首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human serum rapidly permeabilized Ehrlich ascites tumor cells to inorganic cations such as Rb+ and Ca2+; serum from several other species showed little or no activity. The effect of human serum was not reversed by washing the cells. Human serum, deficient in specific complement proteins, had no activity, but was reactivated by the addition of the missing complement component. Since Ca2+ was not required for the permeabilization, the alternative pathway of complement activation was implicated. Human serum deficient in Factor B of the alternative pathway was ineffective, but permeabilizing activity was restored by addition of Factor B. Rb+ uptake of several other cells was not inhibited by human serum. We conclude that an interaction between human complement and Ehrlich ascites tumor cells is responsible for the membrane lesion observed.  相似文献   

2.
At 0°C, where Ca2+ efflux is not observed, the uptake of Ca2+ by Ehrlich ascites tumor cells consists of four components: 1) An energy-dependent mitochondrial component, which is inhibited by uncouplers, respiratory inhibitors, and mitochondrial ATP-ase inhibitors. 2) Binding to the cell surface, which can be displaced by an EGTA wash. 3) An electrochemical gradient-dependent component, which is inhibited by agents which dissipate these gradients, such as proton ionophores, metabolic uncouplers, and valinomycin. The valinomycin inhibition of this transport component is dependent on K+ concentration. 4) Passive diffusion, which is dependent on Ca2+ concentration and is observed in the presence of inhibitors of the other components. The uptake of Ca2+ at 0°C is sensitive to ruthenium red presumably due to its competition with Ca2+ for cell binding sites.  相似文献   

3.
The possible presence and properties of the Ca2+-dependent K+ channel have been investigated in the Ehrlich ascites tumor cell. The treatment with ionophore A23187+Ca2+, propranolol or the electron donor system ascorbate-phenazine methosulphate, all of which activate that transport system in the human erythrocyte, produces in the Ehrlich cell a net loss of K+ (balanced by the uptake of Na+) and a stimulation of both the influx and the efflux of 86Rb. These effects were antagonized by quinine, a known inhibitor of the Ca2+-dependent K+ channel in other cell systems, and by the addition of EGTA to the incubation medium. Ouabain did not have an inhibitory effect. These results suggests that the Ehrlich cell possesses a Ca2+-dependent K+ channel whose characteristics are similar to those described in other cell systems.  相似文献   

4.
We have investigated the effects of sinusoidal electromagnetic fields (EMF) on ion transport (Ca2+, Na+, K+, and H+) in several cell types (red blood cells, thymocytes, Ehrlich ascites tumor cells, and HL60 and U937 human leukemia cells). The effects on the uptake of radioactive tracers as well as on the cytosolic Ca2+ concentration ([Ca2+]i), the intracellular pH (pHi), and the transmembrane potentsial (TMP) were studied. Exposure to EMF at 50 Hz and 100–2000 μT (rms) had no significant effects on any of these parameters. Exposure to EMF of 20–1200 μT (rms) at the estimated cyclotron magnetic resonance frequencies for the respective ions had no significant effects except for a 12–32% increase of the uptake of 42K within a window at 14.5–15.5 Hz and 100–200 μT (rms), which was found in U937 and Ehrlich cells but not in the other cell types. © 1994 Wiley-Liss, Inc.  相似文献   

5.
Ehrlich ascites tumor cells lose KCl and shrink after swelling in hypotonic media and in response to the addition of 2-deoxyglucose, propranolol, or the Ca2+ ionophore, A23187, plus Ca2+ in isotonic media. All of these treatments activate cell shrinkage via a pathway with the following characteristics: (1) the KCl loss responsible for cell shrinkage does not alter the membrane potential; (2) NO3? does not substitute for Cl?; (3) the net KCl movements are not inhibited by quinine or DIDS; and (4) early in this study furosemide was effective in inhibiting cell shrinkage but this sensitivity was subsequently lost. This evidence suggests that the KCl loss in these cells occurs via a cotransport mechanism. In addition, hypotonic media and the other agents used here stimulate a Cl? -Cl? exchange, a net loss of K+ and a net gain of Na+ which are not responsible for cell shrinkage. The Ehrlich cell also appears to have a Ca2+-activated, quinine-sensitive K+ conductive pathway but this pathway is not part of the mechanism by which these cells regulate their volume following swelling or shrink in isotonic media in response to 2-deoxyglucose or propranolol. Shrinkage by the loss of K+ through the Ca2+ stimulated pathway appears to be limited by Cl? conductive movements; for when NO3?, an anion demonstrated here to have a higher conductive movement than Cl?, is substituted for Cl?, the cells will shrink when the Ca2+-stimulated K+ pathway is activated.  相似文献   

6.
Tightly coupled mitochondria isolated from Ehrlich ascites tumor cells accumulate and retain high concentrations of Ca2+ in the presence of ATP for periods up to at least 20 min at 25 °C. The presence of inorganic phosphate up to 20 mm does not prevent such Ca2+ retention. The tumor mitochondria accumulate Ca2+ in the presence of succinate as an energy source but lose the Ca2+ after 1–2 min. Addition of ATP (Km approx 1 mm) to the incubation medium after Ca2+ release, induces reaccumulation of the ion. Thus, the ability of the tumor mitochondria to retain Ca2+ differs markedly from that of rat liver mitochondria and is seen as being of potential biological significance to the unique metabolic behavior of the ascites tumor cells.  相似文献   

7.
Summary The nature of the leukotriene-D4 (LTD4) induced cell shrinkage in Ehrlich ascites tumor cells has been investigated. LTD4 treatment of Ehrlich cells induces net loss of cellular KCl and cell shrinkage independent of the initial cell volume. LTD4 also produces water loss and reduction in cell volume when all extracellular and all intracellular Cl has been replaced by NO3. On the other hand, LTD4 fails to produce any significant changes in cell volume in the presence of the K-channel blocker quinine, suggesting that LTD4 in Ehrlich cells induces Cl-independent K loss through the Ca2+-dependent K channels. However, the effect of physiological doses of LTD4 on cell volume seems not to be as potent in Cl-free, NO3 cells when compared to Cl-containing cells, indicating that LTD4 in Ehrlich cells also provokes Cl-dependent K loss. LTD4 seems not to produce K loss through an electroneutral K+/H+ exchange system. LTD4 still produces Cl-independent K loss and cell shrinkage in the presence of the anticalmodulin drug pimozide but not in the presence of the LTD4 receptor antagonist L-649,923 or the 5-lipoxygenase inhibitor NDGA. Pretreatment of the cells with pertussis toxin, which inactivates inhibitory guanine nucleotide binding proteins (G-proteins), leads to partial inhibition of the LTD4-induced shrinkage. It is suggested that the LTD4-induced activation of K and Cl transporting systems in Ehrlich ascites tumor cells is mediated via a G-protein coupled receptor and that LTD4 might exert its effect through another lipoxygenase product. The Ca2+-calmodulin complex is not involved in the LTD4-induced activation of K and Cl transporting systems.  相似文献   

8.
Abstract: Bovine chromaffin secretory vesicle ghosts loaded with Na+ were found to take up Ca2+ when incubated in K+ media or in sucrose media containing micromolar concentrations of free Ca2+. Li+- or choline+loaded ghosts did not take up Ca2+. The Ca2+ accumulated by Na+-loaded ghosts could be released by the Ca2+ ionophore A23187, but not by EGTA. Ca2+ uptake was inhibited by external Sr2+, Na +, Li +, or choline +. All the 45Ca2+ accumulated by Na+-dependent Ca2+ uptake could be released by external Na +, indicating that both Ca2+ influx and efflux occur in a Na+-dependent manner. Na + -dependent Ca2+ uptake and release were only slightly inhibited by Mg2+. In the presence of the Na+ ionophore Monensin the Ca2+ uptake by Na +-loaded ghosts was reduced. Ca2+ sequestered by the Na+-dependent mechanism could also be released by external Ca2+ or Sr2+ but not by Mg2+, indicating the presence of a Ca2+/Ca2+ exchange activity in secretory membrane vesicles. This Ca2+/Ca2+ exchange system is inhibited by Mg2+, but not by Sr2+. The Na + -dependent Ca2+ uptake system in the presence of Mg2+ is a saturable process with an apparent Km of 0.28 μM and a Vmax= 14.5 nmol min?1 mg protein?1. Ruthenium red inhibited neither the Na+/Ca2+ nor the Ca2+/Ca2+ exchange, even at high concentrations.  相似文献   

9.
The rate, maximum extent of accumulation, and passive release of Ca2+ by mitochondria within Ehrlich ascites tumor cells treated with digitonin and by isolated tumor mitochondria have been compared. The mitochondrial protein content of Ehrlich cells was determined by cytochrome and cytochrome oxidase analyses. The Ca2+ uptake rate in situ is approximately one-half the rate in vitro whereas maximum Ca2+ accumulation by mitochondria within the cell is about twice the value for isolated mitochondria. When isolated tumor mitochondria were supplemented with exogenous ATP the maximum uptake (approximately 3.0 μeq Ca2+/mg protein) was about the same as in situ. Adenine nucleotides retained in digitonized cells may account for the observed differences. The rate of uncoupler stimulated Ca2+ release from mitochondria within the cell (ca. 10 neq Ca2+/min · mg mitochondrial protein for Ca2+ loads up to 800 neq Ca2+/mg protein) agrees exceptionally well with previous estimates for isolated tumor mitochondria. Therefore the capacity for extensive Ca2+ accumulation without uncoupling and attenuation of Ca2+ efflux are virtually the same in the cell as in vitro.  相似文献   

10.
Lung lamellar bodies maintain an acidic interior by an energy-dependent process. The acidic pH may affect the packaging of surfactant phospholipids, processing of surfactant proteins, or surfactant protein A-dependent lipid aggregation. The electron-probe microanalysis of lamellar body elemental composition has previously suggested that lamellar bodies contain high levels of calcium some of which may be in ionic form. In this study, we investigated the Ca2+ uptake characteristics in isolated lung lamellar bodies. The uptake of Ca2+ was measured by monitoring changes in the fluorescence of Fluo-3, a Ca2+ indicator dye. The uptake of Ca2+ in lamellar bodies was ATP-dependent and increased with increasing concentrations of Ca2+. At 100 nm Ca2+, the uptake was almost completely inhibited by bafilomycin A1, a selective inhibitor of vacuolar type H+-ATPase, or by NH4Cl, which raises the lamellar body pH, suggesting that the pH gradient regulates the uptake. The uptake of Ca2+ increased as the Ca2+ concentration was increased, but the relative contribution of bafilomycin A1-sensitive uptake decreased. At 700 nm, it comprised only 20% of the total uptake. These results suggest the presence of additional mechanism(s) for uptake at higher Ca2+ concentrations. At 700 nm Ca2+, the rate and extent of uptake were lower in the absence of K+ than in the presence of K+. The inhibitors of Ca2+-activated K+-channels, tetraethylammonium, Penitrem A, and 4-aminopyridine, also inhibited the K+-dependent Ca2+ uptake at 700 nm Ca2+. Thus the uptake of Ca2+ in isolated lung lamellar bodies appears to be regulated by two mechanisms, (i) the H+-gradient and (ii) the K+ transport across the lamellar body membrane. We speculate that lamellar bodies accumulate Ca2+ and contribute to regulation of cytosolic Ca2+ in type II cells under resting and stimulated conditions. Received: 18 August 1999/Revised: 9 November 1999  相似文献   

11.
Cell membrane transport of K+ stimulates the rate of glycolysis in Ehrlich ascites tumor cells. A study of the characteristics of this relationship indicates that the stimulation occurs under anaerobic as well as under aerobic conditions. The data suggest that glycolysis is stimulated by a K+ transport mechanism that is coupled to Na+ transport because the effect is blunted or abolished when the principal intracellular ion is lithium or choline. This stimulus to glycolysis is blocked by ouabain and ethacrynic acid, agents that have been shown to inhibit monovalent cation transport in erythrocytes. In contrast to the action of ouabain, glycolysis is inhibited by ethacrynic acid in Ehrlich ascites tumor cells in the absence of cell membrane K+ transport. In studies with ghost-free hemolysates of human erythrocytes and with cytosol prepared from Ehrlich ascites tumor cells, ethacrynic acid significantly blocks lactate formation from fructose diphosphate demonstrating the direct inhibitory effect of this agent on one or more enzymes of the Embden-Meyerhof pathway. Since ethacrynic acid has no influence on lactate formation in intact erythrocytes utilizing an endogenous substrate, the presumptive site of inhibition is proximal to the 3-phosphoglycerate level.  相似文献   

12.
13.
The kinetic characteristics of Na+ -Ca2+ exchange in isolated sarcolemma vesicles from new-borne chick heart, which contain about 70% of right-side-out vesicles, were compared with those of cultured embryonic chick heart cells. Na+ -Ca2+ exchange was monitored as Nai-dependent Ca2+ uptake. Increase in the internal concentration of Na+ ([Na+]i) in these two preparations caused increase in both the initial rate and the saturation-level of Ca2+ uptake. Plots of the rate of Ca2+ uptake against [Na+]i showed similar saturation-kinetics in these two preparations. The apparent Michaelis constant (Km) (0.35 mM) for Ca2+ uptake by the intact cells was much higher than that (0.031 mM) for Ca2+ uptake by the vesicles. The degree of inhibition by Mg2+ was also higher in the cells than in the vesicles. Some possible reasons (age of the chicks used, membrane potential, etc.), for these differences were examined and are discussed.  相似文献   

14.
In view of the importance of Pi in the control of cell metabolism, it was of interest to study the mechanism and regulation of Pi uptake by ascites tumor cells. For this purpose, the incorporation of 32Pi into Ehrlich Lettré cells was compared when competitive anions and inhibitors which alter cation movements were present. Anions such as sulfanilate (35 mm) and succinate (30 mm) decrease 32Pi uptake by ca. 35%, suggesting that transport is mediated by a protein similar to the 100,000 Mr anion carrier isolated from erythrocyte membranes. Furosemide, a diuretic which bears a structural analogy to sulfanilate inhibitors of anion transport, also decreases 32Pi incorporation at concentrations as low as 2 × 10?5m. This inhibitor blocks cation exchange in ascites tumor cells, and from the present data, it is suggested that a possible function of the furosemidesensitive cation exchange protein is to facilitate anion transport. Ouabain, known to inhibit (Na+ + K+)-ATPase and its dephosphorylation, stimulates the rate of incorporation of 32Pi into cells and also raises the net inorganic phosphate level. The stimulation of 32Pi incorporation is decreased by sulfanilate or succinate. In contrast to the effects of ouabain, addition of 10 mm K+, which is known to stimulate (Na+ + K+)-ATPase and its dephosphorylation, decreases 32Pi incorporation. These observations suggest that anion transport and energy-dependent Na+ and K+ movements may be closely coupled to the intact cell.  相似文献   

15.
Summary Pretreatment with cytochalasin B, which is known to disrupt microfilaments, significantly inhibits regulatory volume decrease (RVD) in Ehrlich ascites tumor cells, suggesting that an intact microfilament network is a prerequisite for a normal RVD response. Colchicine, which is known to disrupt microtubules, has no significant effect on RVD. Ehrlich cells have a cortical three-dimensional, orthogonal F-actin filament network which makes the cells look completely black in light microscopy following immunogold/silver staining using anti-actin antibodies. After addition of cytochalasin B, the stained cells get lighter with black dots localized to the plasma membrane and appearance of multiple knobby protrusions at cell periphery. Also, a significant decrease in the staining of the cells is seen after 15 min of RVD in hypotonic medium. This microfilament reorganization appears during RVD in the presence of external Ca2+ or Ca2+-ionophore A23187. It is, however, abolished in the absence of extracellular calcium, with or without prior depletion of intracellular Ca2+ stores. An effect of increased calcium influx might therefore be considered. The microfilament reorganization during RVD is abolished by the calmodulin antagonists pimozide and trifluoperazine, suggesting the involvement of calmodulin in the process. The microfilament reorganization is also prevented by addition of quinine. This quinine inhibition is overcome by addition of the K+ ionophore valinomycin.  相似文献   

16.
Summary ATP-dependent Ca2+ uptake into isolated pancreatic acinar cells with permeabilized plasma membranes, as well as into isolated endoplasmic reticulum prepared from these cells, was measured using a Ca2+-specific electrode and45Ca2+. Endoplasmic reticulum was purified on an isopycnic Percoll gradient and characterized by marker enzyme distribution. When compared to the total homogenate, the typical marker for the rough endoplasmic reticulum RNA was enriched threefold and the typical marker for the plasma membrane Na+,K+(Mg2+)ATPase was decreased 20-fold. When different fractions of the Percoll gradient were compared,45Ca2+ uptake correlated with the RNA content and not with the Na+,K+(Mg2+)ATPase activity. The characteristics of nonmitochondrial Ca2+ uptake into leaky isolated cells and45Ca2+ uptake into isolated endoplasmic reticulum were very similar: Calcium uptake was maximal at 0.3 and 0.2 mmol/liter free Mg2+, at 1 and 1 mmol/liter ATP, at pH 6.0 and 6.5, and free Ca2+ concentration of 2 and 2 mol/liter, respectively. Calcium uptake decreased at higher free Ca2+ concentration.45Ca2+ uptake was dependent on monovalent cations (Rb+>K+>Na+>Li+>choline+) and different anions (Cl>Br>SO 4 2– >NO 3 >I>cyclamate>SCN) in both preparations. Twenty mmol/liter oxalate enhanced45Ca2+ uptake in permeabilized cells 10-fold and in vesicles of endoplasmic reticulum, fivefold. Calcium oxalate precipitates in the endoplasmic reticulum of both preparations could be demonstrated by electron microscopy. The nonmitochondrial Ca2+ pool in permeabilized cells characterized in this study has been previously shown to regulate the cytosolic free Ca2+ concentration to 0.4 mol/liter. Our results provide firm evidence that the endoplasmic reticulum plays an important role in the regulation of the cytosolic free Ca2+ concentration in pancreatic acinar cells.  相似文献   

17.
Summary Ehrlich ascites tumor cells resuspended in hypotonic medium initially swell as nearly perfect osmometers, but subsequently recover their volume within 5 to 10 min with an associated KCl loss. 1. The regulatory volume decrease was unaffected when nitrate was substituted for Cl, and was insensitive to bumetanide and DIDS. 2. Quinine, an inhibitor of the Ca2+-activated K+ pathway, blocked the volume recovery. 3. The hypotonic response was augmented by addition of the Ca2+ ionophore A23187 in the presence of external Ca2+, and also by a sudden increase in external Ca2+. The volume response was accelerated at alkaline pH. 4. The anti-calmodulin drugs trifluoperazine, pimozide, flupentixol, and chlorpromazine blocked the volume response. 5. Depletion of intracellular Ca2+ stores inhibited the regulatory volume decrease. 6. Consistent with the low conductive Cl permeability of the cell membrane there was no change in cell volume or Cl content when the K+ permeability was increased with valinomycin in isotonic medium. In contrast, addition of the Ca2+ ionophore A23187 in isotonic medium promoted Cl loss and cell shrinkage. During regulatory volume decrease valinomycin accelerated the net loss of KCl, indicating that the conductive Cl permeability was increased in parallel with and even more than the K+ permeability. It is proposed that separate conductive K+ and Cl channels are activated during regulatory volume decrease by release of Ca2+ from internal stores, and that the effect is mediated by calmodulin.  相似文献   

18.
The ovulation hormone-producing caudo-dorsal cells (CDC) of Lymnaea stagnalis have three states of excitability (active, inhibited, and resting), which are related to the egg-laying cycle. Active state CDC produce a firing pattern of prolonged spiking activity (1 spike/2 s), which in the animal occurs shortly before egg laying. In preparations it is evoked as an afterdischarge upon repetitive stimulation of CDC. The afterdischarge is not synaptically driven, but rests on a pacemaking mechanism. CDC are silent in the inhibited and resting states, which follow egg laying. In these states the membrane potential is mainly dependent on [K+]0. In the active state the ratio of the K+, Na+, and Ca2+ permeabilities has changed considerably, probably resulting from an increased permeability to Na+ and Ca2+. The firing rate in the afterdischarge is dependent on the membrane potential, which is confirmed experimentally by varying [K+]0.[Na+]0 and [Ca2+]0 directly influence the firing rate. Firing stops in Na+-free saline, but is enhanced by Ca2+-free or high-Mg2+ saline. TTX does not affect firing. Relatively high concentrations of Co2+ and La3+ (2 × 10?3M) strongly inhibit CDC. Regular firing can be changed into bursting by various means, such as high K+ or addition of 1 mM Ba2+. Bursting normally occurs at the beginning of the afterdischarge. Postburst hyperpolarizations are reduced in Ca2+-free saline and by low Co2+ (10?4-5 10?4M). Active CDC are driven by a pacemaking mechanism constituted by a voltage-dependent Na+/Ca2+ channel and a Ca2+-dependent K+ channel, thus resembling that of bursting pacemakers. The pacemaking mechanism is inactive in the resting and inhibited state.  相似文献   

19.
Abstract– The uptake of 45Ca2+ into cell suspensions prepared from a transplantable rat pheochromocytoma was measured. The uptake of Ca2+ into these cells is biphasic; there is a rapid, initial uptake of Ca+, followed by a slower uptake that proceeds at a linear rate for at least 10min at 37°C. The uptake of Ca2+ is a linear function of the external Ca2+ concentration over the range of 0.13-2.5 mm -Ca2+ Incubation of the cells in a medium containing 56mm -K+ results in a 2-3 fold increase in the uptake of Ca2+ into the cells; 56mm -K+ increases both phases of Ca2+ uptake. The cells apparently lack a mechanism to inactivate this 56 mm -K+-induced increase-in Ca2+ permeability. Two inhibitors of K+ stimulated catecholamine secretion, diphenylhydantoin and verapamil, both inhibit K +-stimulated Ca2+ uptake. These results provide a direct demonstration of the stimulus-coupled uptake of Ca2+ into chromaffin cells, and provide additional evidence for the correlation of Ca2+ uptake with catecholamine secretion by these cells.  相似文献   

20.
Summary Ehrlich ascites tumor cells contain a Na+ uptake system, which is activated by internal protons and is inhibited by amiloride with an IC50 of 25 m and by dimethylamiloride with an IC50 of 0.6 m at 1mm external Na+. Decrease of external Na+ or addition of amiloride is followed by a decrease of internal pH. Taken together, these findings suggest the presence of an operative Na+/H+ antiport system, which is involved in the regulation of internal pH. We cannot find a significant contribution of a proton pump activated by glycolysis to the pH gradient. At an external pH between 7.0 and 7.6, quiescent cells are more alkaline than exponentially growing cells (0.1 to 0.17 units). Accordingly, an increase of the affinity of the Na+/H+ antiport for internal protons in quiescent cells is demonstrated by the following findings: 1. The internal pH, at which the half-maximal activation of the amiloride-sensitive Na+ uptake occurs, is shifted from 6.85 to 7.1 at 1mm external Na+. 2. The threshold value of external pH, below which a pronounced effect of amiloride on steadystate internal pH is observed, is shifted from 7.0 in growing to 7.5 in quiescent cells at physiological Na+ concentrations. Therefore, we conclude that quiescent Ehrlich ascites tumor cells raise their internal pH by increasing the affinity of their Na+/H+ antiporter to internal protons. The Na+/H+ antiport cannot be activated further by addition of serum growth factors to quiescent cells. All experiments were performed at bicarbonate concentrations in the medium which do not exceed 0.5mm. The data are discussed in view of existing models of mitogenic activity of transitory pH changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号