首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enhancer of zeste homolog 2 (EZH2), the histone methyltransferase of the Polycomb Repressive complex 2 catalyzing histone H3 lysine 27 tri-methylation (H3K27me3), is frequently up-regulated in human cancers. In this study, we identified the tumor suppressor Deleted in liver cancer 1 (DLC1) as a target of repression by EZH2-mediated H3K27me3. DLC1 is a GTPase-activating protein for Rho family proteins. Inactivation of DLC1 results in hyper-activated Rho/ROCK signaling and is implicated in actin cytoskeleton reorganization to promote cancer metastasis. By chromatin immunoprecipitation assay, we demonstrated that H3K27me3 was significantly enriched at the DLC1 promoter region of a DLC1-nonexpressing HCC cell line, MHCC97L. Depletion of EZH2 in MHCC97L by shRNA reduced H3K27me3 level at DLC1 promoter and induced DLC1 gene re-expression. Conversely, transient overexpression of GFP-EZH2 in DLC1-expressing Huh7 cells reduced DLC1 mRNA level with a concomitant enrichment of EZH2 on DLC1 promoter. An inverse relation between EZH2 and DLC1 expression was observed in the liver, lung, breast, prostate, and ovarian cancer tissues. Treating cancer cells with the EZH2 small molecular inhibitor, 3-Deazaneplanocin A (DZNep), restored DLC1 expression in different cancer cell lines, indicating that EZH2-mediated H3K27me3 epigenetic regulation of DLC1 was a common mechanism in human cancers. Importantly, we found that DZNep treatment inhibited HCC cell migration through disrupting actin cytoskeleton network, suggesting the therapeutic potential of DZNep in targeting cancer metastasis. Taken together, our study has shed mechanistic insight into EZH2-H3K27me3 epigenetic repression of DLC1 and advocated the significant pro-metastatic role of EZH2 via repressing tumor and metastasis suppressors.  相似文献   

2.
Global changes in the epigenome are increasingly being appreciated as key events in cancer progression. The pathogenic role of enhancer of zeste homolog 2 (EZH2) has been connected to its histone 3 lysine 27 (H3K27) methyltransferase activity and gene repression; however, little is known about relationship of changes in expression of EZH2 target genes to cancer characteristics and patient prognosis. Here we show that through expression analysis of genomic regions with H3K27 trimethylation (H3K27me3) and EZH2 binding, breast cancer patients can be stratified into good and poor prognostic groups independent of known cancer gene signatures. The EZH2-bound regions were downregulated in tumors characterized by aggressive behavior, high expression of cell cycle genes, and low expression of developmental and cell adhesion genes. Depletion of EZH2 in breast cancer cells significantly increased expression of the top altered genes, decreased proliferation, and improved cell adhesion, indicating a critical role played by EZH2 in determining the cancer phenotype.  相似文献   

3.
Overexpression of enhancer of zeste homologue 2 (EZH2) occurs in various malignancies and is associated with a poor prognosis, especially because of increased cancer cell proliferation. In this study we found an inverse correlation between EZH2 and RUNX3 gene expression in five cancer cell lines, i.e. gastric, breast, prostate, colon, and pancreatic cancer cell lines. Chromatin immunoprecipitation assay showed an association between EZH2 bound to the RUNX3 gene promoter, and trimethylated histone H3 at lysine 27, and HDAC1 (histone deacetylase 1) bound to the RUNX3 gene promoter in cancer cells. RNA interference-mediated knockdown of EZH2 resulted in a decrease in H3K27 trimethylation and unbound HDAC1 and an increase in expression of the RUNX3 gene. Restoration of RUNX3 expression was not associated with any change in DNA methylation status in the RUNX3 promoter region. RUNX3 was repressed by histone deacetylation and hypermethylation of a CpG island in the promoter region and restored by trichostatin A or/and 5-aza-2'-deoxycytidine. Immunofluorescence staining confirmed restoration of expression of the RUNX3 protein after knockdown of EZH2 and its restoration resulted in decreased cell proliferation. In vivo, an inverse relationship between expression of the EZH2 and RUNX3 proteins was observed at the individual cell level in gastric cancer patients in the absence of DNA methylation in the RUNX3 promoter region. The results showed that RUNX3 is a target for repression by EZH2 and indicated an underlying mechanism of the functional role of EZH2 overexpression on cancer cell proliferation.  相似文献   

4.
5.
Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of the polycomb repressive complex 2 (PRC2) that includes noncatalytic subunits suppressor of zeste 12 (SUZ12) and embryonic ectoderm development (EED). When present in PRC2, EZH2 catalyzes trimethylation on lysine 27 residue of histone H3 (H3K27Me3), resulting in epigenetic silencing of gene expression. Here, we investigated the expression and function of EZH2 in epithelial ovarian cancer (EOC). When compared with primary human ovarian surface epithelial (pHOSE) cells, EZH2, SUZ12, and EED were expressed at higher levels in all 8 human EOC cell lines tested. Consistently, H3K27Me3 was also overexpressed in human EOC cell lines compared with pHOSE cells. EZH2 was significantly overexpressed in primary human EOCs (n = 134) when compared with normal ovarian surface epithelium (n = 46; P < 0.001). EZH2 expression positively correlated with expression of Ki67 (P < 0.001; a marker of cell proliferation) and tumor grade (P = 0.034) but not tumor stage (P = 0.908) in EOC. There was no correlation of EZH2 expression with overall (P = 0.3) or disease-free survival (P = 0.2) in high-grade serous histotype EOC patients (n = 98). Knockdown of EZH2 expression reduced the level of H3K27Me3 and suppressed the growth of human EOC cells both in vitro and in vivo in xenograft models. EZH2 knockdown induced apoptosis of human EOC cells. Finally, we showed that EZH2 knockdown suppressed the invasion of human EOC cells. Together, these data demonstrate that EZH2 is frequently overexpressed in human EOC cells and its overexpression promotes the proliferation and invasion of human EOC cells, suggesting that EZH2 is a potential target for developing EOC therapeutics.  相似文献   

6.
The Polycomb group (PcG) protein, enhancer of zeste homologue 2 (EZH2), has an essential role in promoting histone H3 lysine 27 trimethylation (H3K27me3) and epigenetic gene silencing. This function of EZH2 is important for cell proliferation and inhibition of cell differentiation, and is implicated in cancer progression. Here, we demonstrate that under physiological conditions, cyclin-dependent kinase 1 (CDK1) and cyclin-dependent kinase 2 (CDK2) phosphorylate EZH2 at Thr 350 in an evolutionarily conserved motif. Phosphorylation of Thr 350 is important for recruitment of EZH2 and maintenance of H3K27me3 levels at EZH2-target loci. Blockage of Thr 350 phosphorylation not only diminishes the global effect of EZH2 on gene silencing, it also mitigates EZH2-mediated cell proliferation and migration. These results demonstrate that CDK-mediated phosphorylation is a key mechanism governing EZH2 function and that there is a link between the cell-cycle machinery and epigenetic gene silencing.  相似文献   

7.
8.
在人的某些癌症细胞中,组蛋白H3K27me3甲基化酶EZH2基因存在过表达的现象,很多研究已经证明,这可能是受MEK ERK信号通路调控的.为了确定这种调控模式在小鼠细胞系中是否同样存在,以及MEK ERK信号通路是否同时调控H3K27me3甲基化酶EZH1基因和去甲基化酶UTX、JMJD3基因的表达,用RT PCR和Western印迹方法检测不同浓度的MEK ERK抑制剂U0126(0、10、20、40 μmol/L)对C2C12、C127、NIH3T3三种小鼠细胞系处理后,EZH1、EZH2基因和UTX、JMJD3基因表达变化.结果显示:MEK-ERK抑制剂处理后,3种细胞中EZH1和EZH2基因的表达与对照相比都有不同程度的降低,其中EZH2基因表达变化在C2C12、NIH3T3两种细胞达到显著水平(P<0.05). H3K27me3去甲基化酶UTX、JMJD3基因在3种细胞中表达均有升高,JMJD3升高达到显著水平(P<0.05).因此,在小鼠细胞系MEK ERK信号通路可能参与调控EZH2、JMJD3基因的表达,但对EZH1、UTX基因的表达调控作用不明显.
关键词MEK ERK信号通路;  相似文献   

9.
It has been reported that the trimethylation of histone 3 on lysine 27 (H3K27me3) is required for enhancer of zeste homology 2 (EZH2)-mediated repression of various genes essential for tumorigenesis and tumor development. Here, we reported the expression of EZH2 and H3K27me3 in esophageal squamous cell carcinoma (ESCC) specimens was higher than the pericarcinoma esophageal specimens. Their expression was positively associated with the poor prognosis of ESCC patients. EZH2 expression, histological grade and distant lymph node metastasis were all independent factors for poor prognosis of ESCC. In addition, enforced expression of EZH2 in esophageal cancer-derived cells could increase the overall H3K27me3 level. Our results suggested the expression of EZH2 and H3K27me3 could serve as biomarkers in the prediction of ESCC patients’ survival and ESCC metastasis.  相似文献   

10.
11.
The reversion-inducing cysteine-rich protein with Kazal motifs (RECK) gene, a widely known cancer inhibitor, could effectively suppress cancer metastasis and angiogenesis. Downregulation or loss of RECK expression frequently occurs during cancer progression. However, the mechanism underlying RECK dysregulation has not been fully elucidated. Herein, we reported for the first time that enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, could epigenetically attenuate RECK expression via catalyzing H3K27 trimethylation (H3K27me3) within the RECK promoter. Furthermore, we also proved, for the first time, the involvement of EZH2 in the inhibition of RECK by extracellular signal-related kinases (ERK)-1/2 signaling. Next, we revealed that the modulation of the enzymic activity of EZH2 resulting from posttranslational phosphorylation at the serine-21 site was responsible for the increased enrichment of H3K27me3 at the RECK promoter region by ERK1/2 signaling. Collectively, the results of our study shed more light on the mechanisms responsible for the dysregulation of RECK by the ERK1/2 pathway.  相似文献   

12.
Hippo-like MST1 protein kinase regulates cell growth, organ size, and carcinogenesis. Reduction or loss of MST1 expression is implicated in poor cancer prognosis. However, the mechanism leading to MST1 silencing remains elusive. Here, we report that both MYC and EZH2 function as potent suppressors of MST1 expression in human prostate cancer cells. We demonstrated that concurrent overexpression of MYC and EZH2 correlated with the reduction or loss of MST1 expression, as shown by RT-qPCR and immunoblotting. Methylation sensitive PCR and bisulfite genomic DNA sequencing showed that DNA methylation caused MST1 silencing. Pharmacologic and RNAi experiments revealed that MYC and EZH2 silenced MST1 expression by inhibiting its promoter activity, and that EZH2 was a mediator of the MYC-induced silencing of MST1. In addition, MYC contributed to MST1 silencing by partly inhibiting the expression of microRNA-26a/b, a negative regulator of EZH2. As shown by ChIP assays, EZH2-induced DNA methylation and H3K27me3 modification, which was accompanied by a reduced H3K4me3 mark and RNA polymerase II occupancy on the MST1 promoter CpG region, were the underlying cause of MST1 silencing. Moreover, potent pharmacologic inhibitors of MYC or EZH2 suppressed prostate cancer cell growth in vitro, and the knockdown of MST1 caused cells’ resistance to MYC and EZH2 inhibitor-induced growth retardation. These findings indicate that MYC, in concert with EZH2, epigenetically attenuates MST1 expression and suggest that the loss of MST1/Hippo functions is critical for the MYC or EZH2 mediation of cancer cell survival.  相似文献   

13.
《Epigenetics》2013,8(4):634-643
Hippo-like MST1 protein kinase regulates cell growth, organ size, and carcinogenesis. Reduction or loss of MST1 expression is implicated in poor cancer prognosis. However, the mechanism leading to MST1 silencing remains elusive. Here, we report that both MYC and EZH2 function as potent suppressors of MST1 expression in human prostate cancer cells. We demonstrated that concurrent overexpression of MYC and EZH2 correlated with the reduction or loss of MST1 expression, as shown by RT-qPCR and immunoblotting. Methylation sensitive PCR and bisulfite genomic DNA sequencing showed that DNA methylation caused MST1 silencing. Pharmacologic and RNAi experiments revealed that MYC and EZH2 silenced MST1 expression by inhibiting its promoter activity, and that EZH2 was a mediator of the MYC-induced silencing of MST1. In addition, MYC contributed to MST1 silencing by partly inhibiting the expression of microRNA-26a/b, a negative regulator of EZH2. As shown by ChIP assays, EZH2-induced DNA methylation and H3K27me3 modification, which was accompanied by a reduced H3K4me3 mark and RNA polymerase II occupancy on the MST1 promoter CpG region, were the underlying cause of MST1 silencing. Moreover, potent pharmacologic inhibitors of MYC or EZH2 suppressed prostate cancer cell growth in vitro, and the knockdown of MST1 caused cells’ resistance to MYC and EZH2 inhibitor-induced growth retardation. These findings indicate that MYC, in concert with EZH2, epigenetically attenuates MST1 expression and suggest that the loss of MST1/Hippo functions is critical for the MYC or EZH2 mediation of cancer cell survival.  相似文献   

14.
15.
16.
Histone H3 lysine 27 trimethylation (H3K27me3) catalyzed by the enzymatic subunit EZH2 in the Polycomb repressive complex 2 (PRC2) is essential for cells to ‘memorize’ gene expression patterns through cell divisions and plays an important role in establishing and maintaining cell identity during development. However, how the epigenetic mark is inherited through cell generations remains poorly understood. Recently, we and others demonstrate that CDK1 and CDK2 phosphorylate EZH2 at threonine 350 (T350) and that T350 phosphorylation is important for the binding of EZH2 to PRC2 recruiters, such as noncoding RNAs (ncRNAs) HOTAIR and XIST, and for the effective recruitment of PRC2 to EZH2 target loci in cells. These findings imply that phosphorylation of EZH2 by CDK1 and CDK2 may provide cells a mechanism that enhances EZH2 function during S and G2 phases of the cell cycle, thereby ensuring K27me3 on de novo synthesized H3 incorporated in nascent nucleosomes before sister chromosomes are divided into two daughter cells. Additionally, a potential role of T350 phosphorylation of EZH2 in differing EZH2 from its homolog EZH1 in catalyzing H3K27me3 as well as the interplay between phosphorylation at T350 and other residues (e.g. phosphorylation by p38 at threonine 372 (T372)) in governing EZH2 activity in proliferating versus non-dividing cells are also discussed. Together, CDK phosphorylation of EZH2 at T350 may represent a key regulatory mechanism of EZH2 function that is essential for the maintenance of H3K27me3 marks through cell divisions.  相似文献   

17.
Enhancer of zeste homolog 2 (EZH2) is a key epigenetic regulator that catalyzes the trimethylation of H3K27 and is modulated by post-translational modifications (PTMs). However, the precise regulation of EZH2 PTMs remains elusive. We, herein, report that EZH2 is acetylated by acetyltransferase P300/CBP-associated factor (PCAF) and is deacetylated by deacetylase SIRT1. We identified that PCAF interacts with and acetylates EZH2 mainly at lysine 348 (K348). Mechanistically, K348 acetylation decreases EZH2 phosphorylation at T345 and T487 and increases EZH2 stability without disrupting the formation of polycomb repressive complex 2 (PRC2). Functionally, EZH2 K348 acetylation enhances its capacity in suppression of the target genes and promotes lung cancer cell migration and invasion. Further, elevated EZH2 K348 acetylation in lung adenocarcinoma patients predicts a poor prognosis. Our findings define a new mechanism underlying EZH2 modulation by linking EZH2 acetylation to its phosphorylation that stabilizes EZH2 and promotes lung adenocarcinoma progression.  相似文献   

18.
Increased expression of EZH2 correlates with aggressive clinical behavior in various malignancies. In this study, we aim to investigate the clinical and prognostic values of EZH2 expression and activity in tumor tissues and improve the risk stratification in patients with renal cell carcinoma after surgery. We analyzed EZH2 expression and its activity as indicated by H3K27me3 levels comprising 373 patients with renal cell carcinoma in our institute. Outcome was assessed as overall survival and disease free survival using Kaplan-Meier analysis. Prognostic values of EZH2 and H3K27me3 expression for clinical outcomes were evaluated by Cox regression analysis. We used receiver operating characteristic to calculate diagnostic accuracy. High EZH2 expression correlates with poor overall survival in all patients, especially in advanced RCC, which is an independent prognostic factor in disease free survival and overall survival. Compared with EZH2, H3K27me3 expression is not an independent prognostic factor. The expressions of H3K27me3 and EZH2 are not completely consistent, which might be due to complicated interaction of Polycomb Repressor Complex 2. A combination of EZH2 expression and TNM stage could have better prognostic value than do TNM stage or EZH2 expression alone in both sets for disease free survival and overall survival. These results imply that evaluating intratumoral EZH2 density might improve prognostic value to the TNM staging system and inform treatment decisions for patients with late-stage renal cell carcinoma.  相似文献   

19.
20.
EZH2, a histone H3 lysine‐27‐specific methyltransferase, is involved in diverse physiological and pathological processes including cell proliferation and differentiation. However, the role of EZH2 in liver fibrosis is largely unknown. In this study, it was identified that EZH2 promoted Wnt pathway‐stimulated fibroblasts in vitro and in vivo by repressing Dkk‐1, which is a Wnt pathway antagonist. The expression of EZH2 was increased in CCl4‐induced rat liver and primary HSCs as well as TGF‐β1‐treated HSC‐T6, whereas the expression of Dkk1 was reduced. Silencing of EZH2 prevented TGF‐β1‐induced proliferation of HSC‐T6 cells and the expression of α‐SMA. In addition, knockdown of Dkk1 promoted TGF‐β1‐induced activation of HSCs. Moreover, silencing of EZH2 could restore the repression of Dkk‐1 through trimethylation of H3K27me3 in TGF‐β1‐treated HSC‐T6 cells. Interestingly, inhibition of EZH2 had almost no effect on the activation of HSC when Dkk1 was silenced. Collectively, EZH2‐mediated repression of Dkk1 promotes the activation of Wnt/β‐catenin pathway, which is an essential event for HSC activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号