首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
The involvement of miR-204 in lung cancer development is unclear. In our study, we analyzed the expression of miR-204 in tumor- and adjacent-tissue samples from 141 patients with non-small cell lung cancer (NSCLC). MiR-204 expression was decreased in tumor samples compared with non-cancerous tissue-derived controls. Moreover, miR-204 expression negatively correlated with homeobox protein SIX1 expression, tumor size and metastasis. MiR-204 silencing in miR-204-positive NSCLC cell lines promoted cell invasion and proliferation. Concomitantly, MiR-204 overexpression resulted in reduced cell proliferation and invasion, upregulated E-cadherin and downregulated N-cadherin and Vimentin expression. SIX1 was identified as a potential target of miR-204, and SIX1 silencing partially compromised the invasive and proliferative capacity of miR-204-deficient cells. Thus, miR-204 may be involved in the NSCLC development.  相似文献   

2.
miR-625 has been reported to exhibit abnormal expression in esophageal cancer (EC), but the mechanism and functions of miR-625 in esophageal cancer remain unclear. miR-625 down-regulation and Sox2 up-regulation were validated by qRT-PCR in 158 EC samples. Low expression of miR-625 promotes cell proliferation and invasion, while high expression of miR-625 has the opposite effect. Sox2, a target gene of miR-625, was examined by luciferase assay and western blot. Our data suggest that miR-625 may regulate the biological processes of EC via controlling Sox2 expression.  相似文献   

3.
Studies have shown that a subgroup of tumor cells possess stemness characteristics having self-renewal capacity and the ability to form new tumors. We sought to identify the plausible stemness factor that determines the “molecular signature” of prostate cancer (PCa) cells derived from different metastases (PC3, PCa2b, LNCaP, and DU145) and whether androgen receptor (AR) influences the maintenance of stemness features. Here we show sex-determining region Y (SRY)-box 2 (SOX2) as a putative stem cell marker in PC3 PCa cells and not in DU145, PCa2b, or LNCaP cells. PCa2b and PC3 cells were derived from bone metastases. PCa2b cells which are positive for the AR failed to demonstrate the expression of either cluster of differentiation 44 (CD44) or SOX2. Knockdown (KD) of AR in these cells did not affect the expression of either CD44 or SOX2. Conversely, PC3 cells, which are negative for AR, expressed both CD44 and SOX2. However, the expression of AR downregulated the expression of both CD44 and SOX2 in PC3 cells. CD44 regulates SOX2 expression as KD of CD44 and reduces SOX2 levels considerably. SOX2 KD attenuated not only the expression of SNAIL and SLUG but also the migration and tumorsphere formation in PC3 cells. Collectively, our findings underscore a novel role of CD44 signaling in the maintenance of stemness and progression of cancer through SOX2 in AR-independent PC3 cells. SOX2 has a role in the regulation of expression of SNAIL and SLUG. SOX2 could be a potential therapeutic target to thwart the progression of SOX2-positive cancer cells or recurrence of androgen-independent PCa.  相似文献   

4.
Epithelial–mesenchymal transition (EMT) has an important function in cancer. Recently, microRNAs have been reported to be involved in EMT by regulating target genes. miR-942 is considered a novel oncogene in esophageal squamous cell carcinoma. However, its role in non-small-cell lung cancer (NSCLC) has not been investigated. In this study, the expression of miR-942 in NSCLC patients tumor and paired adjacent tissues were assessed by quantitative real-time polymerase chain reaction and in situ hybridization. Transwell, wound healing, tube formation, and tail vein xenograft assays were conducted to assess miR-942′s function in NSCLC. Potential miR-942 targets were confirmed using dual-luciferase reporter assays, immunohistochemistry, immunoblot, and rescue experiments. The results showed miR-942 is relatively highly expressed in human NSCLC tissues and cells. In vitro assays demonstrated that overexpression of miR-942 promoted cell migration, invasion, and angiogenesis. Tail vein xenograft assays suggested that miR-942 contributed to NSCLC metastasis in vivo. Three bioinformatics software was searched, and BARX2 was predicted as a downstream target of miR-942. Direct interaction between them was validated by dual-luciferase assays. Rescue experiments further confirmed that BARX2 overexpression could reverse functional changes caused by miR-942. Moreover, miR-942 increased EMT-associated proteins N-cadherin and vimentin by inhibiting BARX2, while E-cadherin expression is reduced. In summary, this study reveals that miR-942 induces EMT-related metastasis by directly targeting BARX2, which may provide a potential therapeutic strategy for NSCLC.  相似文献   

5.
MicroRNAs (miRNAs) are strongly implicated in tumorigenesis and metastasis. In this study, we showed significant upregulation of miR-181b in ovarian cancer tissues, compared with the normal ovarian counterparts. Forced expression of miR-181b led to remarkably enhanced proliferation and invasion of ovarian cancer cells while its knockdown induced significant suppression of these cellular events. The tumor suppressor gene, LATS2 (large tumor suppressor 2), was further identified as a novel direct target of miR-181b. Specifically, miR-181b bound directly to the 3′-untranslated region (UTR) of LATS2 and suppressed its expression. Restoration of LATS2 expression partially reversed the oncogenic effects of miR-181b. Our results indicate that miR-181b promotes proliferation and invasion by targeting LATS2 in ovarian cancer cells. These findings support the utility of miR-181b as a potential diagnostic and therapeutic target for ovarian cancer.  相似文献   

6.
SRY (sex determining region Y)-box 2 (SOX2) plays an important role in tumor cell metastasis and apoptosis. Laryngeal squamous cell carcinoma (LSCC), responsible for 1.5% of all cancers, is one of the most common head and neck malignancies. Accumulating evidence shows that SOX2 is overexpressed in several human tumors, including lung cancer, esophageal carcinoma, pancreatic carcinoma, breast cancer, ovarian carcinoma and glioma. Our study aimed to investigate the silencing effects of SOX2 expression using RNA interference (RNAi) on various biological processes in laryngeal cancer TU212 cells, including proliferation, apoptosis, invasion and metastasis. We also studied the involvement of the MAPK/JNK signaling pathway in the biological effects of SOX2 siRNA in TU212 cells. We found that silencing SOX2 decreased the proliferation, migration, and invasion of TU212 cells, and induced apoptosis. This effect of silencing SOX2 could be reversed by silencing MAP4K4. Therefore, we consider SOX2 as a key regulator of the upstream MAP4K4/JNK signaling pathways that could be a potential therapeutic target in the treatment of patients with or prevention of laryngeal cancer.  相似文献   

7.
Gastric cancer (GC) is the second common cause of cancer-related death worldwide. microRNAs (miRNAs) play important roles in the carcinogenesis of GC. Here, we found that miR-22 was significantly decreased in GC tissue samples and cell lines. Ectopic overexpression of miR-22 remarkably suppressed cell proliferation and colony formation of GC cells. Moreover, overexpression of miR-22 significantly suppressed migration and invasion of GC cells. CD151 was found to be a target of miR-22. Furthermore, overexpression of CD151 significantly attenuated the tumor suppressive effect of miR-22. Taken together, miR-22 might suppress GC cells growth and motility partially by inhibiting CD151.  相似文献   

8.
MicroRNAs play important roles in the development and progression of non-small cell lung cancer (NSCLC). miR-16 functions as a tumor-suppressor and is inhibited in several malignancies. Herein, we validated that miR-16 is downregulated in NSCLC tissue samples and cell lines. Ectopic expression of miR-16 significantly inhibited cell proliferation and colony formation. Moreover, miR-16 suppressed cell migration and invasion in NSCLC cells. Hepatoma-derived growth factor (HDGF) was found to be a direct target of miR-16 in NSCLC cell lines. Rescue experiments showed that the suppressive effect of miR-16 on cell proliferation, colony formation, migration, and invasion is partially mediated by inhibiting HDGF expression. This study indicates that miR-16 might be associated with NSCLC progression, and suggests an essential role for miR-16 in NSCLC.  相似文献   

9.
Circular RNA (circRNA) is a key regulator in the development and progression of human cancers. Previous studies confirmed circRNA-0008717 (circABCB10) as an oncogene in osteosarcoma, but the regulatory effect of circABCB10 in nonsmall cell lung cancer (NSCLC) is still unclear. In the current study, we examined the expression of circABCB10 in different NSCLC cell lines. Bioinformatics analysis, Cell Counting Kit-8 assays, Transwell migration, fluorescein reporting experiments, and xenografts in mice were used to detect the effect of circABCB10 on NSCLC cell proliferation and migration in vitro and tumor growth in vivo. The results showed that the expression of circABCB10 in NSCLC cell lines was increased. Downregulation of circABCB10 suppressed NSCLC cell proliferation and migration by promoting microRNA miR-1252 expression and suppressing Forkhead box 2 (FOXR2). Fluorescein reporting experiments confirmed that circABCB10 expression increased FOXR2 levels by sponging miR-1252, and in vivo experiments found that knockdown of circABCB10 decreased tumor growth. These data suggested that circABCB10 acted as a tumor promoter through a novel miR-1252/FOXR2 axis, providing potential biomarkers and therapeutic targets for the management of NSCLC.  相似文献   

10.
Cervical cancer (CC) is one of the most prevalent cancers in women in the world. However, the pathogenesis is still very unclear, and the current screening methods are too expensive. Emerging evidence shows that miR-1266 has great influence on tumor cell migration and invasion. In order to clarify the role of miR-1266 in CC, we collected serum from CC, high-grade squamous intraepithelial lesion (HSIL), low-grade squamous intraepithelial lesion (LSIL) and normal control (NC), collected tissues from CC and control group (CG), and followed up 50 CC patients. We used HeLa and SiHa cells to clarify the roles of miR-1266 on cell proliferation, migration and invasion. The CC mouse model was conducted to prove the role of miR-1266 on tumorigenesis. qRT-PCR was used to measure the expressions of miR-1266 and DAB2IP mRNA. Western blot was used to determine the expression of DAB2IP protein. Cell counting kit-8 proliferation assay (CCK-8), Colony formation assay, Wound-healing assay and Transwell invasion assay were used to determine the cell survival, proliferative, migrative and invasive abilities. Our study found that miR-1266 had a rising trend in serum from NC to LSIL to HSIL to CC, and increased in CC tissues. High expression serum miR-1266 had lower overall survival rates than patients with miR-1266 low expression. MiR-1266 promoted cell viability, proliferation, migration and invasion by targeting DAB2IP. And miR-1266 could promote tumorigenesis in vivo. In conclusion, miR-1266 could be used as a new biomarker for diagnosis, prediction and treatment of CC in the future.  相似文献   

11.
目的:研究miR-218是否通过下调SOX4影响滋养层细胞系HTR-8细胞的迁移和侵袭。方法:妊娠期高血压疾病(HDCP)患者46例,平均年龄(31 ±4.6)岁,收缩期血压≥ 140 mmHg和/或舒张期血压> 90 mmHg;以血压正常孕妇50例为对照,实时荧光定量PCR(RT-PCR)检测两组患者静脉血中miR-218的表达情况。转染miR-218mimic和miR-NC至离体培养的HTR-8细胞中,将细胞分为对照组(加入DMEM)、空质粒组(加入miR-NC)和过表达miR-218组(加入miR-218 mimic)3组,检测细胞的迁移侵袭情况以及细胞中MMP-2和MMP-9的表达,,生物信息学预测miR-218潜在靶基因为SOX4,利用荧光素酶素试验验证SOX4是miR-218的靶基因;再通过转染过表达SOX4的质粒至HTR-8细胞,HTR-8细胞分为过表达miR-218组、过表达miR-218+空质粒组、过表达miR-218+SOX4组,以上方法检测HTR-8细胞的迁移侵袭情况。结果:相比于正常孕妇组,HDCP组患者血清中miR-218表达减少(P <0.01)。相比于空质粒组,转染miR-218mimic后,HTR-8细胞中MMP-2、MMP-9、SOX4的表达减少(P < 0.01),细胞迁移和侵袭能力下降(P < 0.01);荧光素酶试验结果显示,miR-218能够显著降低SOX4-3'-UTR质粒的荧光素活性(P< 0.01);相比于miR-218+空质粒组,转染过表达SOX4质粒后,HTR-8细胞迁移和侵袭能力增加(P < 0.01)。结论:HDCP患者血清中miR-218表达减少,miR-218可以通过下调SOX4从而抑制HTR-8细胞的迁移和侵袭。  相似文献   

12.
Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. Currently, an increasing evidence showed that circular RNAs (circRNAs) play important roles in tumor progression. However, the effects and underlying mechanisms of circRNAs in CRC progression remain unclear. In the present study, through circRNA high-throughput sequencing and quantitative real-time polymerase chain reaction, we identified that hsa_circ_0136666 was significantly overexpressed in CRC tissues and cell lines. High hsa_circ_0136666 expression was associated with poor overall survival of patients with CRC. In vitro function assays showed that hsa_circ_0136666 inhibition suppressed CRC cell proliferation, migration, invasion, and arrested CRC cells in the G0/G1 phase. Furthermore, we showed that hsa_circ_0136666 inhibition reduced CRC cell growth in vivo. Mechanistically, we revealed that hsa_circ_0136666 could increase SH2B1 expression via competitively binding miR-136 in CRC cells. In addition, SH2B1 overexpression could reverse the effects of hsa_circ_0136666 inhibition on CRC cell progression. In conclusion, our data suggested that hsa_circ_0136666 could promote CRC cell progression via the miR-136/SH2B1 axis, elucidating a novel approach to improve the effectiveness of CRC treatment.  相似文献   

13.
14.
《Phytomedicine》2014,21(3):348-355
Cyclooxygenase-2 (COX-2) plays an important role in the carcinogenesis and progression of gastric cancer. Harmine is reported as a promising drug candidate for cancer therapy; however, effects and action mechanism of harmine on the human gastric cancer cells remain unclear. This study evaluated the anti-tumor effects of harmine on human gastric cancer both in vitro and in vivo. The cell proliferation was determined using MTT colorimetric assay. Apoptosis was measured by DAPI staining and flow cytometry analysis. The wound healing and transwell invasion assays were performed to evaluate the effects of harmine on the migration and invasion of gastric cancer cells. The expression of COX-2, proliferating cell nuclear antigen (PCNA), Bcl-2, Bax and matrix metalloproteinase-2 (MMP-2) was detected by Western blot analysis. Our results showed that harmine significantly inhibited cellular proliferation, migration, invasion and induced apoptosis in vitro, as well as inhibited tumor growth in vivo. In addition, harmine significantly inhibited the expression of COX-2, PCNA, Bcl-2 and MMP-2 as well as increased Bax expression in gastric cancer cells. These results collectively indicate that harmine induces apoptosis and inhibits proliferation, migration and invasion of human gastric cancer cells, which may be mediated by down-regulation of COX-2 expression.  相似文献   

15.
16.
目的探讨甘草提取物GL-1对甲状腺肿瘤细胞增殖、迁移和侵袭的影响及其分子机制。方法以10、20、30 μg/mL GL-1处理甲状腺肿瘤细胞CAL-62,或在CAL-62细胞中转染miR-212-5p mimics、anti-miR-212-5p、si-BCL2L2、pcDNA-BCL2L2。其中转染pcDNA-BCL2L2细胞并以30 μg/mL GL-1处理。噻唑蓝比色法 (MTT)检测CAL-62细胞增殖,Transwell小室法检测CAL-62细胞迁移和侵袭,实时定量PCR (qPCR)检测CAL-62细胞中miR-212-5p表达,Western blot检测相关蛋白Bcl-2样蛋白2 (BCL2L2)、细胞周期蛋白D1 (Cyclin D1)和基质金属蛋白酶-2 (MMP-2)表达。生物学信息预测miR-212-5p的下游靶基因,双荧光素酶基因报告实验进一步验证。数据采用单因素方差分析、Tukey’s事后检验和t检验。结果与对照组相比,10、20、30 μg/mL浓度GL-1降低CAL-62细胞24、48、72 h的细胞活性 (P < 0.05),并呈剂量、时间依赖性。与对照组相比,10、20、30 μg/mL浓度GL-1干预后,CAL-62细胞侵袭数[(143.56±14.22)个、(100.32±10.23)个、(68.23±6.49)个比(189.65±15.23)个]、迁移数[(198.56±14.35)个、(141.35±12.58)个、(89.56±8.95)个比 (295.36±17.56)个]和BCL2L2蛋白表达量 (0.76±0.08、0.51±0.06、0.24±0.02比1.00±0.12)均降低 (P 均< 0.05),而miR-212-5p水平 (1.61±0.11、1.99±0.13、2.28±0.15比1.00±0.07)升高(P < 0.05),并呈剂量依赖性。过表达miR-212-5p和沉默BCL2L2表达在24、48、72 h时CAL-62细胞活性、细胞迁移数、侵袭数和Cyclin D1、MMP-2蛋白表达量降低 (P < 0.05)。生物学信息预测和双荧光素酶基因报告实验证实BCL2L2是miR-212-5p的靶基因。过表达miR-212-5p抑制BCL2L2蛋白水平,沉默miR-212-5p促进BCL2L2蛋白表达 (P < 0.05)。过表达BCL2L2可逆转GL-1对CAL-62细胞增殖、迁移、侵袭及Cyclin D1、MMP-2蛋白表达的抑制作用。结论 GL-1通过miR-212-5p/BCL2L2抑制甲状腺肿瘤细胞的增殖、迁移和侵袭。  相似文献   

17.
18.
Aberrant microRNAs are widely identified in multiple cancers, including lung cancer. miR-135a-5p can function as a significant tumor regulator in diverse cancers via impacting multiple genes in oncogenic pathways. Nevertheless, the biological role of miR-135a-5p in lung cancer is poorly known. Here, we investigated its function in lung cancer. As exhibited, miR-135a-5p was elevated in lung cancer cells in contrast to BEAS-2B cells. Then, we inhibited miR-135a-5p expression by transfecting LV-anti-miR-135a-5p into lung cancer cells. As displayed, miR-135a-5p was obviously reduced in A549 and H1299 cells. Knockdown of miR-135a-5p repressed lung cancer cell growth and cell proliferation. Meanwhile, cell colony formation capacity was depressed, cell apoptosis was enhanced and cell cycle progression was blocked in G1 phase by inhibition of miR-135a-5p in vitro. Additionally, the migration and invasion of A549 and H1299 cells was strongly depressed by LV-anti-miR-135a-5p. For another, by using informatics analysis, lysyl oxidase-like 4 (LOXL4) was speculated as the downstream target of miR-135a-5p. We validated their direct correlation and moreover, overexpression of miR-135a-5p restrained LOXL4 levels in lung cancer cells. Subsequently, we proved that miR-135a-5p promoted lung cancer development via targeting LOXL4 by carrying out the in vivo assays. Taken these together, our study revealed miR-135a-5p might be indicated as a perspective for lung cancer via targeting LOXL4.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号