首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To unravel the postglacial colonization history and the current intercolony dispersal in the common eider, Somateria mollissima, we analysed genetic variation at a part of the mitochondrial control region and five unlinked autosomal microsatellite loci in 175 eiders from 11 breeding colonies, covering the entire European distribution range of this species. As a result of extreme female philopatry, mitochondrial DNA differentiation is substantial both among local colonies and among distant geographical regions. Our study further corroborates the previous hypothesis of a single Pleistocene refugium for European eiders. A nested clade analysis on mitochondrial haplotypes suggests that (i) the Baltic Sea eider population is genetically closest to a presumably ancestral population and that (ii) the postglacial recolonization progressed in a stepwise fashion via the North Sea region and the Faroe Islands to Iceland. Current long-distance dispersal is limited. Differentiation among colonies is much less pronounced at microsatellite loci. The geographical pattern of this nuclear genetic variation is to a large extent explained by isolation by distance. As female dispersal is very limited, the geographical pattern of nuclear variation is probably explained by male-mediated gene flow among breeding colonies. Our study provides genetic evidence for the assumed prominent postglacial colonization route shaping the present terrestrial fauna of the North Atlantic islands Iceland and the Faroes. It suggests that this colonization had been a stepwise process originating in continental Europe. It is the first molecular study on eider duck populations covering their entire European distribution range.  相似文献   

2.
Information about the population genetic structures of parasites is important for an understanding of parasite transmission pathways and ultimately the co-evolution with their hosts. If parasites cannot disperse independently of their hosts, a parasite's population structure will depend upon the host's spatial distribution. Geographical barriers affecting host dispersal can therefore lead to structured parasite populations. However, how the host's social system affects the genetic structure of parasite populations is largely unknown. We used mitochondrial DNA (mtDNA) to describe the spatio-temporal population structure of a contact-transmitted parasitic wing mite ( Spinturnix bechsteini ) and compared it to that of its social host, the Bechstein's bat ( Myotis bechsteinii ). We observed no genetic differentiation between mites living on different bats within a colony. This suggests that mites can move freely among bats of the same colony. As expected in case of restricted inter-colony dispersal, we observed a strong genetic differentiation of mites among demographically isolated bat colonies. In contrast, we found a strong genetic turnover between years when we investigated the temporal variation of mite haplotypes within colonies. This can be explained with mite dispersal occuring between colonies and bottlenecks of mite populations within colonies. The observed absence of isolation by distance could be the result from genetic drift and/or from mites dispersing even between remote bat colonies, whose members may meet at mating sites in autumn or in hibernacula in winter. Our data show that the population structure of this parasitic wing mite is influenced by its own demography and the peculiar social system of its bat host.  相似文献   

3.
Sex-biased behaviours are expected to play an important role in partitioning genetic variance in animal populations. Comparing genetic structure at markers with different modes of inheritance provides a means of detecting these behaviours and their consequences for population genetic structure. In colonially breeding mammals, the common combination of female philopatry and male vagility can promote contrasting patterns of genetic differentiation between the sexes, both via their effects on recurrent gene flow and on colonization. We examined sex differences in gene flow and structure by comparing maternally inherited mitochondrial DNA (mtDNA) and biparentally inherited autosomal loci in the Formosan lesser horseshoe bat Rhinolophus monoceros . We found that genetic partitioning was higher at mtDNA than autosomal markers in both sexes, indicative of female-biased philopatry and male-biased dispersal. Across Taiwan, isolation-by-distance was detected for all sex/marker combinations but was steeper for mtDNA than for nuclear markers. We suggest that isolation-by-distance shown from mtDNA at large scales is likely to reflect the stepwise founding of new breeding colonies by females during colonization. In contrast, no isolation-by-distance was found at smaller distances of up to 100 km, indicating that gene flow and/or recent shared ancestry homogenises genetic structure among nearby sites. Our results highlight the value of an indirect genetic approach to understanding sex-biased behaviours and their consequences in a little-studied species.  相似文献   

4.
Previous studies have indicated that the common European pipistrelle bat ( Pipistrellus pipistrellus ) comprises two cryptic species, P. pipistrellus and Pipistrellus pygmaeus , which differ in echolocation call frequency and mitochondrial DNA sequence. However, levels of divergence based on nuclear markers have not been examined, and hence the potential for male-mediated gene flow between the species cannot be discounted. Moreover, little is known about population structure and migration patterns in either species. Here, we describe the use of microsatellites to investigate nuclear DNA differentiation between, and the pattern of population genetic structure within, the two cryptic pipistrelle species. In total, 1300 individuals from 82 maternity colonies were sampled across the British Isles and Continental Europe. We show, using multivariate analyses, that colonies of the same species are generally genetically more similar to each other than to those from the other species regardless of geographical location. Our findings support the hypothesis that the species are reproductively isolated. Significant patterns of genetic isolation by distance were identified in both species, indicating that mating may occur before any long-distance autumnal migration. The presence of a sea channel does not confer higher levels of genetic differentiation among colonies over and above distance alone in either species. Differences in genetic population structure were identified between the species, with P. pipistrellus showing a wider range of levels of genetic differentiation among colonies and a stronger relationship between genetic and geographical distance than P. pygmaeus . Differences in dispersal, mating behaviour, colony size and/or postglacial colonization patterns could contribute to the differences observed.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 539–550.  相似文献   

5.
Quantifying population genetic structure is fundamental to testing hypotheses regarding gene flow, population divergence and dynamics across large spatial scales. In species with highly mobile life‐history stages, where it is unclear whether such movements translate into effective dispersal among discrete philopatric breeding populations, this approach can be particularly effective. We used seven nuclear microsatellite loci and mitochondrial DNA (ND2) markers to quantify population genetic structure and variation across 20 populations (447 individuals) of one such species, the European Shag, spanning a large geographical range. Despite high breeding philopatry, rare cross‐sea movements and recognized subspecies, population genetic structure was weak across both microsatellites and mitochondrial markers. Furthermore, although isolation‐by‐distance was detected, microsatellite variation provided no evidence that open sea formed a complete barrier to effective dispersal. These data suggest that occasional long‐distance, cross‐sea movements translate into gene flow across a large spatial scale. Historical factors may also have shaped contemporary genetic structure: cluster analyses of microsatellite data identified three groups, comprising colonies at southern, mid‐ and northern latitudes, and similar structure was observed at mitochondrial loci. Only one private mitochondrial haplotype was found among subspecies, suggesting that this current taxonomic subdivision may not be mirrored by genetic isolation.  相似文献   

6.
We investigated sex specificities in the evolutionary processes shaping Y chromosome, autosomes, and mitochondrial DNA patterns of genetic structure in the Valais shrew (Sorex antinorii), a mountain dwelling species with a hierarchical distribution. Both hierarchical analyses of variance and isolation-by-distance analyses revealed patterns of population structure that were not consistent across maternal, paternal, and biparentally inherited markers. Differentiation on a Y microsatellite was lower than expected from the comparison with autosomal microsatellites and mtDNA, and it was mostly due to genetic variance among populations within valleys, whereas the opposite was observed on other markers. In addition, there was no pattern of isolation by distance for the Y, whereas there was strong isolation by distance on mtDNA and autosomes. We use a hierarchical island model of coancestry dynamics to discuss the relative roles of the microevolutionary forces that may induce such patterns. We conclude that sex-biased dispersal is the most important driver of the observed genetic structure, but with an intriguing twist: it seems that dispersal is strongly male biased at large spatial scale, whereas it is mildly biased in favor of females at local scale. These results add to recent reports of scale-specific sex-biased dispersal patterns, and emphasize the usefulness of the Y chromosome in conjunction with mtDNA and autosomes to infer sex specificities.  相似文献   

7.
Kerth G  Mayer F  Petit E 《Molecular ecology》2002,11(8):1491-1498
Maternity colonies of the communally breeding, nonmigratory Bechstein's bat consist of closely related females that live together with unrelated females, and average colony relatedness is low despite the absence of immigration. We compared the genetic structure of both nuclear and mitochondrial microsatellites in order to quantify sex-specific dispersal rates. More specifically, we aimed at testing whether male dispersal is able to balance the genetic effect of strong (absolute) female philopatry. Absolute female philopatry, indicated by an extreme mitochondrial DNA population differentiation of 96%, was indeed opposed by strong (possibly complete) male dispersal. Based on our knowledge of the biology of Myotis bechsteinii, we conclude that inbreeding avoidance is likely to be the crucial factor driving male dispersal in this species.  相似文献   

8.
During summer the brown long-eared bat Plecotus auritus (Vespertilionidae) forms stable colonies, comprised of both adult females and males and young of the year. A long-term ringing study conducted in north-east Scotland has established that little movement occurs among colonies and that both sexes are recruited into their natal colony. The aim of the present study was to investigate, using microsatellite DNA markers, if genetic structure within the population reflects the spatial structure indicated by ringing. Inter-colony FST estimates obtained for all colony members, and for females and males separately, were low (0.019, 0.026 and 0.011, respectively), but all values differed significantly from zero. These data indicate high gene flow between colonies, although some coancestry among colony members is evident in both sexes. On combining the ringing and genetic data, it is concluded that gene flow occurs via extra-colony copulation, rather than natal dispersal, and that each colony behaves as a distinct subpopulation. Microgeographical genetic isolation by distance was demonstrated for, to our knowledge, the first time in a bat species, and found to be apparent both across the entire study area and along one river valley. The results suggest that extensive macrogeographical population genetic structure may be evident across the species'' range.  相似文献   

9.
Dispersal is a critical driver of gene flow, with important consequences for population genetic structure, social interactions and other biological processes. Limited dispersal may result in kin‐structured populations in which kin selection may operate, but it may also increase the risk of kin competition and inbreeding. Here, we use a combination of long‐term field data and molecular genetics to examine dispersal patterns and their consequences for the population genetics of a highly social bird, the sociable weaver (Philetairus socius), which exhibits cooperation at various levels of sociality from nuclear family groups to its unique communal nests. Using 20 years of data, involving capture of 6508 birds and 3151 recaptures at 48 colonies, we found that both sexes exhibit philopatry and that any dispersal occurs over relatively short distances. Dispersal is female‐biased, with females dispersing earlier, further, and to less closely related destination colonies than males. Genotyping data from 30 colonies showed that this pattern of dispersal is reflected by fine‐scale genetic structure for both sexes, revealed by isolation by distance in terms of genetic relatedness and significant genetic variance among colonies. Both relationships were stronger among males than females. Crucially, significant relatedness extended beyond the level of the colony for both sexes. Such fine‐scale population genetic structure may have played an important role in the evolution of cooperative behaviour in this species, but it may also result in a significant inbreeding risk, against which female‐biased dispersal alone is unlikely to be an effective strategy.  相似文献   

10.
We present a microgeographic analysis of mitochondrial DNA (mtDNA) in Bechstein's bats using three sources of control region sequence variability, including a novel mtDNA microsatellite, to assess individual relatedness both within and among 10 maternity colonies. Comparison of marker variability among 268 adult females revealed little genetic variability within each colony. However, most colonies were clearly distinguished by colony-specific mitochondrial haplotypes (total n = 28). Low intracolony variability and strong haplotype segregation among colonies, was reflected by an extraordinary high FST of 0.68, indicating a very low intercolony dispersal rate of approximately one female in five generations. Haplotype distribution among 18 solitary males showed that males frequently disperse between colony locations, indicating the absence of dispersal barriers. Bechstein's bat maternity colonies are thus closed groups that comprise 20-40 females probably belonging to only one or, at most, two matrilines. The genetic population structure of Bechstein's bats is in agreement with the hypothesis that females seek familiar and, at least, partially related cooperation partners for raising their young. Alternatively strong philopatry might reflect the importance of profound roost or habitat knowledge for successful reproduction in female Bechstein's bats.  相似文献   

11.
For elusive mammals like bats, colonization of new areas and colony formation are poorly understood, as is their relationship with the genetic structure of populations. Understanding dispersal and group formation behaviors is critical not only for a better comprehension of mammalian social dynamics, but also for guiding conservation efforts of rare and endangered species. Using nuclear and mitochondrial markers, we studied patterns of genetic diversity and differentiation among and within breeding colonies of giant noctule bats (Nyctalus lasiopterus), their relation to a new colony still in formation, and the impact of this ongoing process on the regionwide genetic makeup. Nuclear differentiation among colonies was relatively low and mostly nonsignificant. Mitochondrial variation followed this pattern, contrasting with findings for other temperate bat species. Our results suggest that this may indicate a recent population expansion. On average, female giant noctules were not more closely related to other colony members than to foreign individuals. This was also true for members of the newly forming colony and those of another, older group sampled shortly after its formation, suggesting that contrary to findings for other temperate bats, giant noctule colonies are not founded by relatives. However, mother–daughter pairs were found in the same populations more often than expected under random dispersal. Given this indication of philopatry, the lack of mitochondrial differentiation among most colonies in the region is probably due to the combination of a recent population expansion and group formation events.  相似文献   

12.
Abstract.— The objective of this study was to assess breeding and dispersal patterns of both males and females in a monogyne (a single queen per colony) population of ants. Monogyny is commonly associated with extensive nuptial flights, presumably leading to considerable gene flow over large areas. Opposite to these expectations we found evidence of both inbreeding and sex-biased gene flow in a monogyne population of Formica exsecta . We found a significant degree of population subdivision at a local scale (within islands) for queens (females heading established colonies) and workers, but not for colony fathers (the males mated to the colony queens). However, we found little evidence of population subdivision at a larger scale (among islands). More conclusive support for sex-biased gene flow comes from the analysis of isolation by distance on the largest island, and from assignment tests revealing differences in female and male philopatry. The genetic similarity between pairs of queens decreased significantly when geographical distance increased, demonstrating limited dispersal and isolation by distance in queens. By contrast, we found no such pattern for colony fathers. Furthermore, a significantly greater fraction of colony queens were assigned as having originated from the population of residence, as compared to colony fathers. Inbreeding coefficients were significantly positive for workers, but not for mother queens. The queen-male relatedness coefficient of 0.23 (regression relatedness) indicates that mating occurs between fairly close relatives. These results suggest that some monogyne species of ants have complex dispersal and mating systems that can result in genetic isolation by distance over small geographical scales. More generally, this study also highlights the importance of identifying the relevant scale in analyses of population structure and dispersal.  相似文献   

13.
Although two cryptic pipistrelle bat species, Pipistrellus pipistrellus and Pipistrellus pygmaeus , belong among the most common bat species in Europe, it is still unclear whether they can migrate over long distances between summer and winter roosts. Long-distance migratory species may be expected to show low levels of genetic structuring in large areas due to regular mixing of the gene pool by mating that occurs during migration and/or hibernation. Conversely, the dispersal of gametes in sedentary species is spatially restricted, populations are more genetically structured, and isolation by relatively short distance is visible. By analysing diversity of highly variable microsatellites within and among summer colonies of both studied species in central Europe, we found that differentiation between populations is very weak. Both classical F ST and Bayesian clustering approach failed to detect genetic structure among colonies and there was no significant isolation-by-distance pattern. The analyses of relatedness, however, revealed that individuals within colonies are more related than random suggesting philopatry of at least one sex. The results were very similar for the two species. The high level of gene flow among central European populations, even on large geographic distances, is discussed in relation with migrations, dispersal, and mating behaviour.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 103–114.  相似文献   

14.
Dispersal in most group‐living species ensures gene flow among groups, but in cooperative social spiders, juvenile dispersal is suppressed and colonies are highly inbred. It has been suggested that such inbred sociality is advantageous in the short term, but likely to lead to extinction or reduced speciation rates in the long run. In this situation, very low levels of dispersal and gene flow among colonies may have unusually important impacts on fitness and persistence of social spiders. We investigated sex‐specific differences in dispersal and gene flow among colonies, as reflected in the genetic structure within colonies and populations of the African social spider Stegodyphus dumicola Pocock, 1898 (Eresidae). We used DNA fingerprinting and mtDNA sequence data along with spatial mapping of colonies to compare male and female patterns of relatedness within and among colonies at three study sites. Samples were collected during and shortly after the mating season to detect sex‐specific dispersal. Distribution of mtDNA haplotypes was consistent with proliferation of social nests by budding and medium‐ to long‐distance dispersal by ballooning females. Analysis of molecular variance and spatial autocorrelation analyses of AFLPs showed high levels of genetic similarity within colonies, and STRUCTURE analyses revealed that the number of source populations contributing to colonies ranged from one to three. We also showed significant evidence of male dispersal among colonies at one site. These results support the hypothesis that in social spiders, genetic cohesion among populations is maintained by long‐distance dispersal of female colony founders. Genetic diversity within colonies is maintained by colony initiation by multiple dispersing females, and adult male dispersal over short distances. Male dispersal may be particularly important in maintaining gene flow among colonies in local populations.  相似文献   

15.
Following a dramatic decline last century, the British population of the endangered greater horseshoe bat Rhinolophus ferrumequinum is highly fragmented. To examine the consequences of fragmentation and limited dispersal on patterns of genetic structure and variation, we used microsatellite markers to screen bats from around 50% of the known maternity colonies in Britain, and two areas from continental Europe. Analyses revealed that Welsh and English colonies were genetically isolated. This, and lower variability in Britain than north France, may result from either genetic drift, or the species' colonization history. Gene flow among most neighbouring colonies was not generally restricted, with one exception. These findings have important implications for the ongoing conservation management of this species.  相似文献   

16.
Seabirds are considered highly mobile, able to fly great distances with few apparent barriers to dispersal. However, it is often the case that seabird populations exhibit strong population genetic structure despite their potential vagility. Here we show that Galapagos Nazca booby (Sula granti) populations are substantially differentiated, even within the small geographic scale of this archipelago. On the other hand, Galapagos great frigatebird (Fregata minor) populations do not show any genetic structure. We characterized the genetic differentiation by sampling five colonies of both species in the Galapagos archipelago and analyzing eight microsatellite loci and three mitochondrial genes. Using an F‐statistic approach on the multilocus data, we found significant differentiation between nearly all island pairs of Nazca booby populations and a Bayesian clustering analysis provided support for three distinct genetic clusters. Mitochondrial DNA showed less differentiation of Nazca booby colonies; only Nazca boobies from the island of Darwin were significantly differentiated from individuals throughout the rest of the archipelago. Great frigatebird populations showed little to no evidence for genetic differentiation at the same scale. Only two island pairs (Darwin – Wolf, N. Seymour – Wolf) were significantly differentiated using the multilocus data, and only two island pairs had statistically significant φST values (N. Seymour – Darwin, N. Seymour – Wolf) according to the mitochondrial data. There was no significant pattern of isolation by distance for either species calculated using both markers. Seven of the ten Nazca booby migration rates calculated between island pairs were in the south or southeast to north or northwest direction. The population differentiation found among Galapagos Nazca booby colonies, but not great frigatebird colonies, is most likely due to differences in natal and breeding philopatry.  相似文献   

17.
The black‐tailed prairie dog (Cynomys ludovicianus) is a keystone species on the mid‐ and short‐grass prairies of North America. The species has suffered extensive colony extirpations and isolation as a result of human activity including the introduction of an exotic pathogen, Yersinia pestis, the causative agent of sylvatic plague. The prairie dog flea, Oropsylla hirsuta, is the most common flea on our study colonies in north‐central Montana and it has been shown to carry Y. pestis. We used microsatellite markers to estimate the level of population genetic concordance between black‐tailed prairie dogs and O. hirsuta in order to determine the extent to which prairie dogs are responsible for dispersing this potential plague vector among prairie dog colonies. We sampled fleas and prairie dogs from six prairie dog colonies in two regions separated by about 46 km. These colonies were extirpated by a plague epizootic that began months after our sampling was completed in 2005. Prairie dogs showed significant isolation‐by‐distance and a tendency toward genetic structure on the regional scale that the fleas did not. Fleas exhibited higher estimated rates of gene flow among prairie dog colonies than the prairie dogs sampled from the same colonies. While the findings suggested black‐tailed prairie dogs may have contributed to flea dispersal, we attributed the lack of concordance between the population genetic structures of host and ectoparasite to additional flea dispersal that was mediated by mammals other than prairie dogs that were present in the prairie system.  相似文献   

18.
Gene flow promotes genetic homogeneity of species in time and space. Gene flow can be modulated by sex‐biased dispersal that links population genetics to mating systems. We investigated the phylogeography of the widely distributed Kentish plover Charadrius alexandrinus. This small shorebird has a large breeding range spanning from Western Europe to Japan and exhibits an unusually flexible mating system with high female breeding dispersal. We analysed genetic structure and gene flow using a 427‐bp fragment of the mitochondrial (mtDNA) control region, 21 autosomal microsatellite markers and a Z microsatellite marker in 397 unrelated individuals from 21 locations. We found no structure or isolation‐by‐distance over the continental range. However, island populations had low genetic diversity and were moderately differentiated from mainland locations. Genetic differentiation based on autosomal markers was positively correlated with distance between mainland and each island. Comparisons of uniparentally and biparentally inherited markers were consistent with female‐biased gene flow. Maternally inherited mtDNA was less structured, whereas the Z‐chromosomal marker was more structured than autosomal microsatellites. Adult males were more related than females within genetic clusters. Taken together, our results suggest a prominent role for polyandrous females in maintaining genetic homogeneity across large geographic distances.  相似文献   

19.
Doums C  Cabrera H  Peeters C 《Molecular ecology》2002,11(11):2251-2264
In this study we investigated the population genetic structure of the queenless ant Diacamma cyaneiventre. This species, lacking winged queens, is likely to have a restricted female dispersal. We used both mitochondrial and microsatellite markers to assess the consequence of such restricted female dispersal at three geographical scales: within a given locality (< 1 km), between localities within a given region (< 10 km) and between regions (> 36 km). Within a locality, a strong population structure was observed for mitochondrial DNA (mtDNA) whereas weak or nonexistent population genetic structure was observed for the microsatellites (around 5% of the value for mtDNA). Male gene flow was estimated to be about 20-30 times higher than female gene flow at this scale. At a larger spatial scale, very strong genetic differentiation for both markers was observed between localities - even within a single region. Female dispersal is nonexistent at these scales and male dispersal is very restricted, especially between regions. The phylogeographical structure of the mtDNA haplotypes as well as the very low genetic diversity of mtDNA within localities indicate that new sites are colonized by a single migration event from adjacent localities, followed by successive colony fissions. These patterns of genetic variability and differentiation agree with what is theoretically expected when colonization events are kin-structured and when, following colonization, dispersion is mainly performed by males.  相似文献   

20.
For decades, studies have focused on how dispersal and mating systems influence genetic structure across populations or social groups. However, we still lack a thorough understanding of how these processes and their interaction shape spatial genetic patterns over a finer scale (tens—hundreds of metres). Using uniparentally inherited markers may help answer these questions, yet their potential has not been fully explored. Here, we use individual‐level simulations to investigate the effects of dispersal and mating system on fine‐scale genetic structure at autosomal, mitochondrial and Y chromosome markers. Using genetic spatial autocorrelation analysis, we found that dispersal was the major driver of fine‐scale genetic structure across maternally, paternally and biparentally inherited markers. However, when dispersal was restricted (mean distance = 100 m), variation in mating behaviour created strong differences in the comparative level of structure detected at maternally and paternally inherited markers. Promiscuity reduced spatial genetic structure at Y chromosome loci (relative to monogamy), whereas structure increased under polygyny. In contrast, mitochondrial and autosomal markers were robust to differences in the specific mating system, although genetic structure increased across all markers when reproductive success was skewed towards fewer individuals. Comparing males and females at Y chromosome vs. mitochondrial markers, respectively, revealed that some mating systems can generate similar patterns to those expected under sex‐biased dispersal. This demonstrates the need for caution when inferring ecological and behavioural processes from genetic results. Comparing patterns between the sexes, across a range of marker types, may help us tease apart the processes shaping fine‐scale genetic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号