首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New Zealand is threatened by invasion of the glassy-winged sharpshooter, Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), an important vector of Xylella fastidiosa, a gram-negative bacterium that causes Pierce's disease in grape (Vitis spp.) and scorch diseases in many other horticultural crops. Therefore, an understanding of the host acceptability, feeding behavior, and potential vector efficiency of glassy-winged sharpshooter on New Zealand crops is important. We tested host plant acceptance and feeding behaviors of glassy-winged sharpshooter on three common horticultural crops grown in New Zealand (apple [Malus spp.], grape, and citrus [Citrus spp.]), and a native plant (Metrosideros excelsa [=tomentosa] Richard, pohutukawa), using the electrical penetration graph (EPG) technique. Probing (stylet penetration) behaviors varied among the host plants, primarily due to differences in waveform event durations. Apple and grape were the most accepted host plants, on which glassy-winged sharpshooter spent the majority of its time on the plant probing and readily located and accepted a xylem cell for ingestion. This resulted in long durations of sustained xylem fluid ingestion. In contrast, pohutukawa was the least accepted host. On this plant, glassy-winged sharpshooter spent less time probing and engaged in longer and more frequent testing/searching and xylem-testing activities, rejected xylem cells frequently, and spent less time with stylets resting, before accepting a xylem cell and ultimately performing the same amount of sustained ingestion. Citrus plants contaminated with sublethal insecticide residues were intermediate between these extremes, with some acceptance of xylem, but less ingestion, probably due to presumed partial paralysis of the cibarial muscles. Implications of the results in terms of host plant acceptance and the development of a stylet penetration index are discussed.  相似文献   

2.
The capacity to predict the geographic distribution and relative abundance of invasive species is pivotal to developing policy for eradication or control and management. Commonly used methods fall under the ambit of ecological niche models (ENMs). These methods were reviewed and shortcomings identified. Weather-driven physiologically based demographic models (PBDMs) are proposed that resolve many of the deficiencies of ENMs. The PBDM approach is used to analyze the invasiveness of the polyphagous glassy-winged sharpshooter (Homalodisca vitripennis [Germar]), a pest native to the southeastern United States and northeastern Mexico that extended its range into California in 1989. Glassy-winged sharpshooter vectors the pathogenic bacterium, Xylella fastidiosa (Wells) that causes Pierce's disease in grape and scorch-like diseases in other plants. PBDMs for glassy-winged sharpshooter and its egg parasitoids (Gonatocerus ashmeadi Girault and G. triguttatus Girault) were developed and linked to a PBDM for grape published by Wermelinger et al. (1991). Daily weather data from 108 locations across California for the period 1995-2006 were used to drive the PBDM system, and GRASS GIS was used to map the simulation results. The geographic distribution of glassy-winged sharpshooter, as observed, is predicted to be largely restricted to the warm areas of southern California, with the action of the two egg parasitoids reducing its abundance >90%. The average indispensable mortality contributed by G. triguttatus is <1%. A temperature-dependent developmental rate model for X. fastidiosa was developed that suggests its geographic range is also limited to the warm inland areas of southern California. Biological control of glassy-winged sharpshooter further decreases the pathogen's relative range. Climate warming scenarios of +2°C and +3°C suggest that the distribution and severity of glassy-winged sharpshooter and X. fastidiosa will increase in the agriculturally rich central valley of California. The utility of holistic analyses for formulating control policy and tactics for invasive species is discussed.  相似文献   

3.
A mark-release-recapture technique was developed and tested for use in tracking the field movements of adult glassy-winged sharpshooters, Homalodisca coagulata (Say) (Hemiptera: Cicadellidae), in various agricultural and urban plantings. Greenhouse experiments in which adult H. coagulata were marked with one of five colored fluorescent dusts (Aurora Pink-All, Horizon Blue-A19, Blaze Orange-A15N, Saturn Yellow-A17, and Corona Magenta-A21) and released into cages with citrus seedlings showed that their mortality rates during a 30-d period were statistically similar to that of the undusted controls. Adults marked with a sixth dust color (Signal Green-A18N) suffered higher rates of mortality than did the undusted controls and thus were eliminated from further consideration. Adult H. coagulata marked with one of the five accepted colors of fluorescent dust were able to fly beyond 100 m in a field devoid of vegetation within minutes of their release, and the marking did not affect overall flight behavior significantly compared with that of the undusted controls. However, at wind speeds above 5 m/s, percentage recapture was significantly reduced, which indicates that both dusted and undusted adults were unable to orient their flight. In total, 41,124 marked and unmarked adults were released in the three field experiments in southern California (Riverside and Kern counties) during 2000 and 2001 to evaluate flight dispersal and estimate densities of H. coagulata. The mark-release-recapture and feral data obtained during the June, July, and August 2001 studies, when coupled with the Lincoln index, yielded estimates of adult H. coagulata of 1.2 and 2.2 million per ha, respectively, at a San Joaquin Valley (Kern Co.) and a southern California (Riverside Co.) citrus grove. The use of colored dusts to mark H. coagulata proved to be reliable, cost-effective, and time-efficient for mark-release-recapture studies with this insect within a citrus grove, but they are less likely to be useful for studies of adult H. coagulata movements among plantings.  相似文献   

4.
Xylella fastidiosa Wells is a bacterial pathogen that causes a variety of plant diseases, including Pierce's disease (PD) of grapevine, almond leaf scorch, alfalfa dwarf, citrus variegated chlorosis, and oleander leaf scorch (OLS). Numerous strains of this pathogen have been genetically characterized, and several different strains occur in the United States. The dominant vector in southern California is the glassy-winged sharpshooter, Homalodisca coagulata (Say) (Hemiptera: Cicadellidae). The high mobility of this insect, and its use of large numbers of host plant species, provides this vector with ample exposure to multiple strains of X. fastidiosa during its lifetime. To learn more about the ability of this vector to acquire, retain, and transmit multiple strains of the pathogen, we developed a polymerase chain reaction (PCR)-based method to detect and differentiate strains of X. fastidiosa present in individual glassy-winged sharpshooter adults. Insects were sequentially exposed to plants infected with a PD strain in grapevine and an OLS strain in oleander. After sequential exposure, a few insects tested positive for both strains (7%); however, in most cases individuals tested positive for only one strain (29% PD, 41% OLS). In transmission studies, individual adults transmitted either the PD or OLS strain of the pathogen at a rate (39%) similar to that previously reported after exposure to a single strain, but no single individual transmitted both strains of the pathogen. PD and OLS strains of X. fastidiosa remained detectable in glassy-winged sharpshooter, even when insects were fed on a plant species that was not a host of the strain for 1 wk.  相似文献   

5.
The glassy-winged sharpshooter, Homalodisca vitripennis (Germar), vectors the bacterium Xylella fastidiosa that induces Pierce's disease of grape. This study determined the effect of temperature on the feeding activity of H. vitripennis adults and the resulting production of excreta. The Logan type I model described a nonlinear pattern that showed excreta production increased up to an optimal temperature (33.1°C), followed by an abrupt decline near an estimated upper threshold (36.4°C). A temperature threshold for feeding, at or below which adults cease feeding, was estimated to be 10°C using a linear regression model based on the percentage of adults producing excreta over a range of constant temperatures. A simulated winter-temperature experiment using fluctuating thermal cycles confirmed that a time period above the temperature threshold for feeding was a critical factor in determining adult survival. Using data from the simulated temperature study, a predictive model was constructed by quantifying the relationship between cumulative mortality and cooling degree-hours. In field validation experiments, the model accurately predicted the temporal pattern of overwintering mortality of H. vitripennis adults held under winter temperatures simulating conditions in Bakersfield and Riverside, California, in 2006-2007. Model prediction using winter temperature data from a Riverside weather station indicated that H. vitripennis adults would experience an average of 92% overwintering mortality before reproduction in the spring, but levels of mortality varied depending on winter temperatures. The potential for temperature-based indices to predict temporal and spatial dynamics of H. vitripennis overwintering is discussed.  相似文献   

6.
The glassy-winged sharpshooter Homalodisca coagulata Say (Homoptera: Cicadellidae) is a new pest to California agriculture. It is the principal vector of several plant pathogenic diseases, particularly Pierce's Disease in grapevines, and oleander leaf scorch. A microplate-based assay is described that measures the sensitivity of acetylcholinesterase (AChE) activity to inhibition by organophosphorus (OP) insecticides in this important pest. The technique provides users with an accurate measure of the efficacy of OP binding to this target site, and is a valuable tool for monitoring field populations of the insect to determine whether the use of OP insecticides has selected for resistant individuals. The technique will also measure AChE sensitivity in the smoke-tree sharpshooter, H. lacerta Fowler. This species is native to California and is regarded only as a minor pest. Both inhibition and kinetic measurements for the AChE enzymes in these sharpshooters demonstrate the close phylogenetic relationships between the two species.  相似文献   

7.
Symbiotic control is a new strategy being investigated to prevent the spread of insect-transmitted pathogens by reducing vector competence. We are developing this strategy to reduce the spread of Xylella fastidiosa by Homalodisca vitripennis (Germar) [formerly Homalodisca coagulata (Say)] (Hemiptera: Cicadellidae), the glassy-winged sharpshooter. In this study, the fate of a transformed symbiotic bacterium, Alcaligenes xylosoxidans variety denitriicans (S1Axd), in the foregut of glassy-winged sharpshooter when fed on citrus (Citrus spp.) and grape (Vitris spp.) was assessed. TaqMan-based quantitative real-time polymerase chain reaction (PCR) was used to detect and quantify bacterial cells remaining in the foregut at 0, 2, 4, 9, and 12 d after acquisition. S1Axd titer dropped rapidly by 2 d after acquisition, but in spite of this, at end of the 12-d experimental period, 45 and 38% of the glassy-winged sharpshooters retained the transformed bacteria, when fed on grape and citrus, respectively.  相似文献   

8.
A few phytophagous hemipteran species such as the glassy-winged sharpshooter, Homalodisca vitripennis, (Germar), subsist entirely on xylem fluid. Although poorly understood, aspects of the insect's salivary physiology may facilitate both xylem-feeding and transmission of plant pathogens. Xylella fastidiosa is a xylem-limited bacterium that causes Pierce's disease of grape and other scorch diseases in many important crops. X. fastidiosa colonizes the anterior foregut (precibarium and cibarium) of H. vitripennis and other xylem-feeding vectors. Bacteria form a dense biofilm anchored in part by an exopolysaccharide (EPS) matrix that is reported to have a β-1,4-glucan backbone. Recently published evidence supports the following, salivation-egestion hypothesis for the inoculation of X. fastidiosa during vector feeding. The insect secretes saliva into the plant and then rapidly takes up a mixture of saliva and plant constituents. During turbulent fluid movements in the precibarium, the bacteria may become mechanically and enzymatically dislodged; the mixture is then egested back out through the stylets into plant cells, possibly including xylem vessels. The present study found that proteins extracted from dissected H. vitripennis salivary glands contain several enzyme activities capable of hydrolyzing glycosidic linkages in polysaccharides such as those found in EPS and plant cell walls, based on current information about the structures of those polysaccharides. One of these enzymes, a β-1,4-endoglucanase (EGase) was enriched in the salivary gland protein extract by subjecting the extract to a few, simple purification steps. The EGase-enriched extract was then used to generate a polyclonal antiserum that was used for immunohistochemical imaging of enzymes in sharpshooter salivary sheaths in grape. Results showed that enzyme-containing gelling saliva is injected into xylem vessels during sharpshooter feeding, in one case being carried by the transpiration stream away from the injection site. Thus, the present study provides support for the salivation-egestion hypothesis.  相似文献   

9.
Homalodisca coagulata (Say) and Homalodisca lacerta (Fowler) are vectors of a new bacterial disease of oleander in California known as oleander leaf scorch, induced by the bacterium Xylella fastidiosa. H. coagulata also has been implicated in the spread of the strain of X. fastidiosa that induces Pierce's disease of grapevines in California. We monitored the flight activity of H. coagulata and H. lacerta in oleander and citrus by using yellow sticky cards at three southern California locations where outbreaks of oleander leaf scorch have been documented, and where vector compliments are different. Areas sampled included a mesic coastal area (Irvine, CA) that supports predominantly H. coagulata and few H. lacerta, a dry inland location (Palm Desert, CA) that supports predominantly H. lacerta and few H. coagulata, and an intermediate area (Riverside, CA) supporting both Homalodisca species. From November 1996 to October 1999 peak catches of both Homalodisca species occurred during the midsummer at all locations. H. coagulata was trapped in greater numbers in citrus than in oleander at both the Riverside and the Irvine sites. Likewise, H. lacerta in Riverside was more associated with citrus than oleander, yet H. lacerta in Palm Desert was trapped in greater numbers in oleander than citrus.  相似文献   

10.
11.
The glassy-winged sharpshooter, Homalodisca vitripennis (Germar), is an invasive pest that has spread across the southern and western United States. H. vitripennis is highly polyphagous and voracious, feeding on at least 100 plant species and consuming up to 100 times its weight in xylem fluid daily. The insect is a vector of the phytopathogen Xylella fastidiosa (Wells), which is the causative agent of Pierce's disease in grapevines. To evaluate the microbial flora associated with H. vitripennis, total DNA extracts from hemolymph, alimentary canal excretions, and whole insect bodies were subjected to 16S rDNA pyrosequencing using the bTEFAP methodology and the resulting sequences (370-520 bp in length) were compared with a curated high quality 16S database derived from GenBank http://www.ncbi.nlm.nih.gov. Species from the genera Wolbachia, Delftia (formerly Pseudomonas), Pectobacterium, Moraxella, Serratia, Bacillus, and many others were detected and a comprehensive picture of the microbiome associated with H. vitripennis was established. Some of the bacteria identified in this report are initial discoveries; providing a breadth of knowledge to the microbial flora of this insect pest can serve as a reservoir of information for developing biological control strategies.  相似文献   

12.
Successful infection of the plant pathogenic bacterium Xylella fastidiosa (Wells) from an infected plant to a new host involves three main steps: 1) acquisition of the bacterium by a vector; 2) inoculation of a noninfected host plant by the vector; and 3) establishment of sufficient titers of X. fastidiosa in the host plant to sustain a chronic infection. Understanding the basic biology of the transmission process is a key to limiting the spread of plant diseases induced by X. fasdidiosa and reducing agricultural losses, especially those experienced in California since the introduction of a new vector, Homalodisca vitripennis (Germar) (Hemiptera, Cicadellidae) (formerly H. coagulata Say), the glassy-winged sharpshooter. In this study, H. vitripennis adults that acquired X. fastidiosa were allowed access to chrysanthemum plant cuttings for 30, 60, 90, or 120 min. The numbers of X. fastidiosa acquired (i.e., cells present in the insect foregut) and the number inoculated to the plant cuttings were separately determined using quantitative real-time polymerase chain reaction (PCR). In addition, the number of times glassy-winged sharpshooter stylets probed plant cuttings and the amount of time glassy-winged sharpshooter spent actively ingesting were monitored using video surveillance. Linear regression did not indicate a relationship between the number of X. fastidiosa cells inoculated into the plant cutting and either the titer of pathogen present in the insect or amount of time spent ingesting per probe. However, the number of probes significantly influenced the number of X. fastidiosa cells inoculated. Due to the highly variable nature of transmission, our model could not account for all observed variation as indicated by low R2 values. However, our results suggest that the mechanism of transmission is dependent on probing behaviors more than ingestion duration.  相似文献   

13.
Summary Four continuous cell lines were established from the embryos of the glassy-winged sharpshooter, Homalodisca coagulata (Say), an economically important insect vector of bacterial pathogens of grape, almond citrus, oleander, and other agricultural and ornamental plantings. The cell lines were designated GWSS-Z10, GWSS-Z15, GWSS-G3, and GWSS-LH. The GWSS-Z10, GWSS-Z15, and GWSS-G3 lines were cultured in Ex-Cell 401 medium supplemented with 10% fetal bovine serum (FBS), whereas the GWSS-LH line was cultured in LH medium supplemented with 20% FBS. The cell lines were characterized in terms of their morphology, growth, protein composition, and polymerase chain reactionamplification patterns of their chromosomal deoxyribonucleic acid. The population doubling times of GWSS-Z10, GWSS-Z15, GWSS-G3, and GWSS-LH were 46.2, 90.9, 100.3 and 60.2 h, respectively. These lines should be useful for the study of insect-pathogenic viruses of leafhoppers, aphids, treehoppers, and other related insects as well as plant-pathogenic viruses that are transmitted by these insects.  相似文献   

14.
The specificity of pathogen–vector–host interactions is an important element of disease epidemiology. For generalist pathogens, different pathogen strains, vector species, or host species may all contribute to variability in disease incidence. One such pathogen is Xylella fastidiosa Wells et al., a xylem-limited bacterium that infects dozens of crop, ornamental, and native plants in the USA. This pathogen also has a diverse vector complex and multiple biologically distinct strains. We studied the implications of diversity in this pathogen–vector–host system, by quantifying variability in transmission efficiency of different X. fastidiosa strains (isolates from almond and grape genetic groups) for different host plants (grape, almond, and alfalfa) by two of the most important vectors in California: glassy-winged sharpshooter [ Homalodisca vitripennis (Germar)] and green sharpshooter ( Draeculacephala minerva Ball) (both Hemiptera: Cicadellidae). Transmission of isolates of the almond strain by H. vitripennis did not differ significantly, whereas transmission varied significantly among isolates from the grape strain (15–90%). Host plant species did not affect H. vitripennis transmission. Conversely, D. minerva efficiency was mediated by both host plant species and pathogen strain. No acquisition of an almond isolate occurred regardless of plant type (0/122), whereas acquisition of a grape isolate from alfalfa was 10-fold higher than from grape or almond plants. These results suggest that pathogen, vector, and host diversity impose contingencies on the transmission ecology of this complex disease system. Studies aimed at the development of management strategies for X. fastidiosa diseases should consider the complexity of these interactions as they relate to disease spread.  相似文献   

15.
Xylella fastidiosa is the causative agent of Pierce’s Disease of grape. No published record of X. fastidiosa genetics in Texas exists despite growing financial risk to the U.S. grape industry, a Texas population of the glassy-winged sharpshooter insect vector (Homalodisca vitripennis) now spreading in California, and evidence that the bacterium is ubiquitous to southern states. Using sequences of conserved gyrB and mopB genes, we have established at least two strains in Texas, grape strain and ragweed strain, corresponding genetically with subsp. piercei and multiplex, respectively. The grape strain in Texas is found in Vitis vinifera varieties, hybrid vines, and wild Vitis near vineyards, whereas the ragweed strain in Texas is found in annuals, shrubs, and trees near vineyards or other areas. RFLP and QRT PCR techniques were used to differentiate grape and ragweed strains with greater efficiency than sequencing and are practical for screening numerous X. fastidiosa isolates for clade identity.  相似文献   

16.
For some phytophagous insects, egg maturation may be dependent on adult feeding. Accordingly, rates of egg maturation may be dependent on the quality and quantity of available food sources. In turn, oviposition behavior could be affected by diet quality via changes in egg load (number of mature eggs carried by a female). Experiments were conducted to determine whether adult feeding may affect oviposition behavior of the glassy-winged sharpshooter, Homalodisca vitripennis. No-choice tests demonstrated that eggs accumulated in glassy-winged sharpshooter abdomens as time since last oviposition increased largely as a function of feeding plant species. In choice tests, glassy-winged sharpshooter females were observed most frequently on the plant species that imparted the greatest egg maturation rate in no-choice tests. Direct tests of the effects of egg load on glassy-winged sharpshooter oviposition behavior found that females were more likely to deposit eggs as egg load increased. Similarly, acceptance of a low-ranked oviposition plant species by female glassy-winged sharpshooters increased with egg load and time since last oviposition. The results indicate that adult feeding affected glassy-winged sharpshooter egg maturation, plant species varied in quality for providing nutrients for egg maturation, and egg load affected oviposition behavior. Thus, the quantity and quality of available feeding plant species may affect glassy-winged sharpshooter egg maturation rates, which in turn may affect the plant species female glassy-winged sharpshooters select for oviposition.  相似文献   

17.
Pierce's disease is a major threat to the California grape industry. The disease-causing bacterium Xylella fastidiosa is vectored by a number of leafhoppers including Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae). Experiments were conducted to study H. vitripennis preference, feeding, and survivorship in response to four Vitis genotypes. Plants of V. vinifera ('Chardonnay'), V. girdiana, V. candicans, and a V. rupestris x V. arizonica/candicans hybrid (D8909-17) were grown in pots in the greenhouse and transferred to laboratory conditions for experiments with field-collected H. vitripennis. A choice test without prior insect acclimation on grapes revealed that H. vitripennis selected Chardonnay over V. candicans throughout the duration of the experiment, whereas a shift in preference between D8909-17 and V. girdiana was observed over time. In a second set of choice tests, which were preceded by an acclimation on one of the four grape genotypes, significant genotype, time, and acclimation x genotype effects were observed. Chardonnay was preferred over V. candicans independent of acclimation genotype. Although H. vitripennis confined on D8909-17 excreted 1.8-fold (dry-weight corrected) the amount of insects feeding on V. candicans, differences in the rate of excreta production per insect or insect dry weight were not significant among grape genotypes. Adult mortality was greatest on V. candicans when H. vitripennis were confined in parafilm sachets for excreta collection as well as in a no-choice test. Grape genotype affected the behavior of adult H. vitripennis under controlled conditions, which may influence Pierce's disease epidemiology under field conditions.  相似文献   

18.
Recent epidemics of Pierce's disease of grapevine in California vectored by Homalodisca coagulata (Say), an invasive vector species, have characteristics that differ from epidemics involving native vectors. Among these differences are the longer distances and greater speed that the disease is spread by H. coagulata. In this investigation, we used yellow sticky traps to study the seasonal dispersion activity of H. coagulata in a southern California grape-growing area in which an epidemic of Pierce's disease has caused large losses. For 21 mo, we monitored adult H. coagulata at the edges of vineyards bordering citrus, an important crop host, natural coastal sage scrub vegetation, and natural riparian vegetation. We also monitored H. coagulata dispersion from 0 to 40 m into vineyards. Finally, we examined the vertical dispersion of H. coagulata adults into grapevines through a season. This investigation showed that H. coagulata is associated with citrus, from where it disperses deep into vineyards, and not just the vineyard edge as with Pierce's disease vectors that are native to California. Peak dispersion into vineyards occurred in the summer. Another period of H. coagulata activity occurred in the winter in vineyards bordering citrus. Through the period of peak flight activity, 97% of all H. coagulata adults trapped between 1 and 7 m were caught at an altitude of 5 m or lower, suggesting the potential of a barrier as a management tactic to keep H. coagulata out of vineyards.  相似文献   

19.
A two-year study was conducted in a citrus orchard, Citrus sinensis L., to determine frequency of predation on glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar). A total of 1,578 arthropod predators, representing 18 taxa, were collected and assayed for the presence of GWSS egg protein by an enzyme-linked immunosorbent assay using a Homalodisca-species and egg-specific monoclonal antibody and then by polymerase chain reaction using a H. vitripennis-specific DNA marker. The gut content analyses revealed the presence of GWSS remains in the gut of 2.28 % of the total arthropod predator population, with 3.09 % of the spiders and 0.59 % of the insect predators testing positive. Moreover, a comparison of the two assays indicated that they were not equally effective at detecting GWSS remains in predator guts. Low frequencies of GWSS detection in the gut of predators indicated that GWSS are not a primary prey and that predators may contribute little to suppression of this pest in citrus.  相似文献   

20.
Suppression subtractive hybridization was used to rapidly identify 18 gene differences between a citrus variegated chlorosis (CVC) strain and a Pierce's disease of grape (PD) strain of Xylella fastidiosa. The results were validated as being highly representative of actual differences by comparison of the completely sequenced genome of a CVC strain with that of a PD strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号