首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
梁莉  冼晓青  赵浩翔  郭建洋  刘万学 《昆虫学报》2022,65(10):1334-1342
【目的】白缘象甲Naupactus leucoloma是中国进境植物检疫性有害生物,对农作物和栽培植物的潜在危害风险较高。自20世纪在美国被首次发现以来,在全球多个国家内发生扩散,造成严重的经济损失。本研究旨在对白缘象甲的潜在地理分布区进行识别并进一步分析其定殖和扩散风险。【方法】基于白缘象甲的752个有效分布记录和10个环境变量,利用MaxEnt模型和ArcGIS软件对白缘象甲的潜在地理分布区进行识别,同时综合环境变量贡献率和刀切法(jackknife)检验评估制约其潜在地理分布的重要环境变量。【结果】白缘象甲在全球的潜在适宜生境主要分布在美国东南部、法国西南部地区、西班牙北部地区、土耳其西北部地区等地,在我国暂时没有其高适宜生境的分布。在我国适宜生境的分布集中在中部和东部沿海地区10余个省份。在影响白缘象甲潜在地理分布的环境变量中,以最干月降水量、年平均气温和最冷月最低温为重要影响变量,其中气温起主导作用。【结论】白缘象甲有一定的入侵、定殖和扩散风险。建议农林行业部门、海关口岸加强调查、检疫和监控工作,严防白缘象甲传入对我国农作物造成危害。  相似文献   

2.
The effects of volatile emissions from plants exposed to individual abiotic and biotic stresses are well documented. However, the influence of multiple stresses on plant photosynthesis and defense responses, resulting in a variety of volatile profiles has received little attention. In this study, we investigated how temperature regimes in the presence and absence of the sucking insect Myzus persicae affected volatile organic compound (VOC) emissions in Arabidopsis over three time periods (0–24, 24–48, and 48–72 h). Headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry was used to evaluate Arabidopsis VOCs. The results showed that under laboratory conditions, eight volatile classes [alcohols (mainly 2-ethyl-hexan-1-ol), ketone (6-methyl hept-5-en-2-one), esters (mainly (Z)-3-hexenyl acetate), aldehydes (mainly phenylacetaldehyde), isothiocyanates (mainly 4-methylpentyl isothiocyanate), terpenes (mainly (E,E)-α-farnesene), nitrile (5-(methylthio) pentanenitrile), and sulfide (dimethyl trisulfide)] were observed on plants exposed to stress combinations, whereas emissions of six volatile classes were observed during temperature stress treatments alone (with the exception of nitriles and sulfides). Aphid density at high temperature combinations resulted in significantly higher isothiocyanate, ester, nitrile, and sulfide proportions. The results of the present study provide an insight into the effects of temperature–aphid interactions on plant volatile emissions.  相似文献   

3.
测定了草甸棕壤条件下,菲、芘、1,2,4—三氮苯对高等植物(小麦、白菜、西红柿)根伸长抑制串以及复合污染毒性效应。结果表明,菲、芘、1,2,4—三氮苯浓度与植物根伸长抑制串呈显著线性或对数相关(p=0.05)。3种化学品对植物根伸长抑制的强弱顺序为1,2,4—三氮苯>菲>芘。这与3种化学品的水中溶解度大小显著相关。小麦是3种供试植物中对有机污染物最敏感植物。菲、芘、1,2,4—三氮苯复合污染主表现为协同作用。  相似文献   

4.
The allelopathic effects of vegetative and flowering plants of the annual/biennial pasture weed Senecio jacobaea L. (ragwort) against Lolium perenne L. (perennial ryegrass) and four pasture legumes were investigated using a range of bioassays. Bioassays based on shoot and root leachates demonstrated detectable, although usually slight, allelopathic effects, and these did not usually differ between the two developmental stages of S. jacobaea. However, aqueous extract and tissue decomposition bioassays demonstrated stronger allelopathic effects, particularly for flowering plants, and this was in general agreement with toxicity assessments of soil collected from under S. jacobaea plants in the field. According to our study, flowering plants have the potential to weaken pasture through allelopathy, and decomposition of above-ground litter appears as the most likely mechanism facilitating this. The aqueous extract and tissue decomposition bioassays also revealed that L. perenne was less susceptible to S. jacobaea allelopathy than were the legumes, suggesting that encouraging a strong L. perenne component in pastures has potential for reducing the overall inhibitory ef S. jacobaea on pasture production.  相似文献   

5.
Plants display differential responses following mechanical damage and insect herbivory. Both caterpillar attack and the application of caterpillar oral secretions (OS) to wounded leaves stimulates volatile emission above mechanical damage alone. Volicitin ( N- 17-hydroxylinolenoyl- l -glutamine), present in beet armyworm (BAW, Spodoptera exigua ) OS, is a powerful elicitor of volatiles in excised maize seedlings ( Zea mays cv. Delprim). We consider some of the mechanistic differences between wounding and insect herbivory in maize by examining the activity of volicitin, changes in jasmonic acid (JA) levels, and volatile emission from both intact plant and excised leaf bioassays. Compared to mechanical damage alone, volicitin stimulated increases in both JA levels and sesquiterpene volatiles when applied to intact plants. In a bioassay comparison, excised leaves were more sensitive and produced far greater volatile responses than intact plants following applications of both volicitin and JA. In the excised leaf bioassay, volicitin applications (10–500 pmol) to wounded leaves resulted in dose dependent JA increases and a direct positive relationship between JA and sesquiterpene volatile emission. Interestingly, volicitin-induced JA levels did not differ between intact and excised bioassays, suggesting a possible interaction of JA with other regulatory signals in excised plants. In addition to JA, insect herbivory is known to stimulate the production of ethylene. Significant increases in ethylene were induced only by BAW herbivory and not by either wounding or volicitin treatments. Using intact plant bioassays, ethylene (at 1 µl l−1 or less) greatly promoted volatile emission induced by volicitin and JA but not mechanical damage alone. For intact plants, wounding, elicitor-induced JA and insect-induced ethylene appear to be important interacting components in the stimulation of insect-induced volatile emission.  相似文献   

6.
Abstract. Electroantennogram (EAG) and y-tube bioassays have been used to demonstrate the repellent properties of five plant compounds with host-seeking parous female Culicoides impunctatus Goetghebuer. The compounds were methyl salicylate and allyl-, butyl-, phenyl- and 2-phenylethyl isothiocyanate. EAG thresholds were 1 times 10-3 to 1 μg. In the bioassays, maximal repellencies occurred with 1 times 10˜2 to lOug. When each compound was combined with 1-octen-3-ol, a confirmed host-odour attractant for C.impunctatus females, additive effects were recorded in EAG assays and in bioassays, all of the compounds either reduced or reversed the attractancy of l-octen-3-ol. Of the isothiocyanates, allyl isothiocyanate was the most potent and when combined with 1-octen-3-ol in field trials, the attractant effect of l-octen-3-ol was reduced.  相似文献   

7.
Larvae of Ostrinia nubilalis (Hübner) cause significant damage to maize ears and reduce market value of fresh sweet corn. Females rely on volatile cues to locate and oviposit preferentially on maize plants. In addition, oviposition behavior of females is influenced by soil management practices as they usually lay more eggs on maize plants grown on conventional soil than on organic soils that harbor rich microbial diversity. Since some plant growth‐promoting rhizobacteria (PGPR) are known to mediate plant health via suppression of soil pathogens and enhanced uptake of nutrients; we hypothesized that inoculation of maize seeds with PGPR will alter emission of maize volatile and reduce the attractiveness of plants to ovipositing O. nubilalis. Plants treated with the single PGPR strain Bacillus pumilus INR‐7, two PGPR mixtures (Blend‐8 or Blend‐9) or untreated plants were presented to O. nubilalis females in oviposition choice bioassays. Headspace volatile organic compounds (VOCs) from the plants were analyzed by gas chromatography–mass spectrometry (GC–MS). Ostrinia nubilalis laid significantly fewer eggs on PGPR‐treated plants compared to untreated plants. In two‐choice oviposition experiments, significantly higher numbers of eggs were laid on untreated plants compared to PGPR‐treated plants. PGPR‐treated plants emitted fewer VOCs than untreated plants which, in part, explains the relatively fewer eggs on PGPR‐treated plants. These results indicate that selected PGPR treatments can alter maize plant volatiles with important ramifications for plant‐insect interactions. The implication of this finding is discussed in the context of integrated management of soil health to improve crop resistance to biotic stressors.  相似文献   

8.
Due to human activities, large volumes of soils are contaminated with organic pollutants such as polycyclic aromatic hydrocarbons, and very often by metallic pollutants as well. Multipolluted soils are therefore a key concern for remediation. This work presents a long-term evaluation of the fate and environmental impact of the organic and metallic contaminants of an industrially polluted soil under natural and plant-assisted conditions. A field trial was followed for four years according to six treatments in four replicates: unplanted, planted with alfalfa with or without mycorrhizal inoculation, planted with Noccaea caerulescens, naturally colonized by indigenous plants, and thermally treated soil planted with alfalfa. Leaching water volumes and composition, PAH concentrations in soil and solutions, soil fauna and microbial diversity, soil and solution toxicity using standardized bioassays, plant biomass, mycorrhizal colonization, were monitored. Results showed that plant cover alone did not affect total contaminant concentrations in soil. However, it was most efficient in improving the contamination impact on the environment and in increasing the biological diversity. Leaching water quality remained an issue because of its high toxicity shown by micro-algae testing. In this matter, prior treatment of the soil by thermal desorption proved to be the only effective treatment.  相似文献   

9.
In this study, we investigated whether the oviposition behaviour and performance of the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), on the rose cultivar Rosa chinensis Jacq. (Rosaceae) were affected when the plants were infected by rose powdery mildew, Podosphaera pannosa (Wallr.: Fr.) de Bary (Erysiphales). The bioassays revealed that the moths significantly avoided ovipositing on mildew‐infected rose leaves when compared to healthy leaves. Pupal weights, emergence rates, and fecundity decreased when the caterpillars were fed mildewed rose leaves. Further laboratory bioassays aimed to elucidate the effects of two volatile headspace extracts (separately collected from healthy and mildewed rose plants) on the oviposition behaviour and performance of the moths. The moths clearly preferred to oviposit on healthy rose leaves that were not sprayed with additional volatiles rather than on healthy leaves sprayed with the volatile extracts from mildewed plants. The mean number of eggs laid on the former leaves was more than six times higher than that laid on the latter leaves. Olfactory bioassays demonstrated that ovipositing moths were significantly more attracted to volatiles emitted by healthy rose leaves than to those emitted by mildew‐infected leaves. Similar results were obtained when comparisons were made between the volatile extracts collected from healthy and mildewed rose plants. Thus, volatiles from mildew‐infected roses have a strong inhibitory effect against the moths. These results indicated that rose volatiles play a role in the oviposition behaviour of the moths, and that the volatiles induced by powdery mildew might be used for insect control.  相似文献   

10.
The absorption by plants of wheat and mustard of a systemic organophosphorus insecticide (phorate), applied as a slurry seed dressing, was studied by caging the aphid Rhopalosiphum padi (L.) on the foliage of wheat, and the aphid Brevicoryne brassicae (L.) and the Chrysomelid beetle Phaedon cochleariae (F.) on white mustard, grown from phorate-treated seed.
Wheat and mustard plants quickly lost their toxicity to insects when they were transplanted, suggesting that most of the insecticide from a slurry seed treatment passes into the soil and is picked up by the roots. That phorate or its derivatives occur in the soil was shown by tests of anticholinesterase activity. Insecticide can also pass into the seed of wheat and move to the growing embryo. Phorate becomes closely bound to the testa of mustard, but does not penetrate it to reach the cotyledons or other parts of the embryo. Mustard cotyledons can become contaminated by insecticide as they emerge through the soil.
Young and old leaves of both wheat and mustard depend on continued absorption of insecticide from the soil to maintain their toxicity. No insecticide moves from old to young leaves. Old leaves lose their toxicity to insects more slowly than young ones. When treated seeds are sown close together, the overlapping zones of insecticide round each seed can increase strength and persistence of insecticidal effect. This happens more with dimethoate, which readily dissolves in water, than with phorate, which is almost insoluble. At normal sowing rates the zones of insecticide round each seed would rarely overlap.
Roots of wheat and mustard from treated seed did not excrete insecticide, and the roots did not carry insecticide through the soil.  相似文献   

11.
For landfarming of oil refinery waste to be sustainable, it is crucial to know the toxicity and chemical composition of the waste. We determined the chemical composition of waste known as American Petroleum Institute sludge and tested its toxicity in two different soils using the earthworm Eisenia andrei (Oligochaeta) in standardized bioassays. We compared the chemical composition of the sludge with available chemical profiles of the landfarming site where sludge of the same origin had been landfarmed for several years. The concentrations of Al, Mn, Pb, S and Zn and diesel range organics were higher in the landfarmed soil than in the sludge, indicating possible accumulation in the soil over time. Although no traces of volatile organic compounds were previously found in the landfarming site soil, we found high levels in the American Petroleum Institute sludge, indicating that these volatiles may not pose a long-term problem in the soil. Polycyclic aromatic hydrocarbons and gasoline range organics were present in the sludge at higher concentrations than in the site soil, indicating that their remediation through landfarming may have had some degree of success.

Earthworm biomass and reproduction were detrimentally affected at low sludge concentrations, which could have population level effects over time in a landfarming site.  相似文献   

12.
The bioactive hydrolysis products of glucosinolates, particularly the isothiocyanates, can be used to control soil pests and weeds by incorporating glucosinolate-containing plant material in soil—a practice known as biofumigation. The fate of glucosinolates and their hydrolysis products in soil determines both the efficacy and environmental impact of biofumigation. Knowledge of the processes by which these compounds are sorbed, degraded or otherwise lost from the soil is fundamental to developing effective, but environmentally benign biofumigation strategies. Effective biofumigation relies on maximum hydrolysis of the glucosinolate in the plant tissue to generate high isothiocyanate concentrations in the soil after incorporation. This is favoured by maximum cell disruption, by addition of water, and a high soil temperature. Residual glucosinolates are very weakly sorbed, readily leached and are microbially degraded and mineralised in soil. In contrast, isothiocyanates are strongly sorbed by the organic matter in soil, react strongly with nucleophilic groups present in soil, and are prone to volatilization losses in addition to microbial degradation and mineralisation. These loss processes are influenced by soil type, water content and temperature. Using appropriate incorporation strategies, sufficiently high isothiocyanate concentrations (>100 nmol g−1) can be achieved in soil using biofumigation for effective suppression of susceptible pests. The relatively rapid sorption and degradation of the isothiocyanates in the period of days after incorporation minimizes the risks of persistence in the environment or leaching. Biofumigation is therefore a promising technique which can be further developed to form part of IPM (Integrated Pest Management) strategies to reduce reliance on synthetic pesticides with minimal unintended impacts on the environment.  相似文献   

13.
Environmental risk assessment for genetically modified crops producing insecticidal Cry proteins derived from Bacillus thuringiensis (Bt) includes the evaluation of adverse effects on non-target organisms. Although ELISA concentration measurements indicate the presence of Cry proteins, sensitive insect bioassays determine whether there is biological activity. The insecticidal activity of the coleopteran-active Cry3Bb1 expressed in different tissues of Bt maize, contained in maize-fed herbivores, and in spiked soil was measured in sensitive insect bioassays using larvae of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Biological activity was confirmed of Cry3Bb1 contained in pulverized Bt maize pollen, roots, leaves, silk, and Bt maize-fed spider mites and western corn rootworm adults. When test substances were incorporated into artificial diet at the same concentrations of Cry3Bb1 (measured by ELISA), maize pollen and leaf litter exhibited lower toxicity than fresh plant material and maize-fed arthropods. This suggests that nutritional quality of food and degradation of Cry proteins may influence toxicity to insects. When soil was spiked with Cry3Bb1, the Bt protein was highly adsorbed and retained its full biological activity. Because toxicity of Cry proteins contained in different matrices cannot always be determined from ELISA values alone, sensitive insect bioassays can improve hazard and exposure assessments in environmental risk assessment of Bt crops.  相似文献   

14.
In a replicated field experiment, ryegrass, vetch and red clover were grown or the soil was kept bare over a 2–month period in summer to compare the effects of these treatments on slug damage to the following crop (Chinese cabbage) and on the efficacy of nematodes (Phasmarhabditis hermaphrodita) applied as biological control agents to the soil at planting time to protect this crop. Slug damage was significantly (c. two times) greater after red clover or vetch than after ryegrass. Damage on plots without cover crop was intermediate and not significantly different from either extreme. Slug damage was reduced by about one‐third by the nematode treatment. The preceding cover crop did not influence nematode efficacy. Numbers of slugs on harvested plants (mainly Deroceras reticulatum and Deroceras panormitanum) were influenced by an interaction between cover crop and nematode treatment. On subplots without nematodes, more slugs were recorded with than without a preceding cover crop. No such differences were found on nematode‐treated subplots. Soil samples were collected at intervals from 0–99 days after nematode treatment to monitor nematode survival and infectivity in bioassays with D. reticulatum. No significant effects of cover crops were detected in bioassays. Moreover, there were no significant effects of nematodes on slug survival. Their effects on slug food consumption were mostly insignificant and any effects were transient and not consistent. However, significantly more slug cadavers contained nematodes when slugs were exposed to nematode‐treated soil. The implications of these results are discussed.  相似文献   

15.
The allelopathic potential of four tree species on soil microbial populations and some herbaceous plants (two understory species and one general biotest species) was investigated. Effects of three nonindigenous tree species, Eucalyptus globulus Labill, Pinus radiata D.Don and Acacia melanoxylon R.Br., on microorganisms participating in the cycle of nitrogen were evaluated, comparing them with those produced by the autochthonous Quercus robur L. Influence of the trees on Lactuca sativa L., Dactylis glomerata L. and Trifolium repens L. was also checked in bioassays. Cell numbers of Nitrosomonas sp. were negatively affected by Acacia and Eucalyptus stands, mainly during spring, when flowers are especially abundant on the ground. Proteolytic microorganisms were also negatively affected by Eucalyptus and Pinus stands, whilst Quercus stand did not show any toxicity. Soil bioassays showed clear inhibitory effects on germination and growth of understory plants, particularly soils from Eucalyptus and Acacia stands. The greatest effects had the soil from Acacia stand, which was phytotoxic during the whole period of germination and growth of understory plants. Allelopathic phenomena could be, at least partially, responsible of the low species diversity in the understory of the nonindigenous tree stands.  相似文献   

16.
Application of imidacloprid to the soil in which Tabasco pepper, Capsicum frutescens L., seedlings were growing was highly effective against the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). In just 48 h after the soil drench, aphid numbers on treated plants declined from 292.1 to 33.0 per plant, a reduction of 89%. By 72 and 96 h after the application, the reductions were 97 and 100%, respectively. Reductions in green peach aphid numbers also indicated that imidacloprid readily moved throughout the Tabasco pepper plant. Although, initial green peach aphid reductions at 24 and 48 h after imidacloprid application to soil, were greater on the lower leaves than on the upper leaves, by 72 h toxicity was high throughout the plant. At 48 h, overall green peach aphid reduction on seedlings grown in wet soil was significantly higher than that on plants growing in the drier soil. Regardless of soil moisture or leaf location, no live green peach aphids were detected on treated seedlings after 96 h. After the initial uptake period, toxicity to green peach aphid remained high for 5 wk. Under Tabasco pepper production conditions in Central America, the greatest need for aphid management is just after transplanting. Imidacloprid soil drenches before transplanting should offer the Tabasco pepper producer an extended period of aphid-free production.  相似文献   

17.
Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals   总被引:7,自引:0,他引:7  
Use of plants, with hyperaccumulating ability or in association with soil microbes including the symbiotic fungi, arbuscular mycorrhiza (AM), are among the most common biological methods of treating heavy metals in soil. Both hyperaccumulating plants and AM fungi have some unique abilities, which make them suitable to treat heavy metals. Hyperaccumulator plants have some genes, being expressed at the time of heavy metal pollution, and can accordingly localize high concentration of heavy metals to their tissues, without showing the toxicity symptoms. A key solution to the issue of heavy metal pollution may be the proper integration of hyperaccumulator plants and AM fungi. The interactions between the soil microbes and the host plant can also be important for the treatment of soils polluted with heavy metals.  相似文献   

18.
Summary The effects of liming and superphosphate application on the manganese nutrition of lettuce were studied in factorial experiments. A fairly acid silt loam of the Hamble series, which on steam-sterilization released considerable amounts of manganese in readily available forms, was used in the investigation.Manganese toxicity in lettuce was prevented by liming to increase the pH of the soil. The amounts of water-soluble, exchangeable and total active manganese present in the soil, and the manganese content of lettuce plants, decreased with increasing soil pH; easily reducible soil manganese increased with increasing soil pH.The effect of added superphosphate depended on the pH of the untreated soil. When the soil had a high pH, application of phosphate invariably decreased the pH and increased the manganese uptake. In acid soil supplying excessive amounts of manganese, application of phosphate reduced the manganese content of the plants; the pH of the soil was either unchanged or slightly increased by the treatment.Correlations were calculated between soil pH, various fractions of soil manganese, and the manganese content and yield of lettuce.From a comparison of plants grown in soil and sand culture it was concluded that the presence of a further toxic factor in the soil was probable.The results are discussed in relation to those obtained by other investigators.  相似文献   

19.
Summary Accumulations of copper, lead and arsenic in soils affected by orchard sprays or mining were investigated in relation to their effects on growth and composition of plants. Seasonal variations in concentrations of the elements in pasture plants sampled from contaminated soils in the field are reported. The effects of soil temperature and applications of the nutrients P, S and N on the composition of plants grown in contaminated soils were investigated in glasshouse experiments.The copper concentrations of pasture species sampled from sites which were formerly orchards were usually high (20 to 60 mg kg–1) during most of the growing season and may present some risk of toxicity to grazing ruminant animals. Lead (0.8 to 21 mg kg–1) and arsenic (<0.2 to 5.8 mg kg–1) concentrations were within, or close to the normal range of concentration in plants. In the glasshouse experiments, soil temperature was found to be an important factor in the uptake of copper, lead and arsenic. There were significant differences in uptake between genotypes. Applications of fertilizers at rates equivalent to those used for commercial vegetable production generally resulted in small decreases in the concentrations of copper, lead and arsenic concentrations in silver beet.  相似文献   

20.
Long‐standing theory predicts herbivores and predators should drive selection for increased plant defences, such as the specific production of volatile organic compounds for attracting predators near the site of damage. Along elevation gradients, a general pattern is that herbivores and predators are abundant at low elevation and progressively diminish at higher elevations. To determine whether plant adaptation along such a gradient influences top‐down control of herbivores, we manipulated soil predatory nematodes, root herbivore pressure and plant ecotypes in a reciprocal transplant experiment. Plant survival was significantly higher for low‐elevation plants, but only when in the presence of predatory nematodes. Using olfactometer bioassays, we showed correlated differential nematode attraction and plant ecotype‐specific variation in volatile production. This study not only provides an assessment of how elevation gradients modulate the strength of trophic cascades, but also demonstrates how habitat specialisation drives variation in the expression of indirect plant defences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号