首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron paramagnetic resonance (EPR) spectroscopy was used to detect the light-induced formation of singlet oxygen (1O2*) in the intact and the Rieske-depleted cytochrome b6f complexes (Cyt b6f) from Bryopsis corticulans, as well as in the isolated Rieske Fe–S protein. It is shown that, under white-light illumination and aerobic conditions, chlorophyll a (Chl a) bound in the intact Cyt b6f can be bleached by light-induced 1O2*, and that the 1O2* production can be promoted by D2O or scavenged by extraneous antioxidants such as l-histidine, ascorbate, β-carotene and glutathione. Under similar experimental conditions, 1O2* was also detected in the Rieske-depleted Cyt b6f complex, but not in the isolated Rieske Fe–S protein. The results prove that Chl a cofactor, rather than Rieske Fe–S protein, is the specific site of 1O2* formation, a conclusion which draws further support from the generation of 1O2* with selective excitation of Chl a using monocolor red light.  相似文献   

2.
Geranylgeranyl reductase catalyses the reduction of geranylgeranyl pyrophosphate to phytyl pyrophosphate required for synthesis of chlorophylls, phylloquinone and tocopherols. The gene chlP (ORF sll1091) encoding the enzyme has been inactivated in the cyanobacterium Synechocystis sp. PCC 6803. The resulting ΔchlP mutant accumulates exclusively geranylgeranylated chlorophyll a instead of its phytylated analogue as well as low amounts of α-tocotrienol instead of α-tocopherol. Whereas the contents of chlorophyll and total carotenoids are decreased, abundance of phycobilisomes is increased in ΔchlP cells. The mutant assembles functional photosystems I and II as judged from 77 K fluorescence and electron transport measurements. However, the mutant is unable to grow photoautotrophically due to instability and rapid degradation of the photosystems in the absence of added glucose. We suggest that instability of the photosystems in ΔchlP is directly related to accumulation of geranylgeranylated chlorophyll a. Increased rigidity of the chlorophyll isoprenoid tail moiety due to three additional CC bonds is the likely cause of photooxidative stress and reduced stability of photosynthetic pigment-protein complexes assembled with geranylgeranylated chlorophyll a in the ΔchlP mutant.  相似文献   

3.
Background and Aims The green orchid Goodyera repens has been shown to transfer carbon to its mycorrhizal partner, and this flux may therefore be affected by light availability. This study aimed to test whether the C and N exchange between plant and fungus is dependent on light availability, and in addition addressed the question of whether flowering and/or fruiting individuals of G. repens compensate for changes in leaf chlorophyll concentration with changes in C and N flows from fungus to plant.Methods The natural abundances of stable isotopes of plant C and N were used to infer changes in fluxes between orchid and fungus across natural gradients of irradiance at five sites. Mycorrhizal fungi in the roots of G. repens were identified by molecular analyses. Chlorophyll concentrations in the leaves of the orchid and of reference plants were measured directly in the field.Key Results Leaf δ13C values of G. repens responded to changes in light availability in a similar manner to autotrophic reference plants, and different mycorrhizal fungal associations also did not affect the isotope abundance patterns of the orchid. Flowering/fruiting individuals had lower leaf total N and chlorophyll concentrations, which is most probably explained by N investments to form flowers, seeds and shoot.Conclusions The results indicate that mycorrhizal physiology is relatively fixed in G. repens, and changes in the amount and direction of C flow between plant and fungus were not observed to depend on light availability. The orchid may instead react to low-light sites through increased clonal growth. The orchid does not compensate for low leaf total N and chlorophyll concentrations by using a 13C- and 15N-enriched fungal source.  相似文献   

4.
Global warming and associated increases in the frequency and amplitude of extreme weather events, such as heat waves, may adversely affect tropical rainforest plants via significantly increased tissue temperatures. In this study, the response to two temperature regimes was assessed in seedlings of the neotropical pioneer tree species, Ficus insipida. Plants were cultivated in growth chambers at strongly elevated daytime temperature (39 °C), combined with either close to natural (22 °C) or elevated (32 °C) nighttime temperatures. Under both growth regimes, the critical temperature for irreversible leaf damage, determined by changes in chlorophyll a fluorescence, was approximately 51 °C. This is comparable to values found in F. insipida growing under natural ambient conditions and indicates a limited potential for heat tolerance acclimation of this tropical forest tree species. Yet, under high nighttime temperature, growth was strongly enhanced, accompanied by increased rates of net photosynthetic CO2 uptake and diminished temperature dependence of leaf-level dark respiration, consistent with thermal acclimation of these key physiological parameters.  相似文献   

5.
Cytochrome bd is a terminal quinol:O2 oxidoreductase of respiratory chains of many bacteria. It contains three hemes, b558, b595, and d. The role of heme b595 remains obscure. A CO photolysis/recombination study of the membranes of Escherichia coli containing either wild type cytochrome bd or inactive E445A mutant was performed using nanosecond absorption spectroscopy. We compared photoinduced changes of heme d-CO complex in one-electron-reduced, two-electron-reduced, and fully reduced states of cytochromes bd. The line shape of spectra of photodissociation of one-electron-reduced and two-electron-reduced enzymes is strikingly different from that of the fully reduced enzyme. The difference demonstrates that in the fully reduced enzyme photolysis of CO from heme d perturbs ferrous heme b595 causing loss of an absorption band centered at 435 nm, thus supporting interactions between heme b595 and heme d in the di-heme oxygen-reducing site, in agreement with previous works. Photolyzed CO recombines with the fully reduced enzyme monoexponentially with τ ∼ 12 μs, whereas recombination of CO with one-electron-reduced cytochrome bd shows three kinetic phases, with τ ∼ 14 ns, 14 μs, and 280 μs. The spectra of the absorption changes associated with these components are different in line shape. The 14 ns phase, absent in the fully reduced enzyme, reflects geminate recombination of CO with part of heme d. The 14-μs component reflects bimolecular recombination of CO with heme d and electron backflow from heme d to hemes b in ∼ 4% of the enzyme population. The final, 280-μs component, reflects return of the electron from hemes b to heme d and bimolecular recombination of CO in that population. The fact that even in the two-electron-reduced enzyme, a nanosecond geminate recombination is observed, suggests that namely the redox state of heme b595, and not that of heme b558, controls the pathway(s) by which CO migrates between heme d and the medium.  相似文献   

6.
Daping Yang  Chen Min 《BBA》2010,1797(2):204-211
The gene encoding a chlorophyll d-binding light-harvesting protein, pcbA from Acaryochloris marina (now called as accessory Chlorophyll Binding Protein CBPII) marked with a His-tag was transformed into the genome of Synechocystis PCC6803. Protein gel electrophoresis and western blotting confirmed that this foreign chlorophyll d-binding protein CBPII was expressed and integrated into the thylakoid membrane and bound with chlorophyll a, the only type of chlorophyll present in Synechocystis PCC 6803. Native electrophoresis suggested that CBPII interacts with photosystem II of Synechocystis PCC 6803. Surprisingly, spectral analyses showed that the phycobiliproteins were suppressed in the transformed Synechocystis pcbA+, with a lower ratio of phycobilins to chlorophyll a. These results suggest that there are competitive interactions between the external antenna system of phycobiliproteins and the integral antenna system of chlorophyll-bound protein complexes.  相似文献   

7.
Absorbance difference spectroscopy and redox titrations have been applied to investigate the properties of photosystem I from the chlorophyll d containing cyanobacterium Acaryochloris marina. At room temperature, the (P740+ − P740) and (FA/B − FA/B) absorbance difference spectra were recorded in the range between 300 and 1000 nm while at cryogenic temperatures, (P740+A1 − P740A1) and (3P740 − P740) absorbance difference spectra have been measured. Spectroscopic and kinetic evidence is presented that the cofactors involved in the electron transfer from the reduced secondary electron acceptor, phylloquinone (A1), to the terminal electron acceptor and their structural arrangement are virtually identical to those of chlorophyll a containing photosystem I. The oxidation potential of the primary electron donor P740 of photosystem I has been reinvestigated. We find a midpoint potential of 450 ± 10 mV in photosystem I-enriched membrane fractions as well as in thylakoids which is very similar to that found for P700 in chlorophyll a dominated organisms. In addition, the extinction difference coefficient for the oxidation of the primary donor has been determined and a value of 45,000 ± 4000 M− 1 cm− 1 at 740 nm was obtained. Based on this value the ratio of P740 to chlorophyll is calculated to be 1:~ 200 chlorophyll d in thylakoid membranes. The consequences of our findings for the energetics in photosystem I of A. marina are discussed as well as the pigment stoichiometry and spectral characteristics of P740.  相似文献   

8.
Cyanobacteria in the genus Acaryochloris are the only known oxyphototrophs that have exchanged chlorophyll a (Chl a) with Chl d as their primary photopigment, facilitating oxygenic photosynthesis with near infrared (NIR) light. Yet their ecology and natural habitats are largely unknown. We used hyperspectral and variable chlorophyll fluorescence imaging, scanning electron microscopy, photopigment analysis and DNA sequencing to show that Acaryochloris-like cyanobacteria thrive underneath crustose coralline algae in a widespread endolithic habitat on coral reefs. This finding suggests an important role of Chl d-containing cyanobacteria in a range of hitherto unexplored endolithic habitats, where NIR light-driven oxygenic photosynthesis may be significant.  相似文献   

9.
Twenty-five years ago, non-photochemical quenching of chlorophyll fluorescence by oxidised plastoquinone (PQ) was proposed to be responsible for the lowering of the maximum fluorescence yield reported to occur when leaves or chloroplasts were treated in the dark with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of electron flow beyond the primary quinone electron acceptor (QA) of photosystem (PS) II [C. Vernotte, A.L. Etienne, J.-M. Briantais, Quenching of the system II chlorophyll fluorescence by the plastoquinone pool, Biochim. Biophys. Acta 545 (1979) 519-527]. Since then, the notion of PQ-quenching has received support but has also been put in doubt, due to inconsistent experimental findings. In the present study, the possible role of the native PQ-pool as a non-photochemical quencher was reinvestigated, employing measurements of the fast chlorophyll a fluorescence kinetics (from 50 μs to 5 s). The about 20% lowering of the maximum fluorescence yield FM, observed in osmotically broken spinach chloroplasts treated with DCMU, was eliminated when the oxidised PQ-pool was non-photochemically reduced to PQH2 by dark incubation of the samples in the presence of NAD(P)H, both under anaerobic and aerobic conditions. Incubation under anaerobic conditions in the absence of NAD(P)H had comparatively minor effects. In DCMU-treated samples incubated in the presence of NAD(P)H fluorescence quenching started to develop again after 20-30 ms of illumination, i.e., the time when PQH2 starts getting reoxidised by PS I activity. NAD(P)H-dependent restoration of FM was largely, if not completely, eliminated when the samples were briefly (5 s) pre-illuminated with red or far-red light. Addition to the incubation medium of HgCl2 that inhibits dark reduction of PQ by NAD(P)H also abolished NAD(P)H-dependent restoration of FM. Collectively, our results provide strong new evidence for the occurrence of PQ-quenching. The finding that DCMU alone did not affect the minimum fluorescence yield F0 allowed us to calculate, for different redox states of the native PQ-pool, the fractional quenching at the F0 level (Q0) and to compare it with the fractional quenching at the FM level (QM). The experimentally determined Q0/QM ratios were found to be equal to the corresponding F0/FM ratios, demonstrating that PQ-quenching is solely exerted on the excited state of antenna chlorophylls.  相似文献   

10.
We assessed the microbial diversity and microenvironmental niche characteristics in the didemnid ascidian Lissoclinum patella using 16S rRNA gene sequencing, microsensor and imaging techniques. L. patella harbors three distinct microbial communities spatially separated by few millimeters of tunic tissue: (i) a biofilm on its upper surface exposed to high irradiance and O2 levels, (ii) a cloacal cavity dominated by the prochlorophyte Prochloron spp. characterized by strong depletion of visible light and a dynamic chemical microenvironment ranging from hyperoxia in light to anoxia in darkness and (iii) a biofilm covering the underside of the animal, where light is depleted of visible wavelengths and enriched in near-infrared radiation (NIR). Variable chlorophyll fluorescence imaging demonstrated photosynthetic activity, and hyperspectral imaging revealed a diversity of photopigments in all microhabitats. Amplicon sequencing revealed the dominance of cyanobacteria in all three layers. Sequences representing the chlorophyll d containing cyanobacterium Acaryochloris marina and anoxygenic phototrophs were abundant on the underside of the ascidian in shallow waters but declined in deeper waters. This depth dependency was supported by a negative correlation between A. marina abundance and collection depth, explained by the increased attenuation of NIR as a function of water depth. The combination of microenvironmental analysis and fine-scale sampling techniques used in this investigation gives valuable first insights into the distribution, abundance and diversity of bacterial communities associated with tropical ascidians. In particular, we show that microenvironments and microbial diversity can vary significantly over scales of a few millimeters in such habitats; which is information easily lost by bulk sampling.  相似文献   

11.
Core antenna and reaction centre of photosytem I (PS I) complexes from the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus have been characterized by steady-state polarized absorption spectroscopy, including linear dichroism (LD) and circular dichroism (CD). CD spectra and the second derivatives of measured 77 K CD spectra reveal the spectral components found in the polarized absorption spectra indicating the excitonic origin of the spectral forms of chlorophyll in the PS I complexes. The CD bands at 669-670(+), 673(+), 680(−), 683-685(−), 696-697(−), and 711(−) nm are a common feature of used PSI complexes. The 77 K CD spectra of the trimeric PS I complexes exhibit also low amplitude components around 736 nm for A. platensis and 720 nm for T. elongatus attributed to red-most chlorophylls. The LD measurements indicate that the transition dipole moments of the red-most states are oriented parallel to the membrane plane. The formation of P700+A1 or 3P700 was monitored by time-resolved difference absorbance and LD spectroscopy to elucidate the spectral properties of the PS I reaction centre. The difference spectra give strong evidence for the delocalization of the excited singlet states in the reaction centre. Therefore, P700 cannot be considered as a dimer but should be regarded as a multimer of the six nearly equally coupled reaction centre chlorophylls in accordance with structure-based calculations. On the basis of the results presented in this work and earlier work in the literature it is concluded that the triplet state is localized most likely on PA, whereas the cation is localized most likely on PB.  相似文献   

12.
Xian-De Liu 《BBA》2005,1706(3):215-219
This study investigated the regulation of the major light harvesting chlorophyll a/b protein (LHCII) phosphorylation in Dunaliella salina thylakoid membranes. We found that both light and NaCl could induce LHCII phosphorylation in D. salina thylakoid membranes. Treatments with oxidants (ferredoxin and NADP) or photosynthetic electron flow inhibitors (DCMU, DBMIB, and stigmatellin) inhibited LHCII phosphorylation induced by light but not that induced by NaCl. Furthermore, neither addition of CuCl2, an inhibitor of cytochrome b6f complex reduction, nor oxidizing treatment with ferricyanide inhibited light- or NaCl-induced LHCII phosphorylation, and both salts even induced LHCII phosphorylation in dark-adapted D. salina thylakoid membranes as other salts did. Together, these results indicate that the redox state of the cytochrome b6f complex is likely involved in light- but not salt-induced LHCII phosphorylation in D. salina thylakoid membranes.  相似文献   

13.
Mycobacterium tuberculosis is one of the most deadly human pathogens. The major mechanism for the adaptations of M. tuberculosis is nucleotide substitution. Previous studies have relied on the nonsynonymous-to-synonymous substitution rate (dN/dS) ratio as a measurement of selective constraint based on the assumed selective neutrality of synonymous substitutions. However, this assumption has been shown to be untrue in many cases. In this study, we used the substitution rate in intergenic regions (di) of the M. tuberculosis genome as the neutral reference, and conducted a genome-wide profiling for di, dS, and the rate of insertions/deletions (indel rate) as compared with the genome of M. canettii using a 50 kb sliding window. We demonstrate significant variations in all of the three evolutionary measurements across the M. tuberculosis genome, even for regions in close vicinity. Furthermore, we identified a total of 233 genes with their dS deviating significantly from di within the same window. Interestingly, dS also varies significantly in some of the windows, indicating drastic changes in mutation rate and/or selection pressure within relatively short distances in the M. tuberculosis genome. Importantly, our results indicate that selection on synonymous substitutions is common in the M. tuberculosis genome. Therefore, the dN/dS ratio test must be applied carefully for measuring selection pressure on M. tuberculosis genes.  相似文献   

14.
We measured picosecond time-resolved fluorescence of intact Photosystem I complexes from Chlamydomonas reinhardtii and Arabidopsis thaliana. The antenna system of C. reinhardtii contains about 30-60 chlorophylls more than that of A. thaliana, but lacks the so-called red chlorophylls, chlorophylls that absorb at longer wavelength than the primary electron donor. In C. reinhardtii, the main lifetimes of excitation trapping are about 27 and 68 ps. The overall lifetime of C. reinhardtii is considerably shorter than in A. thaliana. We conclude that the amount and energies of the red chlorophylls have a larger effect on excitation trapping time in Photosystem I than the antenna size.  相似文献   

15.
M Chen  Y Li  D Birch  RD Willows 《FEBS letters》2012,586(19):3249-3254
A Chl f-containing filamentous cyanobacterium was purified from stromatolites and named as Halomicronema hongdechloris gen., sp. nov. after its phylogenetic classification and the morphological characteristics. Hongdechloris contains four main carotenoids and two chlorophylls, a and f. The ratio of Chl f to Chl a is reversibly changed from 1:8 under red light to an undetectable level of Chl f under white-light culture conditions. Phycobiliproteins were induced under white light growth conditions. A fluorescence emission peak of 748 nm was identified as due to Chl f. The results suggest that Chl f is a red-light inducible chlorophyll.  相似文献   

16.
We have probed the absorption changes due to an externally applied electric field (Stark effect) of Photosystem I (PSI) core complexes from the cyanobacteria Synechocystis sp. PCC 6803, Synechococcus elongatus and Spirulina platensis. The results reveal that the so-called C719 chlorophylls in S. elongatus and S. platensis are characterized by very large polarizability differences between the ground and electronically excited states (with Tr(Δα) values up to about 1000 Å3 f−2) and by moderately high change in permanent dipole moments (with average Δμ values between 2 and 3 D f−1). The C740 chlorophylls in S. platensis and, in particular, the C708 chlorophylls in all three species give rise to smaller Stark shifts, which are, however, still significantly larger than those found before for monomeric chlorophyll. The results confirm the hypothesis that these states originate from strongly coupled chlorophyll a molecules. The absorption and Stark spectra of the β-carotene molecules are almost identical in all complexes and suggest similar or slightly higher values for Tr(Δα) and Δμ than for those of β-carotene in solution. Oxidation of P700 did not significantly change the Stark response of the carotenes and the red antenna states C719 and C740, but revealed in all PSI complexes changes around 700-705 and 690-693 nm, which we attribute to the change in permanent dipole moments of reduced P700 and the chlorophylls responsible for the strong absorption band at 690 nm with oxidized P700, respectively.  相似文献   

17.
Shiguo Chen 《BBA》2007,1767(4):306-318
Tenuazonic acid (TeA) is a natural phytotoxin produced by Alternaria alternata, the causal agent of brown leaf spot disease of Eupatorium adenophorum. Results from chlorophyll fluorescence revealed TeA can block electron flow from QA to QB at photosystem II acceptor side. Based on studies with D1-mutants of Chlamydomonas reinhardtii, the No. 256 amino acid plays a key role in TeA binding to the QB-niche. The results of competitive replacement with [14C]atrazine combined with JIP-test and D1-mutant showed that TeA should be considered as a new type of photosystem II inhibitor because it has a different binding behavior within QB-niche from other known photosystem II inhibitors. Bioassay of TeA and its analogues indicated 3-acyl-5-alkyltetramic and even tetramic acid compounds may represent a new structural framework for photosynthetic inhibitors.  相似文献   

18.
We have measured the flash-induced absorbance difference spectrum attributed to the formation of the secondary radical pair, P+Q, between 270 nm and 1000 nm at 77 K in photosystem II of the chlorophyll d containing cyanobacterium, Acaryochloris marina. Despite the high level of chlorophyll d present, the flash-induced absorption difference spectrum of an approximately 2 ms decay component shows a number of features which are typical of the difference spectrum seen in oxygenic photosynthetic organisms containing no chlorophyll d. The spectral shape in the near-UV indicates that a plastoquinone is the secondary acceptor molecule (QA). The strong C-550 change at 543 nm confirms previous reports that pheophytin a is the primary electron acceptor. The bleach at 435 nm and increase in absorption at 820 nm indicates that the positive charge is stabilized on a chlorophyll a molecule. In addition a strong electrochromic band shift, centred at 723 nm, has been observed. It is assigned to a shift of the Qy band of the neighbouring accessory chlorophyll d, ChlD1. It seems highly likely that it accepts excitation energy from the chlorophyll d containing antenna. We therefore propose that primary charge separation is initiated from this chlorophyll d molecule and functions as the primary electron donor. Despite its lower excited state energy (0.1 V less), as compared to chlorophyll a, this chlorophyll d molecule is capable of driving the plastoquinone oxidoreductase activity of photosystem II. However, chlorophyll a is used to stabilize the positive charge and ultimately to drive water oxidation.  相似文献   

19.
Min Chen  Zheng-Li Cai 《BBA》2007,1767(6):603-609
The chlorophyll d containing cyanobacterium, Acaryochloris marina has provided a model system for the study of chlorophyll replacement in the function of oxygenic photosynthesis. Chlorophyll d replaces most functions of chlorophyll a in Acaryochloris marina. It not only functions as the major light-harvesting pigment, but also acts as an electron transfer cofactor in the primary charge separation reaction in the two photosystems. The Mg-chlorophyll d-peptide coordinating interaction between the amino acid residues and chlorophylls using the latest semi-empirical PM5 method were examined. It is suggested that chlorophyll d possesses similar coordination ligand properties to chlorophyll a, but chlorophyll b possesses different ligand properties. Compared with other studies involving theoretical correlation and our prior experiments, this study suggests that the chlorophyll a-bound proteins will bind chlorophyll d without difficulty when chlorophyll d is available.  相似文献   

20.
The peridinin-chlorophyll a-protein (PCP) from dinoflagellates is a soluble light harvesting antenna which gathers incoming photons mainly by the carotenoid peridinin. In PCPs reconstituted with different chlorophylls, the peridinin to chlorophyll energy transfer rates are well predicted by a Förster-like theory, but only if the pigment arrangements are identical in all PCPs. We have determined the X-ray structures of PCPs reconstituted with Chlorophyll-b (Chl-b), Chlorophyll-d (Chl-d) and Bacteriochlorophyll-a (BChl-a) to resolutions ?2 Å. In all three cases the pigment arrangements are essentially the same as in native PCP. Hydrogen bonding is not responsible for preferential incorporation of “non-native” chlorophylls over Chl-a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号