首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveRecent studies have shown that carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) may serve as an independent predictor of advanced gastric cancer (GC). The purpose of this research is to explore the patterns of expression, functions, and upstream regulatory pathway of CEACAM5 in GC.MethodsThe levels of miR-498 and CEACAM5 expression in GC cells and tissues were measured via qRT-PCR. Wound-healing, CCK-8, and western blotting experiments were conducted for the evaluation of GC cell migration, proliferation, and epithelial-mesenchymal transition (EMT), respectively. The targeting relationship between miR-498 and CEACAM5 was validated via pull-down and luciferase reporter assays. Xenograft tumor mouse models were established to observe CEACAM5’s influence on the growth of tumors in vivo.ResultsElevated levels of CEACAM5 were detected among the GC cells and tissues. The results of the in vitro experiments revealed that the knockdown of CEACAM5 in GC cells significantly inhibited their proliferation, migration, and EMT. Moreover, CEACAM5 inhibition effectively hampered GC cell growth within the nude mice. Moreover, miR-498 directly targeted CEACAM5. MiR-498 downregulation had been observed among the cells and tissues of GC. The stimulation of GC cell proliferation, migration, and EMT, which had been engendered by CEACAM5 overexpression, was reversible through the overexpression of miR-498.ConclusionThe outcomes of this research suggest that miR-498 is capable of repressing the proliferation, migration, and EMT of GC cells through CEACAM5 downregulation.  相似文献   

2.
Background: MicroRNAs (miRNAs) play important roles in many biological processes, including cancer development. Among those miRNAs, miR-143 shows tumor-suppressive activity in some human cancers. However, the function and mechanism of miR-143 in lung cancer cells remains unknown. Here we explored the role of miR-143 in lung cancer. Results: According to qRT-PCR, we found that miR-143 was notably down-regulated in 19 NSCLC tissues and 5 cell lines. In vitro experiments showed us that miR-143 could significantly suppress the migration and invasion of NSCLC cell lines while it had no effects on the growth of NSCLC cell lines, and in vivo metastasis assay showed the same results. Finally, we found that the mechanism of miR-143 inhibiting the migration and invasion of NSCLC might be through targeting CD44v3. Conclusions: The up-regulated miR-143 in lung cancer could significantly inhibit cell migration and invasion, and this might work through targeting CD44v3, which was newly identified by us.  相似文献   

3.
Carcinoembryonic antigen-related cell adhesion molecules 6 (CEACAM6) is a cell adhesion receptor. Expression of CEACAM6 in non-small cell lung cancer (NSCLC) associated with tumor progression and metastatic condition via Src/FAK signaling pathway. We established three anti-CEACAM6 antibodies with valences, which were designed to be monomeric sdAb, bivalent sdAb (2Ab), and tetravalent sdAb (4Ab). The anti-CEACAM6 antibodies can be used to target CEACAM6 overexpressing NSCLC. Anti-CEACAM6 antibodies, sdAb, 2Ab and 4Ab, were modified with different valency via protein engineering. sdAb and multivalent sdAbs (2Ab & 4Ab) were expressed and purified from E.coli and CHO cells, respectively. We compared the effect of anti-CEACAM6 antibodies with doxorubicin in NSCLC cell line both in vitro and in vivo. The 4Ab showed significant effect on cell viability. In addition, A549 cells treated with 2Ab and 4Ab inhibited the invasion and migration. In western blot, the 2Ab and 4Ab showed significant inhibition of phospho FAK domain Ty397 that is essential for activation of Src kinase family. Meanwhile, overall protein analysis revealed that 2Ab and 4Ab potently inhibited the phosphorylation of pSRC, pERK, pFAK, pAKT, MMP-2, MMP-9 and N-cadherin. Anti-tumor effect was observed in an A549 NSCLC xenograft model treated with 2Ab or 4Ab compared with doxorubicin. Confocal analysis showed higher targeting ability of 4Ab than that of 2Ab at 4 h incubation. Our data suggests that 2Ab and 4Ab inhibits EMT-mediated migration and invasion via suppression of Src/FAK signaling, which exhibits therapeutic efficiency for NSCLC treatment.  相似文献   

4.
CD151 impacts various signaling pathways in different cancers, and promotes colorectal cancer (CRC) cell malignancy by yet undefined mechanisms. This study aimed to comprehensively assess CD151''s function in CRC. CD151 levels were significantly higher in CRC tissues and cells compared with controls in the tissue microarray. Cell viability, migration and invasion were suppressed by CD151 downregulation in CRC cells. Consistently, mouse xenografts were inhibited by CD151 silencing. RNA-seq revealed that multiple genes were significantly altered by CD151 knockdown in cultured CRC cells and xenografts. Particularly, transforming growth factor β1 (TGFβ1), carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) and leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) alongside CD151 were downregulated both in vitro and in vivo. Co-immunoprecipitation and mass spectrometry results were validated by qRT-PCR and immunoblot. Moreover, pull-down assay and immunofluorescence confirmed the associations of TGFβ1, CEACAM6 and LGR5 with CD151. This study demonstrated CEACAM6, LGR5 and Wnt pathway suppression by CD151 silencing might occur through TGFβ1 regulation, offering a comprehensive view of CD151''s roles in colorectal carcinogenesis. Our findings provide an insight into the CD151-involved signaling network in CRC oncogenesis, which could be utilized to design novel targeted therapies against CD151-based signaling in treatment for CRC.  相似文献   

5.
Our pilot study using miRNA arrays found that miRNA-29c (miR-29c) is differentially expressed in the paired low-metastatic lung cancer cell line 95C compared to the high-metastatic lung cancer cell line 95D. Bioinformatics analysis shows that integrin β1 and matrix metalloproteinase 2 (MMP2) could be important target genes of miR-29c. Therefore, we hypothesized that miR-29c suppresses lung cancer cell adhesion to extracellular matrix (ECM) and metastasis by targeting integrin β1 and MMP2. The gain-of-function studies that raised miR-29c expression in 95D cells by using its mimics showed reductions in cell proliferation, adhesion to ECM, invasion and migration. In contrasts, loss-of-function studies that reduced miR-29c by using its inhibitor in 95C cells promoted proliferation, adhesion to ECM, invasion and migration. Furthermore, the dual-luciferase reporter assay demonstrated that miR-29c inhibited the expression of the luciferase gene containing the 3′-UTRs of integrin β1 and MMP2 mRNA. Western blotting indicated that miR-29c downregulated the expression of integrin β1 and MMP2 at the protein level. Gelatin zymography analysis further confirmed that miR-29c decreased MMP2 enzyme activity. Nude mice with xenograft models of lung cancer cells confirmed that miR-29c inhibited lung cancer metastasis in vivo, including bone and liver metastasis. Taken together, our results demonstrate that miR-29c serves as a tumor metastasis suppressor, which suppresses lung cancer cell adhesion to ECM and metastasis by directly inhibiting integrin β1 and MMP2 expression and by further reducing MMP2 enzyme activity. The results show that miR-29c may be a novel therapeutic candidate target to slow lung cancer metastasis.  相似文献   

6.

Objective

To investigate the roles of miR-145 in lung adenocarcinoma (LAC) and to clarify the regulation of N-cadherin by miR-145.

Results

In 57 paired clinical LAC tissues, diminished miR-145 was significantly correlated with the lymph node metastasis and was negatively correlated with N-cadherin mRNA level expression. Wound healing and transwell assays revealed a reduced capability of tumor metastasis induced by miR-145 in LAC. miR-145 negatively regulated the invasion of cell lines through targeting N-cadherin by directly binding to its 3′-untranslated region. Silencing of N-cadherin inhibited invasion and migration of LAC cell lines similar to miR-145 overexpression.

Conclusions

MiR-145 could inhibit invasion and migration of lung adenocarcinoma cell lines by directly targeting N-cadherin.
  相似文献   

7.
Therapies for lung adenocarcinoma (LUAD) are mainly limited by drug resistance, metastasis or recurrence related to cancer stem cells (CSCs) with high proliferation and self-renewing. This research validated that miR-31 was over-expressed in LUAD by the analysis of generous clinical samples data. And the results of clinical data analysis showed that high expression of miR-31 was more common in patients with worse prognosis. The genes differentially expressed in LUAD tissues compared with normal tissues and A549CD133+ cells (LUAD CSCs) compared with A549 cells were separately screened from Gene Expression Profiling Interactive Analysis and GEO datasets. The target genes that may play a role in the regulation of lung adenocarcinoma was screened by comparison between the differential genes and the target genes of miR-31. The functional enrichment analysis of GO Biological Processes showed that the expression of target genes related to cell proliferation was increased, while the expression of target genes related to cell invasion and metastasis was decreased in LUAD tissues and A549CD133+ cells. The results suggested that miR-31 may have a significant inhibitory effect on the differentiation, invasion, metastasis and adhesion of LUAD CSCs, which was verified in vivo and in vitro experiments. Knock down of miR-31 accelerated xenograft tumor growth and liver metastasis in vivo. Likewise, the carcinogenicity, invasion and metastasis of A549CD133+ CSCs were promoted after miR-31 knockdown. The study validated that miR-31 was up regulated in LUAD and its expression may affect the survival time of patients with lung adenocarcinoma, which indicated that miR-31 may have potential value for diagnosis and prognosis of LUAD. However, the inhibitory effect of miR-31 on tumorigenesis, invasion and metastasis of lung adenocarcinoma CSCs suggested its complexity in the regulation of lung adenocarcinoma, which may be related to its extensive regulation of various target genes.  相似文献   

8.
Complex molecular pathways regulate cancer invasion. This study overviewed proteins and microRNAs (miRNAs) involved in oral tongue squamous cell carcinoma (OTSCC) invasion. The human highly aggressive OTSCC cell line HSC-3 was examined in a 3D organotypic human leiomyoma model. Non-invasive and invasive cells were laser-captured and protein expression was analyzed using mass spectrometry-based proteomics and miRNA expression by microarray. In functional studies the 3D invasion assay was replicated after silencing candidate miRNAs, miR-498 and miR-940, in invasive OTSCC cell lines (HSC-3 and SCC-15). Cell migration, proliferation and viability were also studied in the silenced cells. In HSC-3 cells, 67 proteins and 53 miRNAs showed significant fold-changes between non-invasive vs. invasive cells. Pathway enrichment analyses allocated “Focal adhesion” and “ECM-receptor interaction” as most important for invasion. Significantly, in HSC-3 cells, miR-498 silencing decreased the invasion area and miR-940 silencing reduced invasion area and depth. Viability, proliferation and migration weren’t significantly affected. In SCC-15 cells, down-regulation of miR-498 significantly reduced invasion and migration. This study shows HSC-3 specific miRNA and protein expression in invasion, and suggests that miR-498 and miR-940 affect invasion in vitro, the process being more influenced by mir-940 silencing in aggressive HSC-3 cells than in the less invasive SCC-15.  相似文献   

9.
Immunotoxins are a potentially powerful approach for targeted anticancer therapy. We evaluated a novel immunotherapeutic strategy targeting the immunoglobulin superfamily member carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6). Using pancreatic adenocarcinoma as a model, we show that crosslinking CEACAM6 induces its cytoplasmic accumulation and that this effect can be utilized to increase the efficacy of antibody-mediated delivery of the ribosomal inhibitory protein saporin. Exposure of cells to anti-CEACAM6 antibody, followed by secondary saporin-conjugated immunoglobulin (IgG), induced marked cytotoxicity, via caspase-mediated apoptosis, in vitro. In an in vivo nude mouse xenograft model, this immunotherapeutic approach markedly suppressed pancreatic adenocarcinoma tumor growth and enhanced tumor apoptosis. Given the prevalence of CEACAM6 overexpression among human malignancies, immunological targeting of this tumor antigen may have therapeutic applicability.  相似文献   

10.
Dysexpression of microRNAs has been found in many tumors, including lung cancer. The hedgehog (Hh) signaling pathway plays an important role during normal development, and the abnormal regulation of its members has also been related to many tumors. However, little is known about the relationship between microRNA and the Hh pathway. In this paper, we report microRNA-212 (miR-212) playing a role in non-small cell lung cancer (NSCLC) and targeting PTCH1, a receptor of the Hh pathway. We found that miR-212 was up-regulated when cells were treated with 4ß-12-O-tetradecanoylphorbol-13-acetate (TPA). We ectopically expressed miR-212 in NSCLC cell lines to examine the influence of miR-212 overexpression. The results showed that overexpression of miR-212 in NSCLC cells promoted cell cycle progression and cell proliferation, migration, and invasion. The promoting effects of miR-212 on cell proliferation, migration, and invasion were partially reversed by the miR-212 inhibitor anti-miR-212. These results suggested that miR-212 might have tumor-promoting properties. Potential targets of miR-212 were predicted, and we showed tumor suppressor PTCH1 was a functional target of miR-212. PTCH1 may be responsible for the effect of miR-212 on cell proliferation. Altogether, our results indicated that miR-212 was involved in tumorigenesis, and the oncogenic activity of miR-212 in NSCLC cells was due, in part, to suppression of PTCH1.  相似文献   

11.
Accumulating evidence has revealed that various microRNAs are deregulated and involved in lung cancer development and metastasis. miR-210 is implicated in several cancer progression. However, the detailed biological function and role of miR-210 in lung adenocarcinoma remains unclear. Our current study was aimed to investigate the mechanism of miR-210 in lung adenocarcinoma progression. We observed that miR-210 was significantly upregulated in lung cancer cell lines (A549 and H1650) in comparison to BEAS-2B cells. In addition, we found that miR-210 was greatly elevated in lung adenocarcinoma tissues. Then, it was shown that overexpression of miR-210 was able to promote lung cancer cell proliferation and colony formation ability while inhibitors of miR-210 exhibited a reversed phenomenon. Subsequently, A549 and H1650 cell migration and invasion capacity were obviously restrained by miR-210 inhibition whereas induced by miR-210 mimics. Lysyl oxidase-like 4 (LOXL4), a member of the secreted copper-dependent amine oxidases has been found to be increased or decreased in different cancer types. Here, we confirmed that LOXL4 could serve as a downstream target of miR-210 and miR-210 promoted lung cancer progression via targeting LOXL4. In A549 and H1650 cells, knockdown of LOXL4 dramatically repressed lung cancer cell proliferation, migration, and invasion. In conclusion, our study implied that miR-210 might indicate a new perspective for lung cancer.  相似文献   

12.
CEACAM1, CEA/CEACAM5, and CEACAM6 are cell adhesion molecules (CAMs) of the carcinoembryonic antigen (CEA) family that have been shown to be deregulated in lung cancer and in up to 50% of all human cancers. However, little is known about the functional impact of these molecules on undifferentiated cell growth and tumor progression. Here we demonstrate that cell surface expression of CEACAM1 on confluent A549 human lung adenocarcinoma cells plays a critical role in differentiated, contact-inhibited cell growth. Interestingly, CEACAM1-L, but not CEACAM1-S, negatively regulates proliferation via its ITIM domain, while in proliferating cells no CEACAM expression is detectable. Furthermore, we show for the first time that CEACAM6 acts as an inducer of cellular proliferation in A549 cells, likely by interfering with the contact-inhibiting signal triggered by CEACAM1-4L, leading to undifferentiated anchorage-independent cell growth. We also found that A549 cells expressed significant amounts of non-membrane anchored variants of CEACAM5 and CEACAM6, representing a putative source for the increased CEACAM5/6 serum levels frequently found in lung cancer patients. Taken together, our data suggest that post-confluent contact inhibition is established and maintained by CEACAM1-4L, but disturbances of CEACAM1 signalling by CEACAM1-4S and other CEACAMs lead to undifferentiated cell growth and malignant transformation.  相似文献   

13.
Lung adenocarcinoma is the most prevalent type of lung cancer with a high incidence and mortality worldwide. Metastasis is the major cause of high death rate in lung cancer and the potential mechanism of lung adenocarcinoma metastasis remains indistinct. Emerging investigations have demonstrated that long noncoding RNA is a kind of non–protein coding RNA and plays a critical role in cancer progression and metastasis. TTN antisense RNA 1 (TTN-AS1) has been reported to promote cell growth and metastasis in cancer. However, the function of TTN-AS1 in lung adenocarcinoma is still to be illustrated. In this study, we observed that TTN-AS1 was upregulated in tissues and cells of lung adenocarcinoma and associated with poor overall survival. TTN-AS1 promoted cell proliferation, migration, invasion, and epithelial-mesenchymal transition in lung cancer. TTN-AS1 directly bound with miR-4677-3p and negatively regulated miR-4677-3p. MiR-4677-3p rescued the inhibitive impacts of TTN-AS1 knockdown on lung adenocarcinoma. Furthermore, zinc finger E-box binding homeobox 1 (ZEB1) was the target of miR-4677-3p, and TTN-AS1 modulated ZEB1 by competing for miR-4677-3p. TTN-AS1 drove the invasion and migration of lung adenocarcinoma cells by targeting the miR-4677-3p/ZEB1 axis. To sum up, our study offers insights into the mechanism of TTN-AS1 in lung adenocarcinoma metastasis and targeting the TTN-AS1/miR-4677-3p/ZEB1 axis may be the potential innovate therapeutic strategy for the patients with lung adenocarcinoma.  相似文献   

14.
15.
MicroRNAs (miRNAs) are single-stranded, 18- to 23-nt RNA molecules that function as regulators of gene expression. Previous studies have shown that microRNAs play important roles in human cancers, including gliomas. Here, we found that expression levels of miR-181b were decreased in gliomas, and we identified IGF-1R as a novel direct target of miR-181b. MiR-181b overexpression inhibited cell proliferation, migration, invasion, and tumorigenesis by targeting IGF-1R and its downstream signaling pathways, PI3K/AKT and MAPK/ERK1/2. Overexpression of IGF-1R rescued the inhibitory effects of miR-181b. In clinical specimens, IGF-1R was overexpressed, and its protein levels were inversely correlated with miR-181b expression. Taken together, our results indicate that miR-181b functions in gliomas to suppress growth by targeting the IGF-1R oncogene and that miR-181b may serve as a novel therapeutic target for gliomas.  相似文献   

16.
Lung cancer is an significant cause of death worldwide, and non–small-cell lung cancer (NSCLC) is the most common type of lung cancer. MicroRNAs (miRNAs) have been identified to play key roles in NSCLC development. Recently, it has been reported that miR-605-5p is a cancer-related miRNA in several types of tumors. In this study, we study the role of miR-605-5p in NSCLC cells. We find that miR-605-5p is upregulated in NSCLC cells. Overexpression of miR-605-5p significantly promotes lung cancer invasion and migration in H460 and H1299 cells. Besides this, miR-605-5p also promotes lung cancer cell carcinoma proliferation and metastasis in vivo. However, downregulation of miR-605-5p inhibits cell invasion and migration by inhibiting lung cancer cell carcinoma proliferation and metastasis. In addition, the luciferase report assay identifies 3′-untranslated region tumor necrosis factor α-induced protein 3 (TNFAIP3) as a target of miR-605-5p. Silencing of TNFAIP3 promotes invasion and proliferation in lung cancer. In addition, the knockdown of TNFAIP3 restores the significant decrease in invasion and proliferation in miR-605-5p-inhibitor–transfected lung cancer cells. In conclusion, miR-605-5p promotes invasion and proliferation by targeting TNFAIP3 in NSCLC, and may provide possible biomarkers for NSCLC therapy.  相似文献   

17.
Colon cancer is a detrimental neoplasm of the digestive tract. MicroRNAs (miRNAs) as central regulators have been discovered in colon cancer. Nonetheless, the impact of miR-204-3p on colon cancer remains indistinct. The research attempted to uncover the impacts of miR-204-3p on colon cancer cells growth, migration, and invasion. miR-204-3p expression level in colon cancer tissues and diverse colon cancer cell lines were testified by the quantitative real-time polymerase chain reaction. Exploration of the impacts of miR-204-3p on cell growth, migration, invasion, and their associated factors through assessment of CCK-8, flow cytometry, Transwell, and western blot, respectively. High mobility group AT-hook 2 (HMGA2) expression was then detected in Caco-2 cells after miR-204-3p mimic and inhibitor transfection, additionally dual-luciferase activity was implemented to further uncover the correlation between HMGA2 and miR-204-3p. The impact of HMGA2 on Caco-2 cell growth, migration, and invasion was finally assessed. We found that repression of miR-204-3p was discovered in colon cancer tissues and HCT116, SW480, Caco-2, HT29 and SW620 cell lines. MiR-204-3p overexpression mitigated Coca-2 cell viability, facilitated apoptosis, simultaneously adjusted CyclinD1 and cleaved caspase-3 expression. Cell migration, invasion, and the associated factors were all suppressed by miR-204-3p overexpression. Reduction of HMGA2 was presented in Caco-2 cells with miR-204-3p mimic transfection, and HMGA2 was predicated to be a target gene of miR-204-3p. Besides, HMGA2 silence showed the inhibitory effect on Caco-2 cells growth, migration, and invasion. In conclusion, miR-204-3p repressed colon cancer cell growth, migration, and invasion through targeting HMGA2.  相似文献   

18.
MicroRNAs are involved in cancer pathogenesis and act as tumor suppressors or oncogenes. It has been recently reported that miR-148a expression is down-regulated in several types of cancer. The functional roles and target genes of miR-148a in prostate cancer, however, remain unknown. In this report, we showed that miR-148a expression levels were lower in PC3 and DU145 hormone-refractory prostate cancer cells in comparison to PrEC normal human prostate epithelial cells and LNCaP hormone-sensitive prostate cancer cells. Transfection with miR-148a precursor inhibited cell growth, and cell migration and invasion, and increased the sensitivity to anti-cancer drug paclitaxel in PC3 cells. Computer-aided algorithms predicted mitogen- and stress-activated protein kinase, MSK1, as a potential target of miR-148a. Indeed, miR-148a overexpression decreased expression of MSK1. Using luciferase reporter assays, we identified MSK1 as a direct target of miR-148a. Suppression of MSK1 expression by siRNA, however, showed little or no effects on malignant phenotypes of PC3 cells. In PC3PR cells, a paclitaxel-resistant cell line established from PC3 cells, miR-148a inhibited cell growth, and cell migration and invasion, and also attenuated the resistance to paclitaxel. MiR-148a reduced MSK1 expression by directly targeting its 3′-UTR in PC3PR cells. Furthermore, MSK1 knockdown reduced paclitaxel-resistance of PC3PR cells, indicating that miR-148a attenuates paclitaxel-resistance of hormone-refractory, drug-resistant PC3PR cells in part by regulating MSK1 expression. Our findings suggest that miR-148a plays multiple roles as a tumor suppressor and can be a promising therapeutic target for hormone-refractory prostate cancer especially for drug-resistant prostate cancer.  相似文献   

19.
Recently, several studies have evaluated the role of circular RNAs in the metastasis and development of multiple cancers. In our earlier microarray-based study, we had reported the aberrant expression of a novel circular RNA, hsa-circ-0000211 in lung adenocarcinoma (LAC) tissues. However, the roles of hsa-circ-0000211 in LAC have not been studied. Here hsa-circ-0000211 expression in the LAC tissues and cell lines was determined by quantitative real-time PCR (qRT-PCR). The function of hsa-circ-0000211 was evaluated by transwell assay and wound healing. Mechanisms of hsa-circ-0000211 was measured by luciferase reporter assay and western blot. Results revealed the expression of hsa-circ-0000211 in the human LAC tissues and LAC cell lines was higher than that in normal tissue and human lung normal epithelial cells, respectively. The knockdown of hsa-circ-0000211 could inhibit the migration and invasion properties of LAC. Furthermore, hsa-circ-0000211 promoted the migration and invasion of LAC by sponging miR-622. Moreover, hsa-circ-0000211 upregulated the HIF1-α expression by targeting miR-622. hsa-circ-0000211 promoted LAC cell migration and invasion by modulating the miR-622/HIF1-α network. Our study demonstrated that hsa-circ-0000211 can be a potential novel therapeutic target for LAC.  相似文献   

20.
MicroRNAs play important roles in the development and progression of non-small cell lung cancer (NSCLC). miR-16 functions as a tumor-suppressor and is inhibited in several malignancies. Herein, we validated that miR-16 is downregulated in NSCLC tissue samples and cell lines. Ectopic expression of miR-16 significantly inhibited cell proliferation and colony formation. Moreover, miR-16 suppressed cell migration and invasion in NSCLC cells. Hepatoma-derived growth factor (HDGF) was found to be a direct target of miR-16 in NSCLC cell lines. Rescue experiments showed that the suppressive effect of miR-16 on cell proliferation, colony formation, migration, and invasion is partially mediated by inhibiting HDGF expression. This study indicates that miR-16 might be associated with NSCLC progression, and suggests an essential role for miR-16 in NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号