首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
Differentiation of vascular smooth muscle cells (VSMC) is a fundamental aspect of normal development and vascular disease. During contraction, VSMCs modulate calcium sensitivity through RhoA/ROCK-mediated inhibition of the myosin light chain phosphatase complex (MLCP). Previous studies have demonstrated that this signaling pathway functions in parallel to increase the expression of smooth muscle genes through the myocardin-family of co-activators. MEF2C fulfills a critical role in VSMC differentiation and regulates myocardin expression, leading us to investigate whether the RhoA/ROCK signaling cascade might regulate MEF2 activity. Depolarization-induced calcium signaling increased the expression of myocardin, which was sensitive to ROCK and p38 MAPK inhibition. We previously identified protein phosphatase 1α (PP1α), a known catalytic subunit of the MLCP in VSMCs, as a potent repressor of MEF2 activity. PP1α inhibition resulted in increased expression of myocardin, while ectopic expression of PP1α inhibited the induction of myocardin by MEF2C. Consistent with these data, shRNA-mediated suppression of a PP1α inhibitor, CPI-17, reduced myocardin expression and inhibited VSMC differentiation, suggesting a pivotal role for CPI-17 in regulating MEF2 activity. These data constitute evidence of a novel signaling cascade that links RhoA-mediated calcium sensitivity to MEF2-dependent myocardin expression in VSMCs through a mechanism involving p38 MAPK, PP1α, and CPI-17.  相似文献   

4.
5.
Protein phosphorylation regulates many fundamental processes and protein phosphatase-1 (PP1) is a major phosphatase that determines the levels of Ser/Thr phosphorylation. Regulatory subunits and inhibitor phosphoproteins control PP1 activity. PHI-1 is a member of a family of PP1 inhibitor phosphoproteins that was discovered based on sequence similarity to the known inhibitor CPI-17. To learn more about PHI-1 we determined the tissue distribution of PHI-1 in embryonic and adult tissues, and examined its cellular localization by immunohistochemistry. In the embryo PHI-1 appeared first in the heart at E10, and by E15 it was detected in multiple tissues. Expression in adult tissues was strikingly different, with PHI-1 detected primarily in smooth muscles in the intestine, blood vessels, and male and female genitourinary tracts. PHI-1 also was highly expressed in the endothelial layer of blood vessels. Both PHI-1 and CPI-17 are expressed predominantly in adult smooth muscles. Whereas CPI-17 staining was diffuse PHI-1 was concentrated along the cell membrane in distinct foci, detected by confocal and electron microscopy. The common tissue distribution but different cellular localization of PHI-1 and CPI-17 suggest distinctive physiological roles for these two PP1 inhibitors.  相似文献   

6.
We have previously shown that myosin light chain (MLC) phosphatase (MLCP) is critically involved in the regulation of agonist-mediated endothelial permeability and cytoskeletal organization (Verin AD, Patterson CE, Day MA, and Garcia JG. Am J Physiol Lung Cell Mol Physiol 269: L99-L108, 1995). The molecular mechanisms of endothelial MLCP regulation, however, are not completely understood. In this study we found that, similar to smooth muscle, lung microvascular endothelial cells expressed specific endogenous inhibitor of MLCP, CPI-17. To elucidate the role of CPI-17 in the regulation of endothelial cytoskeleton, full-length CPI-17 plasmid was transiently transfected into pulmonary artery endothelial cells, where the background of endogenous protein is low. CPI-17 had no effect on cytoskeleton under nonstimulating conditions. However, stimulation of transfected cells with direct PKC activator PMA caused a dramatic increase in F-actin stress fibers, focal adhesions, and MLC phosphorylation compared with untransfected cells. Inflammatory agonist histamine and, to a much lesser extent, thrombin were capable of activating CPI-17. Histamine caused stronger CPI-17 phosphorylation than thrombin. Inhibitory analysis revealed that PKC more significantly contributes to agonist-induced CPI-17 phosphorylation than Rho-kinase. Dominant-negative PKC-alpha abolished the effect of CPI-17 on actin cytoskeleton, suggesting that the PKC-alpha isoform is most likely responsible for CPI-17 activation in the endothelium. Depletion of endogenous CPI-17 in lung microvascular endothelial cell significantly attenuated histamine-induced increase in endothelial permeability. Together these data suggest the potential importance of PKC/CPI-17-mediated pathway in histamine-triggered cytoskeletal rearrangements leading to lung microvascular barrier compromise.  相似文献   

7.
8.
Ca(2+)/calmodulin (CaM)-dependent phosphorylation of myosin regulatory light chain (RLC) in smooth muscle by myosin light chain kinase (MLCK) and dephosphorylation by myosin light chain phosphatase (MLCP) are subject to modulatory cascades that influence the sensitivity of RLC phosphorylation and hence contraction to intracellular Ca(2+) concentration ([Ca(2+)](i)). We designed a CaM-sensor MLCK containing smooth muscle MLCK fused to two fluorescent proteins linked by the MLCK CaM-binding sequence to measure kinase activation in vivo and expressed it specifically in mouse smooth muscle. In phasic bladder muscle, there was greater RLC phosphorylation and force relative to MLCK activation and [Ca(2+)](i) with carbachol (CCh) compared with KCl treatment, consistent with agonist-dependent inhibition of MLCP. The dependence of force on MLCK activity was nonlinear such that at higher concentrations of CCh, force increased with no change in the net 20% activation of MLCK. A significant but smaller amount of MLCK activation was found during the sustained contractile phase. MLCP inhibition may occur through RhoA/Rho-kinase and/or PKC with phosphorylation of myosin phosphatase targeting subunit-1 (MYPT1) and PKC-potentiated phosphatase inhibitor (CPI-17), respectively. CCh treatment, but not KCl, resulted in MYPT1 and CPI-17 phosphorylation. Both Y27632 (Rho-kinase inhibitor) and calphostin C (PKC inhibitor) reduced CCh-dependent force, RLC phosphorylation, and phosphorylation of MYPT1 (Thr694) without changing MLCK activation. Calphostin C, but not Y27632, also reduced CCh-induced phosphorylation of CPI-17. CCh concentration responses showed that phosphorylation of CPI-17 was more sensitive than MYPT1. Thus the onset of agonist-induced contraction in phasic smooth muscle results from the rapid and coordinated activation of MLCK with hierarchical inhibition of MLCP by CPI-17 and MYPT1 phosphorylation.  相似文献   

9.
The six proteins of the CCN family have important roles in development, angiogenesis, cell motility, proliferation, and other fundamental cell processes. To date, CCN5 distribution in developing rodents and humans has not been mapped comprehensively. CCN5 strongly inhibits adult smooth muscle cell proliferation and motility. Its anti-proliferative action predicts that CCN5 would not be present in developing tissues until the proliferation phase of tissue morphogenesis is complete. However, estrogen induces CCN5 expression in epithelial and smooth muscle cells, suggesting that CCN5 might be widely expressed in embryonic tissues exposed to high levels of estrogen. 9–16 day murine embryos and fetuses and 3–7 month human fetal tissues were analyzed by immunohistochemistry. CCN5 was detected in nearly all developing tissues. CCN5 protein expression was initially present in most tissues, and at later times in development tissue-specific expression differences were observed. CCN5 expression was particularly strong in vascular tissues, cardiac muscle, bronchioles, myotendinous junctions, and intestinal smooth muscle and epithelium. CCN5 expression was initially absent in bone cartilaginous forms but was increasingly expressed during bone endochondral ossification. Widespread CCN5 mRNA expression was detected in GD14.5 mice. Although CCN2 and CCN5 protein expression patterns in some adult pathologic conditions are inversely expressed, this expression pattern was not found in developing mouse and human tissues. The widespread expression pattern of CCN5 in most embryonic and fetal tissues suggests a diverse range of functions for CCN5. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Ca(2+) sensitivity of smooth muscle contraction is modulated by several systems converging on myosin light chain phosphatase (MLCP). Rho-Rho kinase is considered to inhibit MLCP via phosphorylation, whereas protein kinase C (PKC) induced sensitization has been shown to be dependent on phosphorylation of the inhibitory protein CPI-17. We have explored the interaction of cGMP-dependent protein kinase (PKG) with Ca(2+) sensitization pathways using permeabilized mouse smooth muscle. Three conditions giving approximately 50% of maximal active force were compared in small intestinal preparations: 1). Ca(2+)-activated unsensitized muscle (pCa 5.9 with Rho kinase inhibitor Y27632); 2). Rho-Rho kinase-sensitized muscle (pCa 6.1 with guanosine 5'-3-O-(thio)triphosphate); and 3). PKC-sensitized muscle (pCa 6.0 with Y27632 and PKC activator phorbol 12,13-dibutyrate). 8-Br-cGMP relaxed the sensitized muscles but had marginal effects on unsensitized preparations, showing that PKG reverses both PKC and Rho-mediated Ca(2+) sensitization. CPI-17 was present in permeabilized intestinal tissue. In PKC-sensitized preparations, CPI-17 phosphorylation decreased in response to 8-Br-cGMP. The rate of PKC-mediated phosphorylation in the presence of the MLCP inhibitor microcystin-LR was not influenced by 8-Br-cGMP. PKC-induced Ca(2+) sensitization also was reversed in vascular smooth muscle tissues (portal vein and femoral artery). We conclude that actions downstream of cGMP/PKG can reverse PKC-mediated phosphorylation of CPI-17 and Ca(2+) sensitization in smooth muscle.  相似文献   

11.
Myosin light chain phosphatase (MLCP) plays a pivotal role in smooth muscle contraction by regulating Ca(2+) sensitivity of myosin light chain phosphorylation. A smooth muscle phosphoprotein called CPI-17 specifically and potently inhibits MLCP in vitro and in situ and is activated when phosphorylated at Thr-38, which increases its inhibitory potency 1000-fold. We produced a phosphospecific antibody for this site in CPI-17 and used it to study in situ phosphorylation of endogenous CPI-17 in arterial smooth muscle in response to agonist stimulation. In the intact femoral artery, CPI-17 phosphorylation was negligible at the resting state and was not increased during contraction induced by K(+) depolarization. The Ca(2+)-sensitizing agonists histamine and phenylephrine induced nearly equivalent contractions, but histamine generated significantly higher levels of CPI-17 phosphorylation. In alpha-toxin-permeabilized strips at pCa 6.7, contractile force and CPI-17 phosphorylation were proportional in response to histamine, guanosine 5'-O-(gamma-thiotriphosphate), and histamine plus guanyl-5'-yl thiophosphate, implying that histamine increased CPI-17 phosphorylation through activation of G proteins. Inhibitors of Rho-kinase (Y27632) and protein kinase C (PKC; GF109203X) reduced contraction and CPI-17 phosphorylation in parallel, suggesting that CPI-17 functions downstream of Rho kinases and PKC. The results show that agonists such as histamine signal through phosphorylation of CPI-17 to produce Ca(2+) sensitization of smooth muscle contraction.  相似文献   

12.
Contractility of smooth muscle and non-muscle microfilaments involves phosphorylation of myosin II light chain. Myosin light chain phosphatase (MLCP) is specifically inhibited by the protein kinase C-potentiated inhibitor protein of 17 kDa, called CPI-17, as part of Ca(2+) sensitization of vascular smooth muscle contraction. Phosphorylation of Thr(38) in CPI-17 enhances inhibitory potency toward MLCP over 1000-fold. In this study we mapped regions of CPI-17 required for inhibition and investigated the mechanism using deletion and point mutants. Deletion of either the N-terminal 34 residues or C-terminal 27 residues gave no change in the IC(50) of either phospho- or unphospho-CPI-17. However, further deletion to give CPI-17 proteins of 1-102, 1-89, 1-76, and 1-67, resulted in much higher IC(50) values. The results indicate there is a minimal inhibitory domain between residues 35 and 120. A single Ala substitution at Tyr(41) eliminated phosphorylation-dependent inhibition, and phospho-Thr(38) in the Y41A protein was efficiently dephosphorylated by MLCP itself. The wild type CPI-17 expressed in fibroblast-induced bundling and contraction of actomyosin filaments, whereas expression of the Y41A protein had no obvious effects. Thus, a central domain of CPI-17(35-120) including phospho-Thr(38) is necessary for recognition by myosin phosphatase and Tyr(41) arrests dephosphorylation, thereby producing inhibition.  相似文献   

13.
14.
We investigated the protein kinases responsible for myosin regulatory light chain (LC20) phosphorylation and regulation of myosin light chain phosphatase (MLCP) activity during microcystin (phosphatase inhibitor)-induced contraction at low Ca2+ concentrations of rat ileal smooth muscle stretched in the longitudinal axis. Application of 1 microM microcystin induced LC20 diphosphorylation and contraction of beta-escin-permeabilized rat ileal smooth muscle at pCa 9. The PKC inhibitor GF-109203x, the MEK inhibitor PD-98059, and the p38 MAPK inhibitor SB-203580 significantly reduced this contraction. These inhibitory effects were abolished when the microcystin concentration was increased to 10 muM, indicating that application of these kinase inhibitors generated an increase in MLCP activity. GF-109203x and PD-98059, but not SB-203580, significantly decreased the phosphorylation level of the myosin-targeting subunit of MLCP, MYPT1, at Thr-697 (rat sequence) during microcystin-induced contraction at pCa 9. On the other hand, SB-203580, but not GF-109203x or PD-98059, significantly reduced the phosphorylation level of the PKC-potentiated phosphatase inhibitor of 17 kDa (CPI-17). A zipper-interacting protein kinase (ZIPK) inhibitor (SM1 peptide) and a Rho-associated kinase inhibitor (Y-27632) had little effect on microcystin-induced contraction at pCa 9. In conclusion, PKC, ERK1/2, and p38 MAPK pathways facilitate microcystin-induced contraction at low Ca2+ concentrations by contributing to the inhibition of MLCP activity either through phosphorylation of MYPT1 or CPI-17 [probably mediated by integrin-linked kinase (ILK)]. ILK and not ZIPK is likely to be the protein kinase responsible for LC20 diphosphorylation during microcystin-induced contraction of rat ileal smooth muscle at pCa 9, similar to its recently described role in vascular smooth muscle. The negative regulation of MLCP by PKC and MAPKs during microcystin-induced contraction at pCa 9, which is not observed in vascular smooth muscle, may be unique to phasic smooth muscle.  相似文献   

15.
Ankyrin repeat domain 17 (Ankrd17) encodes an ubiquitously expressed protein with two clusters of ankyrin repeats. We have used gene targeting strategy to ablate the Ankrd17 gene in mouse. The Ankrd17-deficient mice died between embryonic day (E) 10.5 and E11.5 due to cardiovascular defects. Serious hemorrhages were detected and the vascular smooth muscle cells (vSMCs) surrounding the vessels were drastically reduced in the Ankrd17-deficient embryos, suggesting that the vascular maturation was not completed. Interestingly, vSMC differentiation marker genes were up-regulated in the mutant embryos. Our data have demonstrated the indispensability of Ankrd17 functioning for vascular maturation during early development. The Ankrd17-deficient mice also provide a new animal model for the analysis of the regulatory pathways of the differentiation of vSMC precursor cells.  相似文献   

16.
Abstract. Calponin and SM 22 are two proteins related in sequence that are particularly abundant in smooth muscle cells. Here, the distribution patterns of calponin and SM 22 were compared with that of other smooth muscle contractile and cytoskeletal components in the avian embryo using immunofluorescence microscopy and immunoblotting. Like myosin-light-chain kinase and heavy caldesmon, both calponin and SM 22 were more or less exclusively found in smooth muscle cells, during embryonic development and in the adult. Labelling of other cell types including striated muscle was not observed. In contrast, tropomyosin, smooth muscle α-actin, filamin and desmin could also be detected in many other cell types in addition to smooth muscles, at least during part of embryonic life. Calponin and SM 22 appeared almost synchronously during the differentiation of all smooth muscle cell populations, though with a slight time difference in the case of the aorta. The appearance of calponin, SM22 and heavy caldesmon was generally delayed in relation to desmin, tropomyosin, smooth muscle α-actin, myosin-light-chain kinase and filamin and a marked increase in abundance of these proteins was observed in the late embryo and in the adult. From these observations we can conclude that both calponin and SM 22 belong to a group of late differentiation determinants in smooth muscle and may constitute convenient and reliable markers to follow the differentiation of most, if not all, smooth muscle cell populations.  相似文献   

17.
18.
 We have studied the phenotypic changes in regenerating smooth muscle (SM) tissue of detrusor muscle after local application of a necrotizing, freeze–thaw injury to the serosal surface of rabbit bladder. Bromo-deoxyuridine (BrdU) incorporation and immunofluorescence studies were performed on bladder cryosections from day 2 up to day 15 after surgery with monoclonal antibodies specific for some cytoskeletal markers [desmin, vimentin, non-muscle (NM) myosin] and for SM-specific proteins (α-actin, myosin, and SM22). Four days after lesion, some clls incorporated in regenerating SM bundles are BrdU positive, but all display a phenotypic pattern identical to that of the interstitial, highly proliferating cells, i.e., expression of vimentin. By days 7–15 the differentiation profile of regenerating SM returns to that of uninjured SM tissue (appearance of desmin, SM-type α-actin, and SM myosin). A chemical denervation achieved by 6-hydroxydopamine treatment for 2 weeks induces the formation of vimentin/SM α-actin/NM myosin/SM22-containing myofibroblasts in the interstitial, fibroblast-like cells of uninjured bladder. In the bladder wall, alteration of reinnervation during the regenerating SM process produces: (1) in the outer region, the activation of vimentin/SM α-actin/desmin myofibroblasts in the de novo SM cell bundles; and (2) in the inner region of bladder, including the muscularis mucosae, the formation of proliferating, fully differentiated SM cells peripherally to newly formed SM cell bundles. These findings suggest that: (1) the de novo SM tissue formation in the bladder can occur via incorporation of interstitial cells into growing SM bundles; and (2) the alteration of reinnervation during the regenerating process induces a spatial-specific differentiation of interstitial myofibroblasts in SM cells before SM cell bundling. Accepted: 14 May 1997  相似文献   

19.
20.
Lukas TJ 《Biophysical journal》2004,87(3):1417-1425
An agonist-initiated Ca(2+) signaling model for calmodulin (CaM) coupled to the phosphorylation of myosin light chains was created using a computer-assisted simulation environment. Calmodulin buffering was introduced as a module for directing sequestered CaM to myosin light chain kinase (MLCK) through Ca(2+)-dependent release from a buffering protein. Using differing simulation conditions, it was discovered that CaM buffering allowed transient production of more Ca(2+)-CaM-MLCK complex, resulting in elevated myosin light chain phosphorylation compared to nonbuffered control. Second messenger signaling also impacts myosin light chain phosphorylation through the regulation of myosin light chain phosphatase (MLCP). A model for MLCP regulation via its regulatory MYPT1 subunit and interaction of the CPI-17 inhibitor protein was assembled that incorporated several protein kinase subsystems including Rho-kinase, protein kinase C (PKC), and constitutive MYPT1 phosphorylation activities. The effects of the different routes of MLCP regulation depend upon the relative concentrations of MLCP compared to CPI-17, and the specific activities of protein kinases such as Rho and PKC. Phosphorylated CPI-17 (CPI-17P) was found to dynamically control activity during agonist stimulation, with the assumption that inhibition by CPI-17P (resulting from PKC activation) is faster than agonist-induced phosphorylation of MYPT1. Simulation results are in accord with literature measurements of MLCP and CPI-17 phosphorylation states during agonist stimulation, validating the predictive capabilities of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号