with empirical observations to discuss how differences in selection, genetic properties and transmission uniquely shape each system. We elucidate how the differences among these systems can be exploited to gain insights about general evolutionary processes, genome structure, and gene expression. We suggest directions for research that will greatly increase our general understanding of the forces driving sex-chromosome evolution in diverse organisms.  相似文献   

15.
Cytochrome c oxidase (COX) is a multi-subunit enzyme complex that catalyzes the final step of electron transfer through the respiratory chain on the mitochondrial inner membrane. Up to 13 subunits encoded by both the mitochondrial (subunits I, II, and III) and nuclear genomes occur in eukaryotic organisms ranging from yeast to human. Previously, we observed a high number of amino acid replacements in the human COX IV subunit compared to mouse, rat, and cow orthologues. Here we examined COX IV evolution in the two groups of anthropoid primates, the catarrhines (hominoids, cercopithecoids) and platyrrhines (ceboids), as well as one prosimian primate (lorisiform), by sequencing PCR-amplified portions of functional COX4 genes from genomic DNAs. Phylogenetic analysis of the COX4 sequence data revealed that accelerated nonsynonymous substitution rates were evident in the early evolution of both catarrhines and, to a lesser extent, platyrrhines. These accelerated rates were followed later by decelerated rates, suggesting that positive selection for adaptive amino acid replacement became purifying selection, preserving replacements that had occurred. The evidence for positive selection was especially pronounced along the catarrhine lineage to hominoids in which the nonsynonymous rate was first faster than the synonymous rate, then later much slower. The rates of three types of ``neutral DNA' nucleotide substitutions (synonymous substitutions, pseudogene nucleotide substitutions, and intron nucleotide substitutions) are similar and are consistent with previous observations of a slower rate of such substitutions in the nuclear genomes of hominoids than in the nuclear genomes of other primate and mammalian lineages. Received: 22 May 1996 / Accepted: 24 November 1996  相似文献   

16.
Sex determination: insights from the chicken   总被引:23,自引:0,他引:23  
Not all vertebrates share the familiar system of XX:XY sex determination seen in mammals. In the chicken and other birds, sex is determined by a ZZ:ZW sex chromosome system. Gonadal development in the chicken has provided insights into the molecular genetics of vertebrate sex determination and how it has evolved. Such comparative studies show that vertebrate sex-determining pathways comprise both conserved and divergent elements. The chicken embryo resembles lower vertebrates in that estrogens play a central role in gonadal sex differentiation. However, several genes shown to be critical for mammalian sex determination are also expressed in the chicken, but their expression patterns differ, indicating functional plasticity. While the genetic trigger for sex determination in birds remains unknown, some promising candidate genes have recently emerged. The Z-linked gene, DMRT1, supports the Z-dosage model of avian sex determination. Two novel W-linked genes, ASW and FET1, represent candidate female determinants.  相似文献   

17.
Sexual selection and sex linkage   总被引:6,自引:0,他引:6  
Some animal groups, such as birds, seem prone to extreme forms of sexual selection. One contributing factor may be sex linkage of genes affecting male displays and female preferences. Here we show that sex linkage can have substantial effects on the genetic correlation between these traits and consequently for Fisher's runaway and the good-genes mechanisms of sexual selection. Under some kinds of sex linkage (e.g. Z-linked preferences), a runaway is more likely than under autosomal inheritance, while under others (e.g., X-linked preferences and autosomal displays), the good-genes mechanism is particularly powerful. These theoretical results suggest empirical tests based on the comparative method.  相似文献   

18.
A chicken Z-linked BAC probe containing the aldolase B gene was used for fluorescence in-situ hybridization (FISH) mapping in four different avian species. The biotinylated BAC clone showed distinct unique hybridization sites on the structurally different Z chromosomes. This result, together with previous data, lends credence to the notion that, despite undergoing structural rearrangements, the gene content of the avian Z chromosome remained conserved during evolution. Our study also demonstrates the feasibility of using large genomic clones for comparative mapping of Z-linked genes in birds.  相似文献   

19.
Identification and sequence analysis of chicken Toll-like receptors   总被引:11,自引:2,他引:9  
Toll-like receptors (TLRs) play an important role in the recognition of microbial components. Only chicken TLR2 and -4 have been reported in the literature. The objectives of this study were to identify new chicken TLRs and to evaluate evolutionary significance of these receptors. Searching chicken genomic databases and DNA sequencing revealed five new TLRs, TLR1 (type 1 and 2), -3, -5, and -7. No chicken orthologues of mammalian TLR8, -9, or -10 were found. As in mammals, all chicken TLRs (chTLRs) share identical protein secondary structure that consists of several leucine-rich domains, a transmembrane domain, and Toll/Interleukin-1 receptor domain(s). Phylogenetic analyses indicate that the identified chTLR genes are the orthologues of TLRs in mammals. Analyses of the number of synonymous substitutions per synonymous site and nonsynonymous substitutions per nonsynonymous site indicate that the nucleotide sequences coding for the leucine-rich repeats of chicken TLR1 type 1 and type 2 were significantly under positive Darwinian selection. In contrast, the sequences of other TLRs were under purifying selection. These results support the hypothesis that one of the major evolutionary strategies of the innate immune system is to recognize a few highly conserved microbial components with several conserved TLRs. The results also indicate that the sequence changes in the ligand-binding domains of TLR1 in chickens provide adaptive advantages during evolution.Nucleotide sequence data reported are available in GenBank database under the accession numbers AY633573–AY633577  相似文献   

20.
Birds show female heterogamety, with ZZ males and ZW females. It is still not clear whether the W is female-determining, or whether two doses of the Z chromosomes are male-determining, or both. This question could easily be settled by the sexual phenotypes of ZZW and ZO birds, in the same way that the sexual phenotypes of XXY and XO showed that the Y is male determining in humans, but that the dosage of an X-borne gene determines sex in Drosophila. However, despite extensive searches, no ZZW or ZO diploid birds have been satisfactorily documented, so we must assume that these genotypes are embryonic lethals. Given that ZW and ZZ are viable and the W contains few genes it is not clear why this should be so. Here I propose that sex chromosome aneuploids are lethal in chicken because, to achieve dosage compensation, a locus on the W chromosome controls the upregulation of genes on the Z in ZW females. ZO birds would therefore have only half the normal dose of Z-linked gene product and ZZW would have twice the amount, both of which would undoubtedly be incompatible with life. Reports of other aneuploids and triploids are also consistent with this hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号