首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
硒对NO诱导的内皮细胞内游离钙离子浓度变化的影响   总被引:2,自引:0,他引:2  
用Fura-2显微荧光测钙技术,研究了用外源性一氧化氮(NO)供体S-亚硝基谷胱甘肽(GSNO)诱导的,人脐静脉内皮细胞系ECV-304细胞胞内游离钙离子浓度([Ca2+i )升高以及硒的抑制效应.结果表明,GSNO作用于ECV-304细胞,短时间内即可导致其胞内游离钙离子浓度升高.胞外液换为无钙液或向胞外液中加入CdCl2(1 mmol/L)对GSNO引起的[Ca2+i升高无影响.提示,GSNO刺激主要引起胞内钙库释放.而且,一氧化氮清除剂血红蛋白(Hb)对这一过程有抑制作用,说明GSNO引起的胞内钙库释放由NO介导.经亚硒酸钠(1 μmol/L)处理的细胞,其NO引起的[Ca2+i升高幅度明显被抑制,说明NO的这种作用可能与细胞的氧化还原状态有关.  相似文献   

2.
信号分子一氧化氮(Nitric oxide,NO)参与植物的许多生理反应过程,例如:萌发、气孔的关闭、侧根的发育以及生物与非生物的胁迫反应过程等,主要的调控形式是与半胱氨酸上的硫基发生可逆的S-亚硝基化作用。NO的半衰期很短,这限制了它在细胞中的生理功能,与胞内含硫基的分子形成的S-亚硝基硫醇(S-nitrosothiols,SNOs)的化学性质稳定,在植物的生长发育及抗逆过程中SNOs参与NO的运输、扩散、储存以及蛋白的翻译后修饰过程。谷胱甘肽(Glutathione,GSH)与NO发生S-亚硝基化作用形成S-亚硝基谷胱甘肽(S-nitrosoglutathione,GSNO),GSNO作为NO的储存与转运形式,可以把NO转到靶蛋白上,使靶蛋白发生亚硝基化。亚硝基谷胱甘肽还原酶(S-Nitrosoglutathione reductase,GSNOR)是生物体中的一类保守蛋白,通过还原亚硝基谷胱甘肽从而调节细胞内NO及亚硝基硫醇(S-nitrosothiols,SNOs)水平,保护机体免受亚硝化的胁迫,间接的调控的细胞的氧化状态。GSNO是一个天然的NO储存库,GSNOR是调节机体亚硝基化水平的关键基因。主要对GSNOR参与的植物生长发育、生物与非生物胁迫等过程进行了概述,探讨GSNOR在植物生长发育及胁迫反应中的作用机制,将有助于我们对NO生理功能的了解,旨在为将来GSNOR的研究提供理论参考和思路。  相似文献   

3.
<正>一氧化氮(NO)作为近年来细胞信号转导通路中的明星分子,已被证实在多种细胞代谢及生理功能方面发挥着重要调控作用,其中一个主要调控机制即NO对蛋白质的S-亚硝基化修饰。S-亚硝基化指NO与靶蛋白酪氨酸残基相互作用并生成S-亚硝基(S-NO)基团的一种翻译后修饰。最近,德国体育大学分子细胞运动医学系的Marijke Grau等发现,红细胞中RBC-NOS合成的NO对红细胞骨架蛋白α-和β-血影蛋白有S-亚硝基化修饰作用,并能够提高红细胞变形能力。红细胞的变形性使其能够穿过口径狭小的毛细血管从而运载氧气到组织各处,变形性的下降可引起多种疾病。早期研  相似文献   

4.
一氧化氮(NO)作为一种重要的气体信号分子,参与调节多种生理及病理过程,如血管形成、神经传递、免疫调控及肿瘤生长等.随着NO在生命过程中的关键作用不断被揭示,研究者开始关注如何利用外源性NO进行生物医学治疗.目前,已经成功合成了多种可释放NO的供体化合物,包括硝酸酯类、偶氮二醇烯翁盐类、S-亚硝基硫醇类、呋咱氮氧化物类和NO-金属配合物类等.但是,这些低分子量NO供体化合物存在易突释、缺乏靶向性等问题,因此限制了其临床转化.基于生物材料的NO递送系统为实现一氧化氮的定量(可控)释放和定点(靶向)传输提供了有效策略,在生物医学领域展现出广阔的应用前景.本文拟对NO供体化合物、NO递送系统及其生物医学应用等方面的研究进展进行系统综述,并对NO生物材料的未来发展方向及应用前景进行了展望.  相似文献   

5.
活性氧参与-氧化氮诱导的神经细胞凋亡   总被引:2,自引:0,他引:2  
采用激光共聚焦成像技术,用氧化还原敏感的特异性荧光探针(DCFH-DA和DHR123)直接研究了一氧 化氮供体S-亚硝基-N-乙酰基青霉胺(SNAP)诱导未成熟大鼠小脑颗粒神经元凋亡过程中的细胞胞浆、线粒体 中活性氧水平的变化,发现神经细胞经0.5mmol/LSNAP处理1h后,细胞胞浆及线粒体中活性氧水平大大增 加.一氧化氮清除剂血红蛋白能够有效抑制细胞胞浆、线粒体中活性氧的产生,防止细胞凋亡.外源性谷胱甘 肽对细胞也具有良好的保护作用,而当细胞中谷胱甘肽的合成被抑制后,一氧化氮的神经毒性大大增强.实验 结果表明一氧化氮通过促进神经细胞产生内源性活性氧而启动细胞凋亡程序,而谷胱甘肽可能是重要的防止一 氧化氮引发神经损伤的内源性抗氧化剂  相似文献   

6.
活性氧参与一氧化氮诱导的神经细胞凋亡   总被引:5,自引:0,他引:5       下载免费PDF全文
采用激光共聚焦成像技术,用氧化还原敏感的特异性荧光探针(DCFH-DA和DHR123)直接研究了一氧化氮供体S-亚硝基-N-乙酰基青霉胺(SNAP)诱导未成熟大鼠小脑颗粒神经元凋亡过程中的细胞胞浆、线粒体中活性氧水平的变化,发现神经细胞经0.5 mmol/L SNAP处理1 h后,细胞胞浆及线粒体中活性氧水平大大增加.一氧化氮清除剂血红蛋白能够有效抑制细胞胞浆、线粒体中活性氧的产生,防止细胞凋亡.外源性谷胱甘肽对细胞也具有良好的保护作用,而当细胞中谷胱甘肽的合成被抑制后,一氧化氮的神经毒性大大增强.实验结果表明一氧化氮通过促进神经细胞产生内源性活性氧而启动细胞凋亡程序,而谷胱甘肽可能是重要的防止一氧化氮引发神经损伤的内源性抗氧化剂.  相似文献   

7.
目的了解植物乳酸杆菌CGMCC NO.1258表层黏附蛋白(IMP2)在同肠上皮细胞(Caco-2)黏附作用中的机制。方法在制备和鉴定IMP2的多克隆抗体的基础上,同EPEC进行竞争黏附肠上皮细胞中,采用体外抗体阻断的方法检测IMP2对植物乳酸菌CGMCC NO.1258黏附作用的影响。结果多克隆抗体能够有效抑制植物乳酸菌CGMCC NO.1258对肠上皮细胞的黏附,并且导致EPEC对Caco-2细胞黏附的增加。结论IMP2在植物乳酸杆菌CGMCC NO.1258同肠上皮细胞黏附中发挥着重要的作用。  相似文献   

8.
<正>NO广泛参与神经系统神经元细胞周期、生长分化及突触形成等过程。S-亚硝基谷胱甘肽还原酶(S-nitrosoglutathione reductase,GSNOR)作为神经元中蛋白亚硝基化的主要调控因子对学习和记忆功能有重要影响,然而其在神经元的分化及突触形成过程中的作用机制尚不清楚。前期研究显示,NO可介导神经生长因子(nerve growth factor,NGF)诱导的神经细胞系PC12的分化及大鼠初级皮层和海马神经元的分化。NO可能通过经典NO/c GMP信号通路或c GMP非依赖性途径,即S-亚硝基化发挥其对神经元的调控功能。  相似文献   

9.
【目的】对嗜酸乳杆菌的S-层蛋白(S-layer protein)进行提纯,研究嗜酸乳酸杆菌和S-层蛋白对鼠伤寒沙门氏菌黏附和入侵的拮抗作用。【方法】应用阴离子交换柱(DE52)对嗜酸乳酸杆菌的S-层蛋白进行提纯,然后分别研究了嗜酸乳酸杆菌和S-层蛋白对鼠伤寒沙门氏菌黏附及入侵Caco-2细胞的作用。【结果】S-层蛋白能显著地抑制鼠伤寒沙门氏菌的黏附及入侵;在竞争、排斥、置换3种黏附试验中,S-层蛋白可显著降低鼠伤寒沙门氏菌的黏附,其相对黏附力分别为1.17%±5.97%、8.71%±1.36%、10.56%±0.92%,差异极显著(p0.01),其中竞争试验效果最好;并且S-层蛋白对鼠伤寒沙门氏菌黏附抑制作用极显著高于嗜酸乳酸杆菌(p0.01);此外,S-层蛋白也能显著抑制鼠伤寒沙门氏菌入侵。【结论】乳酸杆菌S-层蛋白对鼠伤寒沙门氏菌可产生显著的拮抗作用,这可能与S-层蛋白和鼠伤寒沙门氏菌的宿主黏附受体存在竞争作用有关;提示乳酸杆菌S-层蛋白可用于预防和治疗鼠伤寒沙门氏菌感染,并有望成为抗生素的替代品。  相似文献   

10.
采用Peter等方法评价灯盏细辛有效部位注射液对电刺激大鼠颈动脉血栓形成的作用;应用玫瑰花结试验和Born氏法观察本品对大鼠中性粒细胞与血小板之间粘附和聚集的影响以探讨其抗血栓作用的细胞机制.结果表明,本品50 mg/kg使血栓形成时间从对照组的17.7士0.8 min延长到35.7±2.6min(P<0.05);显著降低凝血酶激活的中性粒细胞与血小板间的粘附率,其IC50为61.4 mg/L,且明显抑制激活的中性粒细胞或其上清液引起的血小板聚集,其IC50分别为0.97和2.1 g/L,提示灯盏细辛有效部位具有较强抗血栓作用,其原理可能与抑制中性粒细胞与血小板之间的相互作用有关.  相似文献   

11.
采用荧光显微技术结合药理学方法,以水稻(Oryza sativa L.)种子及其糊粉层为实验材料,研究外源CO、NO对干旱胁迫下水稻种子萌发过程中糊粉层细胞DNA降解及死亡的影响。结果表明:(1)干旱胁迫促进糊粉层细胞的死亡,且近胚端糊粉层细胞的死亡进程早于远胚端的细胞。(2)外源CO及NO供体处理能缓解干旱胁迫下水稻糊粉层细胞DNA的降解,延迟细胞死亡进程;CO专一性抑制剂及NO清除剂能逆转CO及NO的效应,缩短细胞死亡进程。(3)外源CO及NO供体促进干旱胁迫下水稻种子的萌发,CO专一性抑制剂及NO清除剂能抑制干旱胁迫下水稻种子的萌发。(4)CO合成酶抑制剂并不能抑制外源NO对干旱胁迫伤害的缓解效应,即CO能通过NO介导调节干旱胁迫下水稻种子糊粉层细胞的死亡及种子萌发。  相似文献   

12.
目的:研究银杏叶提取物对血栓模型大鼠血栓形成,血小板聚集及血浆中一氧化氮(NO),环磷酸鸟苷(cGMP)和前列环素(PGI2)的影响.方法:100只SD雄性大鼠随机分为5组,分别ig给予5gL-1的CMC-Na,100mg.Kg-1阿司匹林(Asp),42,21,10.5mg.Kg-1银杏叶提取物连续4w.建立大鼠动静脉旁路血栓模型,观察药物时血栓形成的影响,比浊法观察对ADP诱导的血小板聚集的作用,按试剂盒方法检测药物对血浆中NO,cGMP,PGI2的影响.结果:银杏叶提取物可显著抑制血栓形成和血小板聚集率,升高血浆中NO,cGMP,PGI2浓度,高剂量组效果优于阿司匹林组.结论:银杏叶提取物具有抗血栓作用.  相似文献   

13.
一氧化氮和动脉粥样硬化   总被引:9,自引:0,他引:9  
动脉粥样硬化是脂蛋白、单核细胞、巨噬细胞、T淋巴细胞与血管壁内皮细胞相互作用而导致的慢性炎症反应。这个炎症的过程由脂质浸润开始,涉及氧化应激反应,最终导致复杂的病理损伤和斑块的形成,斑块突出入血管,破裂形成血栓而导致急性的心肌梗塞或中风。激活内皮源性的一氧化氮合成酶而生成的一氧化氮(NO)能够预防动脉粥样硬化,并对不周发展阶段的动脉粥样硬化的病理形成均有改善和逆转作用。其生成的NO能抗氧化、清除自由基、抑制低密度脂蛋自在血管壁被氧化,防止氧化低密度脂蛋白(oxLDL)的产生,而影响脂质浸润;能抑制NFKB的激活和核内迁移,阻抑激活的内皮细胞表达黏附分子,减少嗜中性粒细胞和单核细胞的黏附和活化,减少血管壁的炎症反应;能抑制血小板黏附、聚集,抑制凝血酶诱导的血小板活性因子的表达以减少血栓形成;能阻止凋亡,保持内皮细胞的完整性;还能有效地抑制血管平滑肌细胞增殖、迁移和细胞外基质的合成,对动脉粥样硬化病理形成和发展具有阻抑作用。  相似文献   

14.
S-苄基-谷胱甘肽是合成谷胱甘肽的一种重要前体化合物。以L-谷氨酰胺为供体,S-苄基-半胱氨酰甘氨酸为受体.用Bacillus subtilis NX-2的γ-谷氨酰转肽酶催化进行转肽反应,合成得到S-苄基-谷胱甘肽。该化合物进行了质谱及核磁共振分析,并得到了初步鉴定。  相似文献   

15.
本文研究了来源于不同前体物的一氧化氮(Nitro oxide,NO)对猪细小病毒(Porcine parvovirus,PPV)体外增殖的影响.结果表明,NO前体物S-硝基-N-乙酰青霉胺(SNAP)、L-精氨酸(L-Arg)均能够有效地诱导PK-15细胞产生NO,进而显著地抑制PPV在PK-15细胞上的复制,其效果与前体物的浓度呈正相关,在浓度为100μmol/L和200μmol/L时,SNAP产生NO的能力与抑制病毒复制的作用要强于L-Arg.在病毒感染前6 h和3 h添加SNAP或L-Arg对病毒复制的抑制作用比在病毒感染后3 h和6 h添加的作用强,表明NO的抗病毒作用主要发生在病毒感染的初始阶段.此外,添加具有抑制L-Arg产生NO作用的N-硝基-L-精氨酸(L-NNA)能抵消L-Arg体外抗病毒的作用.  相似文献   

16.
板蓝根多糖抑制致病性大肠埃希菌细胞黏附的试验研究   总被引:2,自引:0,他引:2  
研究板蓝根多糖能否影响致病性大肠埃希菌对细胞的黏附。使用PK-15细胞进行了黏附试验及黏附抑制试验。在所选的4个浓度中,板蓝根多糖浓度为1.6mg/mL时,对细菌黏附细胞的抑制作用最好,黏附力由每个细胞黏附44.8个细菌降低到6.3个细菌。板蓝根多糖对致病性大肠埃希菌的细胞黏附具有抑制作用,提示该多糖具有调节肠道微生态的潜在应用价值。  相似文献   

17.
旨在构建S-亚胺还原酶(S-IRED)和葡萄糖脱氢酶(GDH)在大肠杆菌中的一菌双酶共表达系统,实现辅酶NADPH的再生,高效合成手性仲胺。利用无缝克隆的手段设计构建一种单质粒双启动子共表达系统,以全细胞为催化剂催化手性仲胺S-2-甲基吡咯烷(S-2MP)的合成,并研究温度、pH及有机溶剂对双酶反应的影响。成功构建了S-IRED和GDH的重组共表达质粒,实现了S-IRED与GDH在大肠杆菌中的胞内共表达,以亚胺2-甲基吡咯啉(2MPN)为模式底物,以工程菌全细胞催化手性仲胺S-2MP的合成,在低辅酶添加时催化手性胺的产率和光学纯度均高于95%。该双酶共表达体系的最适温度和pH分别为37℃和pH 8,10%以下的甲醇对双酶反应有正向促进作用。大肠杆菌胞内双酶共表达系统的构建实现了辅酶NADPH的原位再生,降低了亚胺还原酶催化合成手性胺的成本,为手性胺的规模制备奠定了基础。  相似文献   

18.
Peroxiredoxin V(Prx V)是过氧化物酶peroxiredoxins家族中的一员,在神经细胞中含量丰富,具有通过清除细胞内活性氧(reactive oxygen species,ROS)和过氧亚硝酸盐抑制氧化应激诱导的细胞凋亡的作用。过量的一氧化氮(nitric oxide,NO)具有较强的神经毒性,可引起小胶质细胞炎性反应,诱导神经细胞凋亡从而引发神经退行性疾病,而且可诱导神经小胶质细胞Prx V的表达,参与小胶质细胞的活性调控过程。但是,NO诱导的海马神经细胞凋亡过程中Prx V的作用尚不清楚。该研究利用硝普化钠(sodium nitroprusside dihydrate,SNP)作为NO供体,检测了NO诱导的HT22小鼠海马神经细胞的凋亡及对Prx V蛋白表达的影响。结果显示,SNP诱导的HT22细胞凋亡呈现时间、浓度依赖性;并特异性地抑制了Prx V的表达,致使细胞内ROS水平升高,激活线粒体依赖的经典凋亡途径,导致HT22细胞的凋亡。该研究结果揭示,NO通过抑制细胞内Prx V的表达导致细胞内ROS水平升高,最终诱导HT22细胞发生凋亡的机制,为保护NO诱导的神经细胞凋亡提供了新的理论依据。  相似文献   

19.
P-选择素及其细胞黏附与血栓形成   总被引:9,自引:0,他引:9  
P-选择素是选择素家族的重要黏附分子,作为血小板/内皮细胞活化标志和细胞黏附受体,其可通过介导血小板、内皮细胞黏附及与白细胞的相互作用,启动参与了包括炎症和血栓形成等多种病理生理起始过程,是炎症/血栓的重要介质和靶分子。抑制P-选择素及其与配体的结合和作用,可使病理状态下血栓局部白细胞聚集减少、细胞因子及组织因子表达降低、纤维蛋白生成减少,从而有助于抑制血栓的形成。因此,随着P-选择素及其细胞黏附与血栓形成研究的不断深入和阐明,以P-选择素为靶标的血栓性疾病的诊断和抗黏附治疗,也已引起人们关注并具有良好的临床应用价值和前景。  相似文献   

20.
以家榆种子为试材,采用种子活力检测技术、激光共聚焦显微镜技术、蛋白质S-亚硝基化检测技术,结合多种相关抑制剂的使用,研究了NO对种子老化的影响及其作用机制。结果表明:(1)外源NO可显著提升老化处理后种子的活力,NO清除剂cPTIO可降低老化处理后种子的活力,且此影响可被NO供体硝普钠所恢复。(2)硝酸还原酶底物亚硝酸钠、类一氧化氮合酶底物L-精氨酸(L-Arg)均可提高老化处理后种子的活力,2种酶的抑制剂可降低种子活力,且此影响可被NO供体硝普钠所恢复,即硝酸还原酶与类一氧化氮合酶可参与种子老化过程中NO的产生。(3)种子老化过程中NO首先在子叶中合成,随后在胚根尖部、生长点与下胚轴等部位出现,蛋白质S-亚硝基化水平与NO在种子中产生的时间特点一致。研究认为,NO可提高种子抗老化能力,种子内NO可通过硝酸还原酶途径和类一氧化氮合酶途径产生,且与种子蛋白质S-亚硝基化水平相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号