首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Inactivation of p53 is present in almost every tumor, and hence, p53-reactivation strategies are an important aspect of cancer therapy. Common mechanisms for p53 loss in cancer include expression of p53-negative regulators such as MDM2, which mediate the degradation of wildtype p53 (p53α), and inactivating mutations in the TP53 gene. Currently, approaches to overcome p53 deficiency in these cancers are limited. Here, using non–small cell lung cancer and glioblastoma multiforme cell line models, we show that two alternatively spliced, functional truncated isoforms of p53 (p53β and p53γ, comprising exons 1 to 9β or 9γ, respectively) and that lack the C-terminal MDM2-binding domain have markedly reduced susceptibility to MDM2-mediated degradation but are highly susceptible to nonsense-mediated decay (NMD), a regulator of aberrant mRNA stability. In cancer cells harboring MDM2 overexpression or TP53 mutations downstream of exon 9, NMD inhibition markedly upregulates p53β and p53γ and restores activation of the p53 pathway. Consistent with p53 pathway activation, NMD inhibition induces tumor suppressive activities such as apoptosis, reduced cell viability, and enhanced tumor radiosensitivity, in a relatively p53-dependent manner. In addition, NMD inhibition also inhibits tumor growth in a MDM2-overexpressing xenograft tumor model. These results identify NMD inhibition as a novel therapeutic strategy for restoration of p53 function in p53-deficient tumors bearing MDM2 overexpression or p53 mutations downstream of exon 9, subgroups that comprise approximately 6% of all cancers.  相似文献   

2.
Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167) or mTORC1 inhibitor (rapamycin) induced AKT phosphorylation (pAKT) and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2) and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways.  相似文献   

3.
Epithelial ovarian cancer is a diverse molecular and clinical disease, yet standard treatment is the same for all subtypes. TP53 mutations represent a node of divergence in epithelial ovarian cancer histologic subtypes and may represent a therapeutic opportunity in subtypes expressing wild type, including most low-grade ovarian serous carcinomas, ovarian clear cell carcinomas and ovarian endometrioid carcinomas, which represent approximately 25% of all epithelial ovarian cancer. We therefore sought to investigate Nutlin-3a—a therapeutic which inhibits MDM2, activates wild-type p53, and induces apoptosis—as a therapeutic compound for TP53 wild-type ovarian carcinomas. Fifteen epithelial ovarian cancer cell lines of varying histologic subtypes were treated with Nutlin-3a with determination of IC50 values. Western Blot (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) analyses quantified MDM2, p53, and p21 expression after Nutlin-3a treatment. DNA from 15 cell lines was then sequenced for TP53 mutations in exons 2-11 including intron-exon boundaries. Responses to Nutlin-3a were dependent upon TP53 mutation status. By qRT-PCR and WB, levels of MDM2 and p21 were upregulated in wild-type TP53 sensitive cell lines, and p21 induction was reduced or absent in mutant cell lines. Annexin V assays demonstrated apoptosis in sensitive cell lines treated with Nutlin-3a. Thus, Nutlin-3a could be a potential therapeutic agent for ovarian carcinomas expressing wild-type TP53 and warrants further investigation.  相似文献   

4.
5.
p53 regulates a key pathway which protects normal tissues from tumor development that may result from diverse forms of stress. In the absence of stress, growth suppressive and proapoptotic activity of p53 is inhibited by MDM2 which binds p53 and negatively regulates its activity and stability. MDM2 antagonists could activate p53 and may offer a novel therapeutic approach to cancer. Recently, we identified the first potent and selective low molecular weight inhibitors of MDM2-p53 binding, the Nutlins. These molecules activate the p53 pathway and suppress tumor growth in vitro and in vivo. They represent valuable new tools for studying the p53 pathway and its defects in cancer. Nutlins induce p53-dependent apoptosis in human cancer cells but appear cytostatic to proliferating normal cells. Their potent activity against osteosarcoma xenografts suggests that MDM2 antagonists may have clinical utility in the treatment of tumors with wild-type p53.  相似文献   

6.
7.
p53 regulates a key pathway which protects normal tissues from tumor development that may result from diverse forms of stress. In the absence of stress, growth suppressive and proapoptotic activity of p53 is inhibited by MDM2 which binds p53 and negatively regulates its activity and stability. MDM2 antagonists could activate p53 and may offer a novel therapeutic approach to cancer. Recently, we identified the first potent and selective low molecular weight inhibitors of MDM2-p53 binding, the Nutlins. These molecules activate the p53 pathway and suppress tumor growth in vitro and in vivo. Nutlins represent valuable new tools for studying the p53 pathway and its defects in cancer. Their potent activity against osteosarcoma xenogrfts suggests that MDM2 antagonists may have a clinical utility in the treatment of tumors with wild-type p53.  相似文献   

8.
目的:比较甲状腺乳头状癌合并桥本氏甲状腺炎与不合并桥本氏甲状腺炎的BRAFV600E基因表达以及侵袭性的区别。方法:2011年9月到2013年9月四川大学华西医院手术治疗并有BRAFV600E基因测定的甲状腺乳头状癌患者226名,均有病理证实。其中合并桥本氏甲状腺炎者50例为研究组,同期随机抽取50例不合并桥本氏甲状腺炎者作为对照组。比较两组性别、年龄、肿瘤大小、数量、BRAFV600E基因表达以及甲状腺外侵犯和淋巴结转移与侵袭性相关的因素的区别。结果:甲状腺乳头状癌合并桥本氏甲状腺炎在男女性别,发病年龄、肿瘤大小上和对照组相比无差异(P0.05);BRAFV600E突变率、甲状腺外侵犯和淋巴结转移都较对照组更低(P0.05)。BRAF基因突变阳性组甲状腺外侵犯和淋巴结转移率较BRAFV600E基因突变阴性组更高(P0.05)。结论:BRAFV600E基因突变的甲状腺乳头状癌患者有更高的甲状腺腺外侵犯和淋巴结转移。甲状腺乳头状癌合并桥本氏甲状腺炎较不合并桥本氏甲状腺炎有着更低的BRAFV600E突变率,更低的甲状腺外侵犯和淋巴结转移。  相似文献   

9.
Mutation specific immunohistochemistry (IHC) is a promising new technique to detect the presence of the BRAFV600E mutation in colorectal carcinoma (CRC). When performed in conjunction with mismatch repair (MMR) IHC, BRAFV600E IHC can help to further triage genetic testing for Lynch Syndrome. In a cohort of 1426 patients undergoing surgery from 2004 to 2009 we recently demonstrated that the combination of MMR and BRAFV600E IHC holds promise as a prognostic marker in CRC, particularly because of its ability to identify the poor prognosis MMR proficient (MMRp) BRAFV600E mutant subgroup. We attempted to validate combined MMR and BRAFV600E IHC as a prognostic indicator in a separate cohort comprising consecutive CRC patients undergoing surgery from 1998 to 2003. IHC was performed on a tissue microarray containing tissue from 1109 patients with CRC. The 5 year survivals stratified by staining patterns were: MMRd/BRAFwt 64%, MMRd/BRAFV600E 64%, MMRp/BRAFwt 60% and MMRp/BRAFV600E 53%. Using the poor prognosis MMRp/BRAFV600E phenotype as baseline, univariate Cox regression modelling demonstrated the following hazard ratios for death: MMRd/BRAFwt HR = 0.71 (95%CI = 0.40–1.27), p = 0.31; MMRd/BRAFV600E HR = 0.74 (95%CI = 0.51–1.07), p = 0.11 and MMRp/BRAFwt HR = 0.79 (95%CI = 0.60–1.04), p = 0.09. Although the findings did not reach statistical significance, this study supports the potential role of combined MMR and BRAF IHC as prognostic markers in CRC.  相似文献   

10.
As a key regulator of the tumour suppressor protein p53, MDM2 is involved in various types of cancer and has thus been an attractive drug target. So far, small molecule design has primarily focussed on the N-terminal p53-binding domain although on-target toxicity effects have been reported. Targeting the catalytic RING domain of MDM2 resembles an alternative approach to drug MDM2 with the idea to prevent MDM2-mediated ubiquitination of p53 while retaining MDM2′s ability to bind p53. The design of RING inhibitors has been limited by the extensive aggregation tendency of the RING domain, making it challenging to undertake co-crystallization attempts with potential inhibitors. Here we compare the purification profiles of the MDM2 RING domain from several species and show that the MDM2 RING domain of other species than human is much less prone to aggregate although the overall structure of the RING domain is conserved. Through sequence comparison and mutagenesis analyses, we identify a single point mutation, G443T, which greatly enhances the dimeric fraction of human MDM2 RING domain during purification. Neither does the mutation alter the structure of the RING domain, nor does it affect E2(UbcH5B)–Ub binding and activity. Hence, MDM2-G443T facilitates studies involving binding partners that would be hampered by the low solubility of the wild-type RING domain. Furthermore, it will be valuable for the development of MDM2 RING inhibitors.  相似文献   

11.
BACKGROUND: The MDM2 oncogene is amplified or overexpressed in many human cancers and MDM2 levels are associated with poor prognosis. MDM2 not only serves as a negative regulator of p53 but also has p53-independent activities. This study investigates the functions of the MDM2 oncogene in colon cancer growth and the potential value of MDM2 as a drug target for cancer therapy, by inhibiting MDM2 expression with an antisense anti-human-MDM2 oligonucleotide. MATERIALS AND METHODS: The selected antisense mixed-backbone oligonucleotide was evaluated for its in vitro and in vivo antitumor activity in human colon cancer models: LS174T cell line containing wild-type p53 and DLD-1 cell line containing mutant p53. The levels of MDM2, p53 and p21 proteins were quantified by Western blot analysis. RESULTS: In vitro antitumor activity was found in both cell lines, resulting from specific inhibition of MDM2 expression. In vivo antitumor activity of the oligonucleotide occurred in a dose-dependent manner in both models and synergistically or additive therapeutic effects of MDM2 inhibition and the cancer chemotherapeutic agents 10-hydroxycamptothecin and 5-fluorouracil were also observed. CONCLUSIONS: These results suggest that MDM2 have a role in tumor growth through both p53-dependent and p53- independent mechanisms. We speculate that MDM2 inhibitors have a broad spectrum of antitumor activities in human cancers regardless of p53 status. This study should provide a basis for future development of anti-MDM2 antisense oligonucleotides as cancer therapeutic agents used alone or in combination with conventional chemotherapeutics.  相似文献   

12.
Sixty-two follicular adenomas of the thyroid were investigated by immunohistochemistry for the expression of p53, MDM2 and bcl-2 proteins. The wild type of 393 aminoacid nuclear p53 phosphoprotein is the product of a gene located on the short arm of chromosome 17. The p53 protein controls the growth of transformed cells in a culture and thus termed a suppressor gene product. Mouse double minute 2 (MDM2) gene product has been described to occur in malignant epithelial tissue, the protein product of this gene binds to and presumably inactivates the growth suppressive effect of wild type p53 protein. Bcl-2 is an oncogene whose product inhibits apoptosis in many cells types. Some scattered nuclei in two adenomas (3.2%) stained positively for p53. The adenomas with positive staining for p53 were subserially sectioned, but no signs of invasion were found, both patients are alive and well. In 12 adenomas (19%) there was positive reaction for MDM2 protein, whereas none of them where p53 positive. All cases were strongly positive for bcl-2 staining. We conclude that p53 protein expression is not confined to follicular adenomas, while MDM2 and bcl-2 genes products are.  相似文献   

13.
14.
The murine double minute 2 (mdm2) gene encodes a negative regulator of the p53 tumor suppressor. Amplification of mdm2 or increased expression by unknown mechanisms occurs in many tumors. Thus, increased levels of MDM2 would inactivate the apoptotic and cell cycle arrest functions of p53, as do deletion or mutation of p53, common events in the genesis of many kinds of tumors. MDM2 functions as an E3 ubiquitin ligase to degrade p53. MDM2 also binds another tumor suppressor, ARF. This interaction sequesters MDM2 in the nucleolus away from p53, thus activating p53. Many additional MDM2 interacting proteins have been identified. Functions of MDM2 independent of p53 have also been identified. This article is an introduction to MDM2, its structure and biological functions, as well as its relationship to its binding partners.  相似文献   

15.
16.
Activation of the p53 protein protects the organism against the propagation of cells that carry damaged DNA with potentially oncogenic mutations. MDM2, a p53-specific E3 ubiquitin ligase, is the principal cellular antagonist of p53, acting to limit the p53 growth-suppressive function in unstressed cells. In unstressed cells, MDM2 constantly monoubiquitinates p53 and thus is the critical step in mediating its degradation by nuclear and cytoplasmic proteasomes. The interaction between p53 and MDM2 is conformation-based and is tightly regulated on multiple levels. Disruption of the p53-MDM2 complex by multiple routes is the pivotal event for p53 activation, leading to p53 induction and its biological response. Because the p53-MDM2 interaction is structurally and biologically well understood, the design of small lipophilic molecules that disrupt or prevent it has become an important target for cancer therapy.  相似文献   

17.
The RING domain ubiquitin E3 ligase MDM2 is a key regulator of p53 degradation and a mediator of signals that stabilize p53. The current understanding of the mechanisms by which MDM2 posttranslational modifications and protein binding cause p53 stabilization remains incomplete. Here we present evidence that the MDM2 central acidic region is critical for activating RING domain E3 ligase activity. A 30-amino-acid minimal region of the acidic domain binds to the RING domain through intramolecular interactions and stimulates the catalytic function of the RING domain in promoting ubiquitin release from charged E2. The minimal activation sequence is also the binding site for the ARF tumor suppressor, which inhibits ubiquitination of p53. The acidic domain-RING domain intramolecular interaction is modulated by ATM-mediated phosphorylation near the RING domain or by binding of ARF. These results suggest that MDM2 phosphorylation and association with protein regulators share a mechanism in inhibiting the E3 ligase function and stabilizing p53 and suggest that targeting the MDM2 autoactivation mechanism may be useful for therapeutic modulation of p53 levels.  相似文献   

18.
Germline genetics, gender and hormonal-signaling pathways are all well described modifiers of cancer risk and progression. Although an improved understanding of how germline genetic variants interact with other cancer risk factors may allow better prevention and treatment of human cancer, measuring and quantifying these interactions is challenging. In other areas of research, Information Theory has been used to quantitatively describe similar multivariate interactions. We implemented a novel information-theoretic analysis to measure the joint effect of a high frequency germline genetic variant of the p53 tumor suppressor pathway (MDM2 SNP309 T/G) and gender on clinical cancer phenotypes. This analysis quantitatively describes synergistic interactions among gender, the MDM2 SNP309 locus, and the age of onset of tumorigenesis in p53 mutation carriers. These results offer a molecular and genetic basis for the observed sexual dimorphism of cancer risk in p53 mutation carriers and a model is proposed that suggests a novel cancer prevention strategy for p53 mutation carriers.  相似文献   

19.
We have used a lentiviral vector to stably express p53 at a physiological level in p53 knockout HCT116 cells. Cells transduced with wild type p53 responded to genotoxic stress by stabilizing p53 and expressing p53 target genes. The reconstituted cells underwent G(1) arrest or apoptosis appropriately depending on the type of stress, albeit less efficiently than parental wild type cells. Compared with cells expressing exogenous wild type p53, the apoptotic response to 5-fluorouracil (5FU) was >50% reduced in cells expressing S15A or S20A mutant p53, and even more reduced by combined mutation of serines 6, 9, 15, 20, 33, and 37 (N6A). Among a panel of p53 target genes tested by quantitative PCR, the gene showing the largest defect in induction by 5FU was BBC3 (PUMA), which was induced 4-fold by wild type p53 and 2-fold by the N6A mutant. Mutation of N-terminal phosphorylation sites did not prevent p53 stabilization by doxorubicin or 5FU. MDM2 silencing by RNA interference activated p53 target gene expression in normal fibroblasts but not in HCT116 cells, and exogenous p53 could be stabilized in HCT116 knockout cells despite combined mutation of p53 phosphorylation sites and silencing of MDM2 expression. The MDM2 feedback loop is thus defective, and other mechanisms must exist to regulate p53 stability and function in this widely used tumor cell line.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号