首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The circadian master clocks in the brains of mammals and insects are compared in respect to location, organization and function. They show astonishing similarities. Both clocks are anatomically and functionally connected to the optic system and possess multiple output pathways allowing synchronization with the environmental light-dark cycles as well as the control of diverse endocrine, autonomic and behavioral functions. Both circadian master clocks are composed of multiple neurons, which are organized in populations with different morphology, physiology and neurotransmitter content and appear to subserve different functions. In the hamster and in the cockroach, the master clock consists of a core region that gets input from the eyes, and a shell region from which the majority of output projections originate. Communication between core and shell, between all other populations of clock neurons as well as between the master clocks of both brain hemispheres is a prerequisite of normal rhythmic function. Phenomena like rhythm splitting and internal desynchronization can be observed under constant light conditions and are caused by the uncoupling of the master clocks of both brain hemispheres.  相似文献   

4.
We extend the study of a computational model recently proposed for the mammalian circadian clock (Proc. Natl Acad. Sci. USA 100 (2003) 7051). The model, based on the intertwined positive and negative regulatory loops involving the Per, Cry, Bmal1, and Clock genes, can give rise to sustained circadian oscillations in conditions of continuous darkness. These limit cycle oscillations correspond to circadian rhythms autonomously generated by suprachiasmatic nuclei and by some peripheral tissues. By using different sets of parameter values producing circadian oscillations, we compare the effect of the various parameters and show that both the occurrence and the period of the oscillations are generally most sensitive to parameters related to synthesis or degradation of Bmal1 mRNA and BMAL1 protein. The mechanism of circadian oscillations relies on the formation of an inactive complex between PER and CRY and the activators CLOCK and BMAL1 that enhance Per and Cry expression. Bifurcation diagrams and computer simulations nevertheless indicate the possible existence of a second source of oscillatory behavior. Thus, sustained oscillations might arise from the sole negative autoregulation of Bmal1 expression. This second oscillatory mechanism may not be functional in physiological conditions, and its period need not necessarily be circadian. When incorporating the light-induced expression of the Per gene, the model accounts for entrainment of the oscillations by light-dark (LD) cycles. Long-term suppression of circadian oscillations by a single light pulse can occur in the model when a stable steady state coexists with a stable limit cycle. The phase of the oscillations upon entrainment in LD critically depends on the parameters that govern the level of CRY protein. Small changes in the parameters governing CRY levels can shift the peak in Per mRNA from the L to the D phase, or can prevent entrainment. The results are discussed in relation to physiological disorders of the sleep-wake cycle linked to perturbations of the human circadian clock, such as the familial advanced sleep phase syndrome or the non-24h sleep-wake syndrome.  相似文献   

5.
Abstract

Four Thoroughbred mares (no. 1–4) were maintained under constant temperature (24°C) and controlled light (L/D:12/12 with lights on at 06.00 hr) conditions. They were fed and watered ad libitum with fresh feed and water given at 09.00 hr. After a 45‐day pre‐conditioning period, blood samples were obtained by veinipuncture at 4‐hr intervals for 14 days to determine circadian and day‐to‐day variation. The horses exhibited a circadian rhythm with maximum values attained at about 12.00 hr, however, there are periods of days in which no rhythm is distinguishable. Ultradian rhythms with mean periods of 105 to 128 and 24 to 31 min are superimposed upon the circadian rhythm. The individual rhythms are quite variable from horse to horse and within the same horse. During periods of decline in plasma cortisol with metabolic half‐lives of approximately 70 min, secretion of cortisol was very low or had ceased. During periods of increasing plasma concentration, secretion was occurring at a faster rate than degradation. Rapid decreases in plasma concentration (metabolic half‐life of approximately 30 min) was accompanied by a rise in specific activity indicating cortisol with a high specific activity was entering the plasma pool from other storage pools.  相似文献   

6.
7.
The circadian clock is responsible for the generation of circadian rhythms in hormonal secretion and metabolism. These peripheral clocks could be reset by various cues in order to adapt to environmental variations. The ovary can be characterized as having highly dynamic physiology regulated by gonadotropins. Here, we aimed to address the status of circadian clock in the ovary, and to explore how gonadotropins could regulate clockwork in granulosa cells (GCs). To this end, we mainly utilized the immunohistochemistry, RT-PCR, and real-time monitoring of gene expression methods. PER1 protein was constantly abundant across the daily cycle in the GCs of immature ovaries. In contrast, PER1 protein level was obviously cyclic through the circadian cycle in the luteal cells of pubertal ovaries. In addition, both FSH and LH induced Per1 expression in cultured immature and mature GCs, respectively. The promoter analysis revealed that the Per1 expression was mediated by the cAMP response element binding protein. In cultured transgenic GCs, both FSH and LH also induced the circadian oscillation of Per2. However, the Per2 oscillation promoted by FSH quickly dampened within only one cycle, whereas the Per2 oscillation promoted by LH was persistently maintained. Collectively, these findings strongly suggest that both FSH and LH play an important role in regulating circadian clock in the ovary; however, they might exert differential actions on the clockwork in vivo due to each specific role within ovarian physiology.  相似文献   

8.
9.
In mammals, circadian rhythms are controlled by the neurons located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Each neuron in the SCN contains an autonomous molecular clock. The fundamental question is how the individual cellular oscillators, expressing a wide range of periods, interact and assemble to achieve phase synchronization. Most of the studies carried out so far emphasize the crucial role of the periodicity imposed by the light-dark cycle in neuronal synchronization. However, in natural conditions, the interaction between the SCN neurons is non-negligible and coupling between cells in the SCN is achieved partly by neurotransmitters. In this paper, we use a model of nonidentical, globally coupled cellular clocks considered as Goodwin oscillators. We mainly study the synchronization induced by coupling from an analytical way. Our results show that the role of the coupling is to enhance the synchronization to the external forcing. The conclusion of this paper can help us better understand the mechanism of circadian rhythm.  相似文献   

10.
An internal noise-driven oscillator was studied in a two-variable Drosophila model, where both positive feedback and negative feedback are crucial to the circadian oscillations. It is shown that internal noise could sustain reliable oscillations for the parameter which produces a stable steady state in the deterministic system. The noise-sustained oscillations are interpreted by using phase plane analysis. The period of such oscillations fluctuates slightly around the period of deterministic oscillations and the coherence of oscillations becomes the best at an optimal internal noise intensity, indicating the occurrence of intrinsic coherence resonance. In addition, in the oscillatory region, the coherence of noisy circadian oscillations is suppressed by the internal noise, but the period is hardly affected, demonstrating the robustness of the Drosophila model for circadian rhythms to the intrinsic noise.  相似文献   

11.
Summary The role of the hormone melatonin in the circadian system of pigeons (Columba livia) was investigated. Using an automatic infusion system, melatoni at physiological levels was delivered for 10 h each day to cannulated, pinealectomized (P-X) pigeons in constant darkness. These cyclic infusions of melatonin entrained feeding rhythms in P-X pigeons while vehicle infusions were ineffective entraining agents. When the retinae of P-X pigeons were removed (E-X), feeding rhythms were abolished in constant darkness. When cyclic melatonin infusions were delivered to these birds (E-X and P-X), feeding rhythmicity was restored whereas vehicle infusions alone did not restore rhythmicity. When melatonin infusions were terminated in E-X/P-X pigeons, feeding rhythms persisted for several days but eventually decayed. Blood melatonin levels were measured in both P-X and E-X/P-X birds infused cyclically with exogenous melatonin and were found to be within the physiological range both in level and pattern. These results strongly suggest that endogenous melatonin, released by the pineal gland and the retinae, regulates the timing of feeding rhythms by entraining other oscillators in the circadian system of the pigeon.Abbreviations P-X pinealectomized - E-X bilaterally enucleated - T period of infusion cycle - LD light: dark cycle - DD constant darkness  相似文献   

12.
Daily periodic locomotor activity of Carabus auronitens was recorded in a climate-constant laboratory with the animals exposed to naturally changing photoperiods. Most actograms exhibit directed seasonal variations of duration and phase position of daily activity. Seasonal locomotor activity starts in early spring (following dormancy) on a low daily level, first being confined to a short time span around dusk (and even shorter around dawn). In the course of season, the daily onsets of activity become closely related with sunset and the duration of daily activity is steadily extended with both parts of the bimodal phase fusing to a common, unimodal activity band by late spring. Subsequently, it is further extended into forenoon, until in summer (shortly before aestivation), spontaneous phase inversion turns activity periodicity from nocturnality into diurnality within 1 day. Such seasonal variations are paralleled by changes in the precision of synchronization of the individuals' activity rhythms to the entraining light/dark cycle. No geographical differences were detected. The results support the idea of the circadian clock as a system of two dynamically coupled physiological oscillators that invert their phase relation as soon as the natural dark phase falls short of some minimum-tolerable night length.Abbreviations LD light/dark cycle - nLD natural light/dark cycle - DD constant darkness - endogenous period length - SS sunset - SR sunrise - PRC phase-response curve  相似文献   

13.
The expression of circadian clock genes was investigated in the suprachiasmatic nuclei (SCN) of young adult and old laboratory mice. Samples were taken at two time points, which corresponded to the expected maximum (circadian time 7 [CT7]) or minimum (CT21) of mPer mRNA expression. Whereas the young mice had a stable and well-synchronized circadian activity/rest cycle, the rhythms of old animals were less stable and were phase advanced. The expression of mPer1 mRNA and mPer2 mRNA was rhythmic in both groups, with peak values at CT7. The levels of mClock and mCry1 mRNA were not different depending on the time of day and did not vary with age. In contrast, an age-dependent difference was found in the case of mPer2 (but not mPer1) mRNA expression, with the maximum at CT7 significantly lower in old mice. The decreased expression of mPer2 may be relevant for the observed differences in the overt activity rhythm of aged mice. (Chronobiology International, 18(3), 559-565, 2001)  相似文献   

14.
Abstract

To test the hypothesis that an oscillator located outside the suprachiasmatic nuclei (SCN) controls the circadian rhythm of body temperature, we conducted a study with 14 blinded rats, 10 of which receiving a SCN lesion. Body temperature was automatically and continuously recorded for about one month by intraperitoneal radio transmitters. Food intake, drinking and locomotor activity were also recorded. Periodograms revealed that 3 rats with histologically verified total bilateral SCN lesions did not exhibit any circadian rhythmicity. The 7 other rats appeared to have partial lesions. They showed shortening of period and severe amplitude reduction in all functions. Thus, no support was found for the hypothesis of a separate circadian ‘temperature oscillator’ located outside the SCN. Nevertheless, after large partial lesions body temperature showed more persistency than some of the other behavioral rhythms.

Ultradian rhythms in temperature persisted after partial and total lesions. Other functions showed parallel ultradian rhythms. In intact rats the ultradian peaks were restricted predominantly to the subjective night. After total lesions these peaks became more or less homogeneously distributed in time but more heterogeneously after partial lesions. So the SCN plays a role in the temporal structure of ultradian rhythms but does not generate them. Non‐24‐hour actograms showed instabilities of period and phase of ultradian rhythms. Intact and lesioned rats were similar with respect to the mean (about 3.5 hrs) and standard deviation (about 1.5 hrs) of ultradian periods in temperature. These features indicate that a mechanism outside the SCN is underlying ultradian rhythmicity, capable of generating short‐term oscillations. Two approaches, homeostatic sleep‐wake relaxation oscillations and multiple circadian oscillators, are discussed.  相似文献   

15.
We tested the hypothesis that glucocorticoid stimulation mediates the effect of exercise on circadian clock resetting in hamsters. We injected animals with 1 and 5 mg dexamethasone—a potent glucocorticoid agonist—at zeitgeber time (ZT) 4 and ZT6, circadian phases at which vigorous exercise induces maximal phase advances of about 3h. Neither dose of dexamethasone induced phase shifts that were significantly larger than those induced by injections of saline vehicle at either of the phases tested. Some animals, however, showed quite large and consistent phase shifts to repeated injections whether with saline or dexamethasone, such that there was a statistically significant correlation between individuals' responses to the two treatments. The data indicate no role for increased glucocorticoid activity in mediating the effects of exercise on circadian phase shifting, but suggest a modest role for nonspecific stimulation, independent of exercise, in inducing phase shifts at ZT4-ZT6. (Chronobiology International, 18(2), 203-213, 2001)  相似文献   

16.
It is widely accepted that, for organisms with eyes, the daily regulation of circadian rhythms is made possible by light transduction through those organs. Yet, it has been demonstrated repeatedly in recent years that ocular light receptors that mediate vision, at least in mammals, are not the same photoreceptors involved in circadian regulation. Moreover, it has been recognized for many years that circadian regulation can occur in organisms without eyes. In fact, extraocular circadian phototransduction (EOCP) appears to be a phylogenetic rule for the vast majority of species. EOCP has been reported in every nonmammalian species studied to date. In mammals, however, the story is very different. This paper presents findings from studies that have examined specifically the capacity for EOCP in vertebrate species. In addition, the literature addressing noncircadian aspects of extraocular phototransduction is briefly discussed. Finally, possible mechanisms underlying EOCP are discussed, as are some of the implications of the presence, or absence, of EOCP across phylogeny. (Chronobiology International, 18(2), 137-172, 2001)  相似文献   

17.
Two groups of healthy subjects were studied indoors, first while living normally for 8 days (control section) and then for 18 × 27h “days” (experimental section). This schedule forces the endogenous (body clock-driven) and exogenous (lifestyle-driven) components of circadian rhythms to run independently. Rectal temperature and wrist movement were measured throughout and used as markers of the amplitude of the circadian rhythm, with the rectal temperature also “purified” by means of the activity record to give information about the endogenous oscillator. Results showed that, during the experimental days, there were changes in the amplitude of the overt temperature rhythm and in the relative amounts of out-of-bed and in-bed activity, both of which indicated an interaction between endogenous and exogenous components of the rhythm. However, the amplitude and the amount of overlap were not significantly different on the control days (when endogenous and exogenous components remained synchronized) and those experimental days when endogenous and exogenous components were only transiently synchronized; also, the amplitudes of purified temperature rhythms did not change significantly during the experimental days in spite of changes in the relationship between the endogenous and exogenous components. Neither result offers support for the view that the exogenous rhythm alters the amplitude of oscillation of the endogenous circadian oscillator in humans.  相似文献   

18.
Laposky AD  Bass J  Kohsaka A  Turek FW 《FEBS letters》2008,582(1):142-151
In this review, we present evidence from human and animal studies to evaluate the hypothesis that sleep and circadian rhythms have direct impacts on energy metabolism, and represent important mechanisms underlying the major health epidemics of obesity and diabetes. The first part of this review will focus on studies that support the idea that sleep loss and obesity are "interacting epidemics." The second part will discuss recent evidence that the circadian clock system plays a fundamental role in energy metabolism at both the behavioral and molecular levels. These lines of research must be seen as in their infancy, but nevertheless, have provided a conceptual and experimental framework that potentially has great importance for understanding metabolic health and disease.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号