首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In bacterial communities one bacterium can influence the growth of other members of the population. These interactions may be based on nutritional factors or may occur via bacterial signaling molecules that are released in the medium. We present an example, showing that in addition to the above means of interactions, muramidases, enzymes that specifically cleave peptidoglycan chains, can also mediate interactions between bacteria. Using fluorescent in situ hybridization we demonstrate that Lactococcus lactis muramidase AcmA can hydrolyze the cell wall of Streptococcus thermophilus, without affecting viability. This intercellular activity of the lactococcal muramidase results in chain disruption of streptococci in vivo. Our data lead us to propose that chains can give growth advantages to streptococci in aerobic conditions.  相似文献   

2.
Edwards RA  Maloy SR 《BioTechniques》2001,30(2):304-6, 308-11
Salmonella are intracellular pathogens that infect and multiply inside macrophages. Although Salmonella are some of the best-studied pathogens, it is difficult to determine quickly and reliably whether the bacteria are intracellular or extracellular. We have developed a novel method using differential fluorescence of two fluorescent proteins to determine the cellular location of pathogenic bacteria in macrophage infection assays. Using the differential expression of two unique fluorescent proteins that are expressed under specific conditions, we have developed a real-time assay for macrophage infections. The critical advantages of this system are that it does not alter the bacterial surface, it is not toxic to either the bacteria or the host cell, and it may be used in real-time quantitative assays. This assay can be readily applied to any other model pathogenic systems such as Listeria, Mycobacteria, and Legionella in which intracellular gene expression has been characterized.  相似文献   

3.
Many bacterial pathogens secrete potent toxins to aid in the destruction of host tissue, to initiate signaling changes in host cells or to manipulate immune system responses during the course of infection. Though methods have been developed to successfully purify and produce many of these important virulence factors, there are still many bacterial toxins whose unique structure or extensive post-translational modifications make them difficult to purify and study in in vitro systems. Furthermore, even when pure toxin can be obtained, there are many challenges associated with studying the specific effects of a toxin under relevant physiological conditions. Most in vitro cell culture models designed to assess the effects of secreted bacterial toxins on host cells involve incubating host cells with a one-time dose of toxin. Such methods poorly approximate what host cells actually experience during an infection, where toxin is continually produced by bacterial cells and allowed to accumulate gradually during the course of infection. This protocol describes the design of a permeable membrane insert-based bacterial infection system to study the effects of Streptolysin S, a potent toxin produced by Group A Streptococcus, on human epithelial keratinocytes. This system more closely mimics the natural physiological environment during an infection than methods where pure toxin or bacterial supernatants are directly applied to host cells. Importantly, this method also eliminates the bias of host responses that are due to direct contact between the bacteria and host cells. This system has been utilized to effectively assess the effects of Streptolysin S (SLS) on host membrane integrity, cellular viability, and cellular signaling responses. This technique can be readily applied to the study of other secreted virulence factors on a variety of mammalian host cell types to investigate the specific role of a secreted bacterial factor during the course of infection.  相似文献   

4.
Immunoassays were developed to measure DNA damage retained by UV-irradiated whole bacterial cells. Active Mycobacterium parafortuitum and Serratia marcescens cells were fixed and incubated with cyclobutane pyrimidine dimer-binding antibodies after being exposed to known UV doses (254 nm). When both fluorescent (Alexa Fluor 488) and radiolabeled ((125)I) secondary antibodies were used as reporters, indirect whole-cell assays were sensitive enough to measure intracellular UV photoproducts in M. parafortuitum and S. marcescens cells as well as photoenzymatic repair responses in S. marcescens cells. For the same UV dose, fluorescent DNA photoproduct detection limits in whole-cell assays (immunofluorescent microscopy) were similar to those in fluorescent assays performed on membrane-bound DNA extracts (immunoslot blot). With either fluorescent or radiolabeled reporters, the intracellular cyclobutane pyrimidine dimer content of UV-irradiated whole bacterial cells could be reliably quantified after undergoing a <0.5-order-of-magnitude decrease in culturability. Immunofluorescent microscopy results showed that photoenzymatic repair competence is not uniformly distributed among exponential-growth UV-irradiated pure cultures.  相似文献   

5.
Bacteria use a variety of secretion systems to transport proteins beyond their cell membrane to interact with their environment. For bacterial pathogens, these systems are key virulence determinants that transport bacterial proteins into host cells. Genetic screens to identify bacterial genes required for export have relied on enzymatic or fluorescent reporters fused to known substrates to monitor secretion. However, they cannot be used in analysis of all secretion systems, limiting the implementation across bacteria. Here, we introduce the first application of a modified form of whole colony MALDI-TOF MS to directly detect protein secretion from intact bacterial colonies. We show that this method is able to specifically monitor the ESX-1 system protein secretion system, a major virulence determinant in both mycobacterial and Gram-positive pathogens that is refractory to reporter analysis. We validate the use of this technology as a high throughput screening tool by identifying an ESAT-6 system 1-deficient mutant from a Mycobacterium marinum transposon insertion library. Furthermore, we also demonstrate detection of secreted proteins of the prevalent type III secretion system from the Gram-negative pathogen, Pseudomonas aeruginosa. This method will be broadly applicable to study other bacterial protein export systems and for the identification of compounds that inhibit bacterial protein secretion.  相似文献   

6.
Central to the field of bacterial pathogenesis is the ability to define if and how microbes survive after exposure to eukaryotic cells. Current protocols to address these questions include colony count assays, gentamicin protection assays, and electron microscopy. Colony count and gentamicin protection assays only assess the viability of the entire bacterial population and are unable to determine individual bacterial viability. Electron microscopy can be used to determine the viability of individual bacteria and provide information regarding their localization in host cells. However, bacteria often display a range of electron densities, making assessment of viability difficult. This article outlines protocols for the use of fluorescent dyes that reveal the viability of individual bacteria inside and associated with host cells. These assays were developed originally to assess survival of Neisseria gonorrhoeae in primary human neutrophils, but should be applicable to any bacterium-host cell interaction. These protocols combine membrane-permeable fluorescent dyes (SYTO9 and 4'',6-diamidino-2-phenylindole [DAPI]), which stain all bacteria, with membrane-impermeable fluorescent dyes (propidium iodide and SYTOX Green), which are only accessible to nonviable bacteria. Prior to eukaryotic cell permeabilization, an antibody or fluorescent reagent is added to identify extracellular bacteria. Thus these assays discriminate the viability of bacteria adherent to and inside eukaryotic cells. A protocol is also provided for using the viability dyes in combination with fluorescent antibodies to eukaryotic cell markers, in order to determine the subcellular localization of individual bacteria. The bacterial viability dyes discussed in this article are a sensitive complement and/or alternative to traditional microbiology techniques to evaluate the viability of individual bacteria and provide information regarding where bacteria survive in host cells.  相似文献   

7.
Respiratory tract infections are a major global health concern, accounting for high morbidity and mortality, especially in young children and elderly individuals. Traditionally, highly common bacterial respiratory tract infections, including otitis media and pneumonia, were thought to be caused by a limited number of pathogens including Streptococcus pneumoniae and Haemophilus influenzae. However, these pathogens are also frequently observed commensal residents of the upper respiratory tract (URT) and form—together with harmless commensal bacteria, viruses and fungi—intricate ecological networks, collectively known as the ‘microbiome’. Analogous to the gut microbiome, the respiratory microbiome at equilibrium is thought to be beneficial to the host by priming the immune system and providing colonization resistance, while an imbalanced ecosystem might predispose to bacterial overgrowth and development of respiratory infections. We postulate that specific ecological perturbations of the bacterial communities in the URT can occur in response to various lifestyle or environmental effectors, leading to diminished colonization resistance, loss of containment of newly acquired or resident pathogens, preluding bacterial overgrowth, ultimately resulting in local or systemic bacterial infections. Here, we review the current body of literature regarding niche-specific upper respiratory microbiota profiles within human hosts and the changes occurring within these profiles that are associated with respiratory infections.  相似文献   

8.
Pathogens are considered a serious threat to which wild populations must adapt, most particularly under conditions of rapid environmental change. One way host adaptation has been studied is through genetic population structure at the major histocompatibility complex (MHC), a complex of adaptive genes involved in pathogen resistance in vertebrates. However, while associations between specific pathogens and MHC alleles or diversity have been documented from laboratory studies, the interaction between hosts and pathogens in the wild is more complex. As such, identifying selective agents and understanding underlying co-evolutionary mechanisms remains a major challenge. In this issue of Molecular Ecology , Evans & Neff (2009) characterized spatial and temporal variation in the bacterial parasite community infecting Chinook salmon ( Oncorhynchus tshawytscha ) fry from five populations in British Columbia, Canada. They used a 16S rDNA sequencing-based approach to examine the prevalence of bacterial infection in kidney and looked for associations with MHC class I and II genetic variability. The authors found a high diversity of bacteria infecting fry, albeit at low prevalence. It was reasoned that spatial variability in infection rate and bacterial community phylogenetic similarity found across populations may represent differential pathogen-mediated selection pressures. The study revealed some evidence of heterozygote advantage at MHC class II, but not class I, and preliminary associations between specific MHC alleles and bacterial infections were uncovered. This research adds an interesting perspective to the debate on host–pathogen co-evolutionary mechanisms and emphasizes the importance of considering the complexity of pathogen communities in studies of host local adaptation.  相似文献   

9.
Immunoassays were developed to measure DNA damage retained by UV-irradiated whole bacterial cells. Active Mycobacterium parafortuitum and Serratia marcescens cells were fixed and incubated with cyclobutane pyrimidine dimer-binding antibodies after being exposed to known UV doses (254 nm). When both fluorescent (Alexa Fluor 488) and radiolabeled (125I) secondary antibodies were used as reporters, indirect whole-cell assays were sensitive enough to measure intracellular UV photoproducts in M. parafortuitum and S. marcescens cells as well as photoenzymatic repair responses in S. marcescens cells. For the same UV dose, fluorescent DNA photoproduct detection limits in whole-cell assays (immunofluorescent microscopy) were similar to those in fluorescent assays performed on membrane-bound DNA extracts (immunoslot blot). With either fluorescent or radiolabeled reporters, the intracellular cyclobutane pyrimidine dimer content of UV-irradiated whole bacterial cells could be reliably quantified after undergoing a <0.5-order-of-magnitude decrease in culturability. Immunofluorescent microscopy results showed that photoenzymatic repair competence is not uniformly distributed among exponential-growth UV-irradiated pure cultures.  相似文献   

10.
11.
Protein glycosylation is a common post-translational modification found in all living organisms. This modification in bacterial pathogens plays a pivotal role in their infectious processes including pathogenicity, immune evasion, and host-pathogen interactions. Importantly, many key proteins of host immune systems are also glycosylated and bacterial pathogens can notably modulate glycosylation of these host proteins to facilitate pathogenesis through the induction of abnormal host protein activity and abundance. In recent years, interest in studying the regulation of host protein glycosylation caused by bacterial pathogens is increasing to fully understand bacterial pathogenesis. In this review, we focus on how bacterial pathogens regulate remodeling of host glycoproteins during infections to promote the pathogenesis.  相似文献   

12.
The interactions of bacterial pathogens with host cells have been investigated extensively using in vitro cell culture methods. However as such cell culture assays are performed under aerobic conditions, these in vitro models may not accurately represent the in vivo environment in which the host-pathogen interactions take place. We have developed an in vitro model of infection that permits the coculture of bacteria and host cells under different medium and gas conditions. The Vertical Diffusion Chamber (VDC) model mimics the conditions in the human intestine where bacteria will be under conditions of very low oxygen whilst tissue will be supplied with oxygen from the blood stream. Placing polarized intestinal epithelial cell (IEC) monolayers grown in Snapwell inserts into a VDC creates separate apical and basolateral compartments. The basolateral compartment is filled with cell culture medium, sealed and perfused with oxygen whilst the apical compartment is filled with broth, kept open and incubated under microaerobic conditions. Both Caco-2 and T84 IECs can be maintained in the VDC under these conditions without any apparent detrimental effects on cell survival or monolayer integrity. Coculturing experiments performed with different C. jejuni wild-type strains and different IEC lines in the VDC model with microaerobic conditions in the apical compartment reproducibly result in an increase in the number of interacting (almost 10-fold) and intracellular (almost 100-fold) bacteria compared to aerobic culture conditions1. The environment created in the VDC model more closely mimics the environment encountered by C. jejuni in the human intestine and highlights the importance of performing in vitro infection assays under conditions that more closely mimic the in vivo reality. We propose that use of the VDC model will allow new interpretations of the interactions between bacterial pathogens and host cells.  相似文献   

13.
Bacterial surface motility, such as swarming, is commonly examined in the laboratory using plate assays that necessitate specific concentrations of agar and sometimes inclusion of specific nutrients in the growth medium. The preparation of such explicit media and surface growth conditions serves to provide the favorable conditions that allow not just bacterial growth but coordinated motility of bacteria over these surfaces within thin liquid films. Reproducibility of swarm plate and other surface motility plate assays can be a major challenge. Especially for more “temperate swarmers” that exhibit motility only within agar ranges of 0.4%-0.8% (wt/vol), minor changes in protocol or laboratory environment can greatly influence swarm assay results. “Wettability”, or water content at the liquid-solid-air interface of these plate assays, is often a key variable to be controlled. An additional challenge in assessing swarming is how to quantify observed differences between any two (or more) experiments. Here we detail a versatile two-phase protocol to prepare and image swarm assays. We include guidelines to circumvent the challenges commonly associated with swarm assay media preparation and quantification of data from these assays. We specifically demonstrate our method using bacteria that express fluorescent or bioluminescent genetic reporters like green fluorescent protein (GFP), luciferase (lux operon), or cellular stains to enable time-lapse optical imaging. We further demonstrate the ability of our method to track competing swarming species in the same experiment.  相似文献   

14.
The importance of wild birds as potential vectors of disease has received recent renewed empirical interest, especially regarding human health. Understanding the spread of bacterial pathogens in wild birds may serve as a useful model for examining the spread of other disease organisms, both amongst birds, and from birds to other taxa. Information regarding the normal gastrointestinal bacterial flora is limited for the majority of wild bird species, with the few well-studied examples concentrating on bacteria that are zoonotic and/or relate to avian species of commercial interest. However, most studies are limited by small sample sizes, the frequent absence of longitudinal data, and the constraints of using selective techniques to isolate specific pathogens. The pathogenic genera found in the gut are often those suspected to exist in the birds' habitat, and although correlations are made between bacterial pathogens in the avian gut and those found in their foraging grounds, little is known about the effect of the pathogen on the host, unless the causative organism is lethal. In this review, we provide an overview of the main bacterial pathogens isolated from birds (with particular emphasis on enteropathogenic bacteria) which have the potential to cause disease in both birds and humans, whilst drawing attention to the limitations of traditional detection methods and possible study biases. We consider factors likely to affect the susceptibility of birds to bacterial pathogens, including environmental exposure and heterogeneities within the host population, and present probable avenues of disease transmission amongst birds and from birds to other animal taxa. Our primary aim is to identify gaps in current knowledge and to propose areas for future study.  相似文献   

15.
Fatty acid amide hydrolase (FAAH) is a pharmaceutical target whose inhibition may lead to valuable therapeutics. Sensitive substrates for high-throughput assays are crucial for the rapid-screening FAAH inhibitors. Here we describe the development of novel and highly sensitive fluorescent assays for FAAH based on substituted aminopyridines. Examining the relationship between the structure and the fluorescence of substituted aminopyridines suggested that a methoxy group in the para position relative to the amino group in aminopyridines greatly increased the fluorescence (i.e., quantum yields approach unity). These novel fluorescent reporters had a high Stokes' shift of 94 nm, and their fluorescence in buffer systems increased with pH values from neutral to basic. Fluorescent substrates with these reporters displayed a very low fluorescent background and high aqueous solubility. Most importantly, fluorescent assays for FAAH based on these substrates were at least 25 times more sensitive than assays using related compounds with published colorimetric or fluorescent reporters. This property results in shorter assay times and decreased protein concentrations in the assays. Such sensitive assays will facilitate distinguishing the relative potency of powerful inhibitors of FAAH. When these fluorescent substrates were applied to human liver microsomes, results suggested that there was at least one amide hydrolase in addition to FAAH that could hydrolyze long-chain fatty acid amides. These results show that these fluorescent substrates are very valuable tools in FAAH activity assays including screening inhibitors by high-throughput assays instead of using the costly and labor-intensive radioactive ligands. Potential applications of novel fluorescent reporters are discussed.  相似文献   

16.
Studies on the genetic basis of bacterial pathogenicity have been undertaken for almost 30 years, but the development of new genetic tools in the past 10 years has considerably increased the number of identified virulence factors. Signature-tagged mutagenesis (STM) is one of the most powerful general genetic approaches, initially developed by David Holden and colleagues in 1995, which has now led to the identification of hundreds of new genes requested for virulence in a broad range of bacterial pathogens. We have chosen to present in this review, the most recent and/or most significant contributions to the understanding of the molecular mechanisms of bacterial pathogenicity among over 40 STM screens published to date. We will first briefly review the principle of the method and its major technical limitations. Then, selected studies will be discussed where genes implicated in various aspects of the infectious process have been identified (including tropism for specific host and/or particular tissues, interactions with host cells, mechanisms of survival and persistence within the host, and the crossing of the blood brain barrier). The examples chosen will cover intracellular as well as extracellular Gram-negative and Gram-positive pathogens.  相似文献   

17.
Antagonistic coevolution between hosts and parasites in spatially structured populations can result in local adaptation of parasites. Traditionally parasite local adaptation has been investigated in field transplant experiments or in the laboratory under a constant environment. Despite the conceptual importance of local adaptation in studies of (co)evolution, to date no study has provided a comparative analysis of these two methods. Here, using information on pathogen population dynamics, I tested local adaptation of the specialist phytopathogen, Podosphaera plantaginis, to its host, Plantago lanceolata at three different spatial scales: sympatric host population, sympatric host metapopulation and allopatric host metapopulations. The experiment was carried out as a field transplant experiment with greenhouse-reared host plants from these three different origins introduced into four pathogen populations. In contrast to results of an earlier study performed with these same host and parasite populations under laboratory conditions, I did not find any evidence for parasite local adaptation. For interactions governed by strain-specific resistance, field studies may not be sensitive enough to detect mean parasite population virulence. Given that parasite transmission potential may be mediated by the abiotic environment and genotype-by-environment interactions, I suggest that relevant environmental variation should be incorporated into laboratory studies of parasite local adaptation.  相似文献   

18.
The extent and speed at which pathogens adapt to host resistance varies considerably. This presents a challenge for predicting when—and where—pathogen evolution may occur. While gene flow and spatially heterogeneous environments are recognized to be critical for the evolutionary potential of pathogen populations, we lack an understanding of how the two jointly shape coevolutionary trajectories between hosts and pathogens. The rust pathogen Melampsora lini infects two ecotypes of its host plant Linum marginale that occur in close proximity yet in distinct populations and habitats. In this study, we found that within-population epidemics were different between the two habitats. We then tested for pathogen local adaptation at host population and ecotype level in a reciprocal inoculation study. Even after controlling for the effect of spatial structure on infection outcome, we found strong evidence of pathogen adaptation at the host ecotype level. Moreover, sequence analysis of two pathogen infectivity loci revealed strong genetic differentiation by host ecotype but not by distance. Hence, environmental variation can be a key determinant of pathogen population genetic structure and coevolutionary dynamics and can generate strong asymmetry in infection risks through space.  相似文献   

19.
Bacterial pathogens are known for their wide range of strategies to specifically adapt to host environments and infection sites. An in-depth understanding of these adaptation mechanisms is crucial for the development of effective therapeutics and new prevention measures. In this study, we assessed the suitability of Fourier Transform Infrared (FTIR) spectroscopy for monitoring metabolic adaptations of the bacterial pathogen Listeria monocytogenes to specific host genotypes and for exploring the potential of FTIR spectroscopy to gain novel insights into the host-pathogen interaction. Three different mouse genotypes, showing different susceptibility to L. monocytogenes infections, were challenged with L. monocytogenes and re-isolated bacteria were subjected to FTIR spectroscopy. The bacteria from mice with different survival characteristics showed distinct IR spectral patterns, reflecting specific changes in the backbone conformation and the hydrogen-bonding pattern of the protein secondary structure in the bacterial cell. Coupling FTIR spectroscopy with chemometrics allowed us to link bacterial metabolic fingerprints with host infection susceptibility and to decipher longtime memory effects of the host on the bacteria. After prolonged cultivation of host-passaged bacteria under standard laboratory conditions, the host''s imprint on bacterial metabolism vanished, which suggests a revertible metabolic adaptation of bacteria to host environment and loss of host environment triggered memory effects over time. In summary, our work demonstrates the potential and power of FTIR spectroscopy to be used as a fast, simple and highly discriminatory tool to investigate the mechanism of bacterial host adaptation on a macromolar and metabolic level.  相似文献   

20.
Reporter strains of bacteria that emit light or a fluorescent marker in response to specific conditions in their environment are having a significant impact in many areas of biology, including toxicity assays for environmental pollutants, chemical detection, and gene expression profiling. We have demonstrated methods for in situ measurements of bioluminescence and fluorescence from bacterial cultures grown in 50 microL instrumented microbioreactors. Results from microbioreactors were compared to results obtained from conventional 500 mL batch bioreactors and shake flasks. Experiments were conducted with reporter strains of Escherichia coli in which luxCDABE or gfp was fused to a promoter that was either expressed constitutively, or that responded to oxygen limitation. With these reporter strains, we have demonstrated the ability to obtain information on growth conditions within the microbioreactor. We have also shown that the large aspect ratio of the microbioreactor provides a unique advantage over measurements in larger bioreactors by reducing the inner filter effect in on-line measurements and eliminating the need for error-prone off-line dilutions. In addition, continuous on-line monitoring of genes in real-time, when expanded to include entire reporter libraries, could potentially provide a true dynamic picture of cellular gene expression from which the kinetics of gene expression can be untangled and elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号