首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An NAD-linked dehydrogenase from Chlorella pyrenoidosa Chick catalyzing the conversion of l-proline to Delta(1)-pyrroline-5-carboxylic acid was partially purified. Delta(1)-Pyrroline-5-carboxylic acid was identified as the product by co-chromatography of it and its o-aminobenzaldehyde derivative with authentic compounds. The enzyme is NAD and l-proline specific and is not an oxidase; NADP is not inhibitory. The Michaelis constant for NAD is 0.08 mm and for proline is 0.73 mm.  相似文献   

2.
Barash I  Mor H 《Plant physiology》1973,51(5):852-858
Germinating spores of Geotrichum candidum produce only a nicotinamide adenine dinucleotide phosphate-linked glutamate dehydrogenase. Synthesis of glutamate dehydrogenase was repressed by the presence of ammonia, whereas urea, glutamate, or glutamine were ineffective. The enzyme was not subject to catabolite repression and was localized in the cell sap fraction. The glutamate dehydrogenase has been purified 93-fold and showed maximal activity at pH 8.2 in the forward and reverse directions. When measuring the initial reaction rate at pH 7.2, a variety of tricarboxylic acid cycle intermediates displayed additive and unidirectional activation of the reductive amination reaction and inhibition of the oxidative deamination reaction. The modulating effects were pH-dependent and diminished at alkaline pH values. Substrate inhibition exerted by α-ketoglutarate was strongest at neutral pH.  相似文献   

3.
The Pseudomonas multivorans glucose-6-phosphate dehydrogenase (EC 1.1.1.49) active with nicotinamide adenine dinucleotide, which is inhibitable by adenosine-5'-triphosphate, was purified approximately 1,000-fold from extracts of glucose-grown bacteria, and characterized with respect to subunit composition, response to different inhibitory ligands, and certain other properties. The enzyme was found to be an oligomer composed of four subunits of about 60,000 molecular weight. Reduced nicotinamide adenine dinucleotide phosphate, but not reduced nicotinamide adenine dinucleotide, was found to be a potent inhibitor of its activity. The range of concentrations of reduced nicotinamide adenine dinucleotide phosphate over which inhibition occurred was about 100-fold lower than that for adenosine-5'-triphosphate. The data suggest that reduced nicotinamide adenine dinucleotide phosphate may play an important role in regulation of hexose phosphate metabolism in P. multivorans. Antisera prepared against the purified enzyme strongly inhibited its activity, but failed to inhibit the activity of the nicotinamide adenine dinucleotide phosphate-specific glucose-6-phosphate dehydrogenase which is also present in extracts of this bacterium. Immunodiffusion experiments confirmed the results of the enzyme inhibition studies, and failed to support the idea that the two glucose-6-phosphate dehydrogenase species from P. multivorans represent different oligomeric forms of the same protein.  相似文献   

4.
Li, Lan-Fun (Western Reserve University School of Medicine, Cleveland, Ohio), Lars Ljungdahl, and Harland G. Wood. Properties of nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase from Clostridium thermoaceticum. J. Bacteriol. 92: 405-412. 1966.-A nicotinamide adenine dinucleotide phosphate (NADP)-dependent formate dehydrogenase has been isolated from C. thermoaceticum. The enzyme is very sensitive to oxygen and requires sulfhydryl compounds for activity. The apparent K(m) at 50 C and pH 7.0 for NADP is 5.9 x 10(-5)m and for formate, 2.2 x 10(-4)m. The enzyme is most active at about 60 C and at pH values between 7.0 and 9.0. The enzyme catalyzes an exchange between C(14)O(2) and formate, which requires NADP, but net synthesis of formate from CO(2) and reduced nicotinamide adenine dinucleotide phosphate could not be demonstrated. The reaction does not involve ferredoxin.  相似文献   

5.
Glucose-6-phosphate (G6P) dehydrogenase and 6-phosphogluconate (6PG) dehydrogenase were partially purified about 53-fold and 47-fold, respectively, from the cell-free extract of glucose-grown Candida tropicalis by means of ammonium sulfate fractionation and DEAE-cellulose column chromatography. AMP acted as the competitive inhibitor against G6P and NADP in the G6P dehydrogenase reaction. This inhibition was remarkable at low concentrations of NADP, increasing the sigmoidicity of the NADP-saturation curve. On the other hand, 6PG dehydrogenase was not affected by AMP. Fructose-1,6-bisphosphate (FDP) and phosphoenolpyruvate (PEP) inhibited slightly G6P dehydrogenase. 6PG dehydrogenase was also weakly inhibited by FDP. Apparent Km values of G6P dehydrogenase were calculated as 1.8 × 10?4 m for G6P and 3.1 × 10?5 m for NADP. Those of 6PG dehydrogenase were 9.4 × 10?5 m for 6PG and 2.8 × 10?5 m for NADP.  相似文献   

6.
Substitution of nicotinamide adenine dinucleotide dependent glucose-6-phosphate dehydrogenase for the nicotinamide adenine dinucleotide phosphate dependent enzyme has produced identical results in a number of enzyme-linked electrophoretic staining procedures. This substitution significantly reduces the cost of staining for adenylate kinase, creatine kinase, glucosephosphate isomerase, mannosephosphate isomerase, phosphoglucomutase, and pyruvate kinase activity by utilizing NAD rather than the more expensive NADP.  相似文献   

7.
6-Phosphogluconate dehydrogenase has been purified from human brain to a specific activity of 22.8 U/mg protein. The molecular weight was 90,000. At low ionic strengths enzyme activity increased, due to an increase in Vmax and a decrease in Km for 6-phosphogluconate, and activity subsequently decreased as the ionic strength was increased (above 0.12). Both 6-phosphogluconate and NADP+ provided good protection against thermal inactivation, with 6-phosphogluconate also providing considerable protection against loss of activity caused by p-chloromercuribenzoate and iodoacetamide. Initial velocity studies indicated the enzyme mechanism was sequential. NADPH was a competitive inhibitor with respect to NADP+, and the Ki values for this inhibition were dependent on the concentration of 6-phosphogluconate. Product inhibition by NADPH was noncompetitive when 6-phosphogluconate was the variable substrate, whereas inhibition by the products CO2 and ribulose 5-phosphogluconate and NADP+ were varied. In totality these data suggest that binding of substrates to the enzyme is random. CO2 and ribulose 5-phosphate are released from the enzyme in random order with NADPH as the last product released.  相似文献   

8.
The ratio of activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase (G6P DH/6PG DH), and the contents of glucose-6-phosphate (G6P), 6-phosphogluconate (6PG) and fructose-6-phosphate (F6P) were studied at various stages of potato virus Y (PVY) multiplication in Nicotiana tabacum cv. Samsun. G6P DH/6PG DH increased through the experiment from 0.42 to 0.53 in leaves of healthy tobacco, and up to 0.59 in PVY systemically infected leaves. However, these ratios in the ruptured protoplast preparations, and the chloroplast and cytosol fractions of healthy protoplasts were similar to that from infected ones. The ratio lower than 1, found in the healthy and/or PVY- infected leaf tissues and in the infected protoplasts as well, confirms the assumption that G6P DH is the control enzyme of oxidative pentosephosphate pathway not only in the healthy but also in the infected plants. The contents of G6P, 6PG and F6P in the period of the highest PVY multiplication were strongly decreased (to 30 – 50 % when compared with control healthy leaves) and were negatively correlated with the G6P DH and 6PG DH activities.  相似文献   

9.
Cell-free extracts from aerobically grown Streptococcus agalactiae cells possess a reduced nicotinamide adenine dinucleotide (NADH) oxidase which is linked to oxygen. It is inhibited by cyanide, although cytochromes evidently are not involved. Adenosine triphosphate (ATP) formation occurs during the reaction, but 66 to 75% of the total ATP is formed nonoxidatively. The remaining 25 to 35% of the ATP formation is related to the oxidation of NADH. The formation of ATP in the oxidative reaction can be prevented by excluding oxygen or adding cyanide to prevent NADH oxidation. It can also be prevented by adding methylene blue or pyruvate, which bypasses electron transport to oxygen, but does not interfere with NADH oxidation. Potential sources of ATP, such as glycolysis, the pyruvate oxidase reaction, or the oxidative pentose cycle, are not present, and the high nonoxidative ATP formation is ascribed to the adenylate kinase reaction. The reaction requires adenosine diphosphate (ADP) as a phosphate acceptor. NADH oxidation is independent of ADP. Antimycin A, amytal, and 2,4-dinitrophenol decreased, but did not prevent, oxidative formation of ATP. P:O ratios ranged from 0.15 to 0.25. All of the oxidative activity was in the soluble portion of the cell-free extracts.  相似文献   

10.
No correlation was found between the cellular steady-state concentrations of glucose-6-phosphate, 6-phosphogluconate, and reduced nicotinamide dinucleotide phosphate and resistance versus sensitivity to catabolite repression.  相似文献   

11.
Nicotinamide adenine dinucleotide phosphate-specific isocitrate dehydrogenase was extracted from etiolated pea (Pisum sativum L.) seedlings and was purified 65-fold. The purified enzyme exhibits one predominant protein band by polyacrylamide gel electrophoresis, which corresponds to the dehydrogenase activity as measured by the nitro blue tetrazolium technique. The reaction is readily reversible, the pH optima for the forward (nicotinamide adenine dinucleotide phosphate reduction) and reverse reactions being 8.4 and 6.0, respectively. The enzyme has different cofactor and inhibitor characteristics in the two directions. Manganese ions can be used as a cofactor for the reaction in each direction but magnesium ions only act as a cofactor in the forward reaction. Zinc ions, and to a lesser extent calcium ions, inhibit the enzyme at low concentrations when magnesium but not manganese is the metal activator. It is suggested that there is a fundamental difference between magnesium and manganese in the activation of the enzyme. The enzyme shows normal kinetics and the Michaelis contant for each substrate was determined. The inhibition by nucleotides, nucleosides, reaction products, and related compounds was studied. The enzyme shows a linear response to the mole fraction of reduced nicotinamide adenine dinucleotide phosphate when total nicotinamide adenine dinucleotide phosphate (nicotinamide adenine dinucleotide phosphate plus reduced nicotinamide adenine dinucleotide phosphate) is kept constant. Isocitrate in the presence of divalent metal ions will protect the enzyme from inactivation by p-chloromercuribenzoate. Protection is also afforded by manganese ions alone but not by magnesium ions alone There is a concerted inhibition of the enzyme by oxalacetate and glyoxylate.  相似文献   

12.
The nicotinamide adenine dinucleotide phosphate (NADP)-dependent formate dehydrogenase in Clostridium thermoaceticum used, in addition to its natural electron acceptor, methyl and benzyl viologen. The enzyme was purified to a specific activity of 34 (micromoles per minute per milligram of protein) with NADP as electron acceptor. Disc gel electrophoresis of the purified enzyme yielded two major and two minor protein bands, and during centrifugation in sucrose gradients two components of apparent molecular weights of 270,000 and 320,000 were obtained, both having formate dehydrogenase activity. The enzyme preparation catalyzed the reduction of riboflavine 5'-phosphate flavine adenine dinucleotide and methyl viologen by using reduced NADP as a source of electrons. It also had reduced NADP oxidase activity. The enzyme was strongly inhibited by cyanide and ethylenediaminetetraacetic acid. It was also inhibited by hypophosphite, an inhibition that was reversed by formate. Sulfite inhibited the activity with NADP but not with methyl viologen as acceptor. The apparent K(m) at 55 C and pH 7.5 for formate was 2.27 x 10(-4) M with NADP and 0.83 x 10(-4) with methyl viologen as acceptor. The apparent K(m) for NADP was 1.09 x 10(-4) M and for methyl viologen was 2.35 x 10(-3) M. NADP showed substrate inhibition at 5 x 10(-3) M and higher concentrations. With NADP as electron acceptor, the enzyme had a broad pH optimum between 7 and 9.5. The apparent temperature optimum was 85 C. In the absence of substrates, the enzyme was stable at 70 C but was rapidly inactivated at temperatures above 73 C. The enzyme was very sensitive to oxygen but was stabilized by thiol-iron complexes and formate.  相似文献   

13.
Mutations affecting the biosynthesis of quinolinic acid, a precursor of nicotinamide adenine dinucleotide (NAD) in Escherichia coli K-12, are either near min 17 (nadA mutants) or near min 49 on the chromosome. These nad mutants all exhibit a phenotypic requirement for NAD or one of its immediate precursors. The mutants with lesions near min 49 can be separated into two groups based on in vitro complementation analysis. One group (nadB) exhibits complementation with nadA mutants, whereas the other group fails to do so. The latter group is tentatively designated nadR based on its regulation of the unlinked nadA gene. The nadR gene maps adjacent to nadB between purI and tyrA.  相似文献   

14.
the native enzyme was 104,000 by gel filtration, and SDS-polyacrylamide gel electrophoresis showed that the enzyme consisted of two subunits with an identical molecular weight of 52,000. The optimum pH of the reaction was 8.0. The Km values for 6-phosphogluconate and NADP were 3.6×10?5m and 1.3 × 10?5m, respectively. The enzyme showed no Mg2𠀫 requirement for the activity, but was activated by Mn2𠀫 and Ca2𠀫. The enzyme was inhibited by sulfhydryl reagents, indicating that a sulfhydryl group may be involved in the active site of the enzyme. The enzyme was also inhibited by NADPH2, ATP, and the intermediates formed during photosynthesis. The substrate 6-phosphogluconate and cofactor NADP partially protected the enzyme from inactivation. The enzyme had enzymological and physicochemical properties similar to enzymes isolated from other sources.  相似文献   

15.
16.
The nicotinamide adenine dinucleotide-specific glutamate dehydrogenase (l-glutamate:NAD+ oxidoreductase, EC 1.4.1.2) of Chlorella sorokiniana was purified 1,000-fold to electrophoretic homogeneity. The native enzyme was shown to have a molecular weight of 180,000 and to be composed of four identical subunits with a molecular weight of 45,000. The N-terminal amino acid was determined to be lysine. The pH optima for the aminating and deaminating reactions were approximately 8 and 9, respectively. The Km values for α-ketoglutarate, NADH, NH4+, NAD+, and l-glutamate were 2 mm, 0.15 mm, 40 mm, 0.15 mm, and 60 mm, respectively. Whereas the Km for α-ketoglutarate and l-glutamate increased 10-fold, 1 pH unit above or below the pH optima for the aminating or deaminating reactions, respectively, the Km values for NADH and NAD+ were independent of change in pH from 7 to 9.6. By initial velocity, product inhibition, and equilibrium substrate exchange studies, the kinetic mechanism of enzyme was shown to be consistent with a bi uni uni uni ping-pong addition sequence. Although this kinetic mechanism differs from that reported for any other glutamate dehydrogenase, the chemical mechanism still appears to involve the formation of a Schiff base between α-ketoglutarate and an ε-amino group of a lysine residue in the enzyme. The physical, chemical, and kinetic properties of this enzyme differ greatly from those reported for the NH4+-inducible glutamate dehydrogenase in this organism.  相似文献   

17.
6-Phosphogluconate dehydrogenase (6PG) was purified from rat small intestine with 36% yield and a specific activity of 15 U/mg. On SDS/PAGE, one band with a mass of 52 kDa was found. On native PAGE three protein and two activity bands were observed. The pH optimum was 7.35. Using Arrhenius plots, Ea, ΔH, Q10 and Tm for 6PGD were found to be 7.52 kcal/mol, 6.90 kcal/mol, 1.49 and 49.4°C, respectively. The enzyme obeyed “Rapid Equilibrium Random Bi Bi” kinetic model with Km values of 595 ± 213 μM for 6PG and 53.03±1.99 μM for NADP. 1/Vm versus 1/6PG and 1/NADP plots gave a Vm value of 8.91±1.92 U/mg protein. NADPH is the competitive inhibitor with a Ki of 31.91±1.31 μM. The relatively small Ki for the 6PGD:NADPH complex indicates the importance of NADPH in the regulation of the pentose phosphate pathway through G6PD and 6PGD.  相似文献   

18.
The genetic basis of modulation by dietary sucrose of the enzyme activities glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) activities in third instar larvae of Drosophila melanogaster was investigated, using isogenic lines derived from wild populations. Considerable genetically determined variation in response was detected among lines that differed only in their third chromosome constitution. Comparison of cross-reacting material between a responding and a nonresponding line showed that the G6PD activity variation is due to changes in G6PD protein level. These differences in responses are localized in the fat body, with 300 mM sucrose in the diet resulting in a sixfold stimulation of G6PD activity and a fourfold one of 6PGD in the line showing the strongest response. In this tissue, the responses of the two enzymes are closely correlated with one another. Using recombinant lines, we obtained data that suggested the existence of more than one gene on chromosome III involved in the regulation of G6PD in the fat body, and at least one of these genes affects the level of 6PGD as well.  相似文献   

19.
Abstract The genus Kalimeris with a diagnostic character of short or inconspicuous pappus consists of two sections, Asteromoea and Cordifolium. As a result of 6PGD isozyme analysis, sect, Asteromoea, including 2 × and poly-ploid taxa from 5 × to 8 ×, show similar cytosolic isozyme multiplicity and share a monomorphic locus. The data suggest that gene duplication of polyploid members was derived from a common ancestor. K. miqueliana, belonging to sect. Cordifolium. also possessed a gene duplication in 6PGD, though significant differences were detected in electrophoretic mobility between the sections. The occurrence of gene duplication in East Asian diploid Astereae leaves intact the validity of the allopolyploid-origin hypothesis of n= 9, which was rejected by Gottlieb (1981a) in American Astereae.  相似文献   

20.
The two species of 6-phosphogluconate dehydrogenase (EC 1.1.1.43) from Pseudomonas multivorans were resolved from extracts of gluconate-grown bacteria and purified to homogeneity. Each enzyme comprised between 0.1 and 0.2% of the total cellular protein. Separation of the two enzymes, one which is specific for nicotinamide adenine dinucleotide phosphate and the other which is active with nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate was facilitated by the marked difference in their respective isoelectric points, which were at pH 5.0 and 6.9. Comparison of the subunit compositions of the two enzymes indicated that they do not share common peptide chains. The enzyme active with nicotinamide adenine dinucleotide was composed of two subunits of about 40,000 molecular weight, and the nicotinamide adenine dinucleotide phosphate-specific enzyme was composed of two subunits of about 60,000 molecular weight. Immunological studies indicated that the two enzymes do not share common antigenic determinants. Reduced nicotinamide adenine dinucleotide phosphate strongly inhibited the 6-phosphogluconate dehydrogenase active with nicotinamide adenine dinucleotide by decreasing its affinity for 6-phosphogluconate. Guanosine-5'-triphosphate had a similar influence on the nicotinamide adenine dinucleotide phosphate-specific 6-phosphogluconate dehydrogenase. These results in conjunction with other data indicating that reduced nicotinamide adenine dinucleotide phosphate stimulates the conversion of 6-phosphogluconate to pyruvate by crude bacterial extracts suggest that in P. multivorans, the relative distribution of 6-phosphogluconate into the pentose phosphate and Entner-Doudoroff pathways might be determined by the intracellular concentrations of reduced nicotinamide adenine dinucleotide phosphate and purine nucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号